Lanceros-Mendez, Senentxu

Link to this page

Authority KeyName Variants
orcid::0000-0001-6791-7620
  • Lanceros-Mendez, Senentxu (1)
Projects

Author's Bibliography

Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli

Miljković, Miona; Lazić, Vesna; Davidović, Slađana; Milivojević, Ana; Papan, Jelena; Fernandes, Margarida M.; Lanceros-Mendez, Senentxu; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(Springer, Dordrecht, 2020)

TY  - JOUR
AU  - Miljković, Miona
AU  - Lazić, Vesna
AU  - Davidović, Slađana
AU  - Milivojević, Ana
AU  - Papan, Jelena
AU  - Fernandes, Margarida M.
AU  - Lanceros-Mendez, Senentxu
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4351
AB  - The aim of this study was the development of a non-toxic, biosynthetic antimicrobial agent which selectively acts on only one type of microorganism, and preserves the microbiota. Antimicrobial performance of biosynthesized silver nanoparticles (Ag NPs) by horsetail (Equisetum arvense L.) extract was examined against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus, as well as yeasts Candida albicans and Saccharomyces boulardii. Also, the cytotoxicity of Ag NPs was examined toward pre-osteoblast cells. The synthetic conditions-concentration of extract, temperature, and pH-were optimized to prepare silver colloids with different particle size distributions and long-term stability. The obtained samples were characterized using transmission electron microscopy, X-ray diffraction analysis, and absorption spectroscopy. The smaller-sized Ag NPs ( 10-20 nm), prepared at a lower temperature (20 degrees C), showed better antimicrobial performance against E. coli compared to larger ones ( 40-60 nm), prepared at high temperature (100 degrees C). On the other hand, both samples did not display any toxic action against bacteria S. aureus, or yeasts C. albicans and S. boulardii. Non-cytotoxic behavior of Ag NPs toward pre-osteoblast cells was observed for the concentrations of silver  lt = 2.25 and  lt = 4.5 mg L-1 for 10-20 and 40-60 nm-sized Ag NPs, respectively. Biosynthesized Ag NPs by horsetail extract display selective toxic action against E. coli at the ecologically acceptable concentration level.
PB  - Springer, Dordrecht
T2  - Journal of Inorganic and Organometallic Polymers and Materials
T1  - Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli
EP  - 2607
IS  - 7
SP  - 2598
VL  - 30
DO  - 10.1007/s10904-019-01402-x
ER  - 
@article{
author = "Miljković, Miona and Lazić, Vesna and Davidović, Slađana and Milivojević, Ana and Papan, Jelena and Fernandes, Margarida M. and Lanceros-Mendez, Senentxu and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2020",
abstract = "The aim of this study was the development of a non-toxic, biosynthetic antimicrobial agent which selectively acts on only one type of microorganism, and preserves the microbiota. Antimicrobial performance of biosynthesized silver nanoparticles (Ag NPs) by horsetail (Equisetum arvense L.) extract was examined against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus, as well as yeasts Candida albicans and Saccharomyces boulardii. Also, the cytotoxicity of Ag NPs was examined toward pre-osteoblast cells. The synthetic conditions-concentration of extract, temperature, and pH-were optimized to prepare silver colloids with different particle size distributions and long-term stability. The obtained samples were characterized using transmission electron microscopy, X-ray diffraction analysis, and absorption spectroscopy. The smaller-sized Ag NPs ( 10-20 nm), prepared at a lower temperature (20 degrees C), showed better antimicrobial performance against E. coli compared to larger ones ( 40-60 nm), prepared at high temperature (100 degrees C). On the other hand, both samples did not display any toxic action against bacteria S. aureus, or yeasts C. albicans and S. boulardii. Non-cytotoxic behavior of Ag NPs toward pre-osteoblast cells was observed for the concentrations of silver  lt = 2.25 and  lt = 4.5 mg L-1 for 10-20 and 40-60 nm-sized Ag NPs, respectively. Biosynthesized Ag NPs by horsetail extract display selective toxic action against E. coli at the ecologically acceptable concentration level.",
publisher = "Springer, Dordrecht",
journal = "Journal of Inorganic and Organometallic Polymers and Materials",
title = "Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli",
pages = "2607-2598",
number = "7",
volume = "30",
doi = "10.1007/s10904-019-01402-x"
}
Miljković, M., Lazić, V., Davidović, S., Milivojević, A., Papan, J., Fernandes, M. M., Lanceros-Mendez, S., Ahrenkiel, S. P.,& Nedeljković, J.. (2020). Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli. in Journal of Inorganic and Organometallic Polymers and Materials
Springer, Dordrecht., 30(7), 2598-2607.
https://doi.org/10.1007/s10904-019-01402-x
Miljković M, Lazić V, Davidović S, Milivojević A, Papan J, Fernandes MM, Lanceros-Mendez S, Ahrenkiel SP, Nedeljković J. Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli. in Journal of Inorganic and Organometallic Polymers and Materials. 2020;30(7):2598-2607.
doi:10.1007/s10904-019-01402-x .
Miljković, Miona, Lazić, Vesna, Davidović, Slađana, Milivojević, Ana, Papan, Jelena, Fernandes, Margarida M., Lanceros-Mendez, Senentxu, Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli" in Journal of Inorganic and Organometallic Polymers and Materials, 30, no. 7 (2020):2598-2607,
https://doi.org/10.1007/s10904-019-01402-x . .
1
13
6
12