Elezović, Nevenka R.

Link to this page

Authority KeyName Variants
8d7d4959-848b-43db-a2f7-9b08cd6ea611
  • Elezović, Nevenka R. (4)
  • Elezović, Nevenka (3)
Projects

Author's Bibliography

Mechanism of formation of the honeycomb-like structures by the regime of the reversing current (RC) in the second range

Berkesi, Kata; Živković, Predrag M.; Elezović, Nevenka; Lačnjevac, Uroš; Hristoforou, Evangelos; Nikolić, Nebojša D.

(Elsevier B.V., 2019)

TY  - JOUR
AU  - Berkesi, Kata
AU  - Živković, Predrag M.
AU  - Elezović, Nevenka
AU  - Lačnjevac, Uroš
AU  - Hristoforou, Evangelos
AU  - Nikolić, Nebojša D.
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5895
AB  - Electrodeposition of copper in the hydrogen co-deposition range by the regime of reversing current (RC) in the second range has been investigated by determination of the average current efficiency for hydrogen evolution reaction and by scanning electron (SEM) and optical (OM) microscopic analysis of the obtained deposits. Keeping the cathodic current density, the cathodic and the anodic pulses constant in all experiments, the anodic current density (ja) values were varied: 40, 80, 160, 240 and 320 mA cm−2. The Cu deposits produced by the RC regimes with different anodic current density values were compared with that obtained in a constant galvanostatic regime (DC) at the current density equal to the cathodic current density in the RC regimes. The honeycomb-like structures were formed in the DC regime and by the RC regimes with ja of 40 and 80 mA cm−2. The hole size in them was in the 60–70 μm range. Due to the decrease of quantity of evolved hydrogen with increasing anodic current density, the larger dish-like holes with dendrites at their bottom and shoulder were formed with ja values of 160, 240 and 320 mA cm−2. The maximum number of holes, and hence, the largest specific surface area of the honeycomb-like electrodes was obtained with ja = 80 mA cm−2, that can be ascribed to a suppression of coalescence of neighboring hydrogen bubbles. Application of the RC regime also led to the increase of uniformity of structures, what is concluded by cross section analysis of the formed honeycomb-like electrodes. For the first time, mechanism of Cu electrodeposition in the hydrogen co-deposition range by the RC regime in the second range was proposed and discussed.
PB  - Elsevier B.V.
T2  - Journal of Electroanalytical Chemistry
T1  - Mechanism of formation of the honeycomb-like structures by the regime of the reversing current (RC) in the second range
EP  - 410
SP  - 401
VL  - 833
DO  - 10.1016/j.jelechem.2018.12.021
ER  - 
@article{
author = "Berkesi, Kata and Živković, Predrag M. and Elezović, Nevenka and Lačnjevac, Uroš and Hristoforou, Evangelos and Nikolić, Nebojša D.",
year = "2019",
abstract = "Electrodeposition of copper in the hydrogen co-deposition range by the regime of reversing current (RC) in the second range has been investigated by determination of the average current efficiency for hydrogen evolution reaction and by scanning electron (SEM) and optical (OM) microscopic analysis of the obtained deposits. Keeping the cathodic current density, the cathodic and the anodic pulses constant in all experiments, the anodic current density (ja) values were varied: 40, 80, 160, 240 and 320 mA cm−2. The Cu deposits produced by the RC regimes with different anodic current density values were compared with that obtained in a constant galvanostatic regime (DC) at the current density equal to the cathodic current density in the RC regimes. The honeycomb-like structures were formed in the DC regime and by the RC regimes with ja of 40 and 80 mA cm−2. The hole size in them was in the 60–70 μm range. Due to the decrease of quantity of evolved hydrogen with increasing anodic current density, the larger dish-like holes with dendrites at their bottom and shoulder were formed with ja values of 160, 240 and 320 mA cm−2. The maximum number of holes, and hence, the largest specific surface area of the honeycomb-like electrodes was obtained with ja = 80 mA cm−2, that can be ascribed to a suppression of coalescence of neighboring hydrogen bubbles. Application of the RC regime also led to the increase of uniformity of structures, what is concluded by cross section analysis of the formed honeycomb-like electrodes. For the first time, mechanism of Cu electrodeposition in the hydrogen co-deposition range by the RC regime in the second range was proposed and discussed.",
publisher = "Elsevier B.V.",
journal = "Journal of Electroanalytical Chemistry",
title = "Mechanism of formation of the honeycomb-like structures by the regime of the reversing current (RC) in the second range",
pages = "410-401",
volume = "833",
doi = "10.1016/j.jelechem.2018.12.021"
}
Berkesi, K., Živković, P. M., Elezović, N., Lačnjevac, U., Hristoforou, E.,& Nikolić, N. D.. (2019). Mechanism of formation of the honeycomb-like structures by the regime of the reversing current (RC) in the second range. in Journal of Electroanalytical Chemistry
Elsevier B.V.., 833, 401-410.
https://doi.org/10.1016/j.jelechem.2018.12.021
Berkesi K, Živković PM, Elezović N, Lačnjevac U, Hristoforou E, Nikolić ND. Mechanism of formation of the honeycomb-like structures by the regime of the reversing current (RC) in the second range. in Journal of Electroanalytical Chemistry. 2019;833:401-410.
doi:10.1016/j.jelechem.2018.12.021 .
Berkesi, Kata, Živković, Predrag M., Elezović, Nevenka, Lačnjevac, Uroš, Hristoforou, Evangelos, Nikolić, Nebojša D., "Mechanism of formation of the honeycomb-like structures by the regime of the reversing current (RC) in the second range" in Journal of Electroanalytical Chemistry, 833 (2019):401-410,
https://doi.org/10.1016/j.jelechem.2018.12.021 . .
4
3
4

Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution

Elezović, Nevenka; Babić, Biljana M.; Gajić Krstajić, Ljiljana; Ercius, Peter; Radmilović, Velimir R.; Krstajić, Nedeljko; Vračar, Ljiljana

(Elsevier, 2012)

TY  - JOUR
AU  - Elezović, Nevenka
AU  - Babić, Biljana M.
AU  - Gajić Krstajić, Ljiljana
AU  - Ercius, Peter
AU  - Radmilović, Velimir R.
AU  - Krstajić, Nedeljko
AU  - Vračar, Ljiljana
PY  - 2012
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5733
AB  - Platinum nanocatalyst at nano-tungsten carbide was synthesized, characterized and tested for oxygen reduction reaction (ORR) in 0.1 mol dm−3 NaOH, at 25 °C. Tungsten-carbide islands on nano-tungsten particles (WC) was synthesized from gel prepared by using nanoparticles of WO3, previously produced from W-powder oxidized in H2O2. The support was porous material with high specific surface area (177 m2 g−1).The WC supported Pt (10 wt.%) catalyst was prepared by borohydride reduction method.X-ray diffraction of the catalyst demonstrates successful reduction of Pt precursor to metallic form. STEM analysis of Pt/WC catalyst showed the existence of Pt particles lower than 2 nm in size, even the clusters of Pt atoms.Electrochemically active surface area of Pt was determined from adsorption/desorption charge of hydrogen atoms.Catalytic activity of the synthesized catalyst for ORR was studied by cyclic voltammetry and linear sweep voltammetry at rotating disk electrode. The onset potential on Pt/WC for ORR, comparing with Pt/Vulcan, was shifted to the positive potentials for about 150 mV. Pt/WC catalyst shows one Tafel slope of −0.105 V dec−1, remarkable catalytic activity expressed either through the value of the current density per real surface area, or through the mass activity and excellent stability.
PB  - Elsevier
T2  - Electrochimica Acta
T1  - Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution
EP  - 246
SP  - 239
VL  - 69
DO  - 10.1016/j.electacta.2012.02.105
UR  - https://hdl.handle.net/21.15107/rcub_dais_465
ER  - 
@article{
author = "Elezović, Nevenka and Babić, Biljana M. and Gajić Krstajić, Ljiljana and Ercius, Peter and Radmilović, Velimir R. and Krstajić, Nedeljko and Vračar, Ljiljana",
year = "2012",
abstract = "Platinum nanocatalyst at nano-tungsten carbide was synthesized, characterized and tested for oxygen reduction reaction (ORR) in 0.1 mol dm−3 NaOH, at 25 °C. Tungsten-carbide islands on nano-tungsten particles (WC) was synthesized from gel prepared by using nanoparticles of WO3, previously produced from W-powder oxidized in H2O2. The support was porous material with high specific surface area (177 m2 g−1).The WC supported Pt (10 wt.%) catalyst was prepared by borohydride reduction method.X-ray diffraction of the catalyst demonstrates successful reduction of Pt precursor to metallic form. STEM analysis of Pt/WC catalyst showed the existence of Pt particles lower than 2 nm in size, even the clusters of Pt atoms.Electrochemically active surface area of Pt was determined from adsorption/desorption charge of hydrogen atoms.Catalytic activity of the synthesized catalyst for ORR was studied by cyclic voltammetry and linear sweep voltammetry at rotating disk electrode. The onset potential on Pt/WC for ORR, comparing with Pt/Vulcan, was shifted to the positive potentials for about 150 mV. Pt/WC catalyst shows one Tafel slope of −0.105 V dec−1, remarkable catalytic activity expressed either through the value of the current density per real surface area, or through the mass activity and excellent stability.",
publisher = "Elsevier",
journal = "Electrochimica Acta",
title = "Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution",
pages = "246-239",
volume = "69",
doi = "10.1016/j.electacta.2012.02.105",
url = "https://hdl.handle.net/21.15107/rcub_dais_465"
}
Elezović, N., Babić, B. M., Gajić Krstajić, L., Ercius, P., Radmilović, V. R., Krstajić, N.,& Vračar, L.. (2012). Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution. in Electrochimica Acta
Elsevier., 69, 239-246.
https://doi.org/10.1016/j.electacta.2012.02.105
https://hdl.handle.net/21.15107/rcub_dais_465
Elezović N, Babić BM, Gajić Krstajić L, Ercius P, Radmilović VR, Krstajić N, Vračar L. Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution. in Electrochimica Acta. 2012;69:239-246.
doi:10.1016/j.electacta.2012.02.105
https://hdl.handle.net/21.15107/rcub_dais_465 .
Elezović, Nevenka, Babić, Biljana M., Gajić Krstajić, Ljiljana, Ercius, Peter, Radmilović, Velimir R., Krstajić, Nedeljko, Vračar, Ljiljana, "Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution" in Electrochimica Acta, 69 (2012):239-246,
https://doi.org/10.1016/j.electacta.2012.02.105 .,
https://hdl.handle.net/21.15107/rcub_dais_465 .
53
46
53

Nb-TiO2 supported platinum nanocatalyst for oxygen reduction reaction in alkaline solutions

Elezović, Nevenka R.; Babić, Biljana M.; Radmilović, Velimir R; Vračar, Ljiljana M; Krstajić, Nedeljko V

(Pergamon-Elsevier Science Ltd, Oxford, 2011)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Babić, Biljana M.
AU  - Radmilović, Velimir R
AU  - Vračar, Ljiljana M
AU  - Krstajić, Nedeljko V
PY  - 2011
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5645
AB  - Platinum based nanocatalyst at home made Nb-TiO2 support was synthesized and characterized as the catalyst for oxygen reduction reaction in 0.1 mol dm(-3) NaOH, at 25 degrees C. Nb doped TiO2 catalyst support, containing 5% of Nb, has been synthesized by modified acid-catalyzed sol-gel procedure in non-aqueous medium. BET and X-ray diffraction (XRD) techniques were applied for characterization of synthesized supporting material. XRD analysis revealed only presence of anatase TiO2 phase in synthesized support powder. Existence of any peaks belonging to Nb compounds has not been observed, indicating Nb incorporated into the lattice. Nb-TiO2 supported Pt nanocatalyst synthesized, using borohydride reduction method, was characterized by TEM and HRTEM techniques. Platinum nanoparticles distribution, over Nb doped TiO2 support, was quite homogenous. Mean particle size of about 4 nm was found with no pronounced particle agglomeration. Electrochemical techniques: cyclic voltammetry and linear sweep voltammetry at rotating disc electrode were applied in order to study kinetics and estimate catalytic activity of this new catalyst for the oxygen reduction reaction in alkaline solution. Two different Tafel slopes were found: one close to -90 mV dec(-1) in low current density region and other approximately 200 my dec(-1) in high current density region, which is in good accordance with literature results for oxygen reduction at Pt single crystals, as well as Pt nanocatalysts in alkaline solutions. Similar specific catalytic activity (expressed in term of kinetic current density per real surface area) of Nb(5%)-TiO2/Pt catalyst for oxygen reduction reaction in comparison with the carbon supported platinum (Vulcan/Pt) nanocatalyst, was found.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Electrochimica Acta
T1  - Nb-TiO2 supported platinum nanocatalyst for oxygen reduction reaction in alkaline solutions
EP  - 9026
IS  - 25
SP  - 9020
VL  - 56
DO  - 10.1016/j.electacta.2011.04.075
ER  - 
@article{
author = "Elezović, Nevenka R. and Babić, Biljana M. and Radmilović, Velimir R and Vračar, Ljiljana M and Krstajić, Nedeljko V",
year = "2011",
abstract = "Platinum based nanocatalyst at home made Nb-TiO2 support was synthesized and characterized as the catalyst for oxygen reduction reaction in 0.1 mol dm(-3) NaOH, at 25 degrees C. Nb doped TiO2 catalyst support, containing 5% of Nb, has been synthesized by modified acid-catalyzed sol-gel procedure in non-aqueous medium. BET and X-ray diffraction (XRD) techniques were applied for characterization of synthesized supporting material. XRD analysis revealed only presence of anatase TiO2 phase in synthesized support powder. Existence of any peaks belonging to Nb compounds has not been observed, indicating Nb incorporated into the lattice. Nb-TiO2 supported Pt nanocatalyst synthesized, using borohydride reduction method, was characterized by TEM and HRTEM techniques. Platinum nanoparticles distribution, over Nb doped TiO2 support, was quite homogenous. Mean particle size of about 4 nm was found with no pronounced particle agglomeration. Electrochemical techniques: cyclic voltammetry and linear sweep voltammetry at rotating disc electrode were applied in order to study kinetics and estimate catalytic activity of this new catalyst for the oxygen reduction reaction in alkaline solution. Two different Tafel slopes were found: one close to -90 mV dec(-1) in low current density region and other approximately 200 my dec(-1) in high current density region, which is in good accordance with literature results for oxygen reduction at Pt single crystals, as well as Pt nanocatalysts in alkaline solutions. Similar specific catalytic activity (expressed in term of kinetic current density per real surface area) of Nb(5%)-TiO2/Pt catalyst for oxygen reduction reaction in comparison with the carbon supported platinum (Vulcan/Pt) nanocatalyst, was found.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Electrochimica Acta",
title = "Nb-TiO2 supported platinum nanocatalyst for oxygen reduction reaction in alkaline solutions",
pages = "9026-9020",
number = "25",
volume = "56",
doi = "10.1016/j.electacta.2011.04.075"
}
Elezović, N. R., Babić, B. M., Radmilović, V. R., Vračar, L. M.,& Krstajić, N. V.. (2011). Nb-TiO2 supported platinum nanocatalyst for oxygen reduction reaction in alkaline solutions. in Electrochimica Acta
Pergamon-Elsevier Science Ltd, Oxford., 56(25), 9020-9026.
https://doi.org/10.1016/j.electacta.2011.04.075
Elezović NR, Babić BM, Radmilović VR, Vračar LM, Krstajić NV. Nb-TiO2 supported platinum nanocatalyst for oxygen reduction reaction in alkaline solutions. in Electrochimica Acta. 2011;56(25):9020-9026.
doi:10.1016/j.electacta.2011.04.075 .
Elezović, Nevenka R., Babić, Biljana M., Radmilović, Velimir R, Vračar, Ljiljana M, Krstajić, Nedeljko V, "Nb-TiO2 supported platinum nanocatalyst for oxygen reduction reaction in alkaline solutions" in Electrochimica Acta, 56, no. 25 (2011):9020-9026,
https://doi.org/10.1016/j.electacta.2011.04.075 . .
30
24
29

Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction

Elezović, Nevenka R.; Babić, Biljana M.; Gajić Krstajić, Ljiljana; Radmilović, Velimir R.; Krstajić, Nedeljko; Vračar, Ljiljana

(Elsevier, 2010)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Babić, Biljana M.
AU  - Gajić Krstajić, Ljiljana
AU  - Radmilović, Velimir R.
AU  - Krstajić, Nedeljko
AU  - Vračar, Ljiljana
PY  - 2010
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5617
AB  - In order to point out the effect of the support to the catalyst for oxygen reduction reaction nano-crystalline Nb-doped TiO2 was synthesized through a modified sol-gel route procedure. The specific surface area of the support, SBET, and pore size distribution, were calculated from the adsorption isotherms using the gravimetric McBain method. The support was characterized by X-ray diffraction (XRD) technique. The borohydride reduction method was used to prepare Nb-TiO2 supported Pt (20 wt.%) catalyst. The synthesized catalyst was analyzed by TEM technique. Finally, the catalytic activity of this new catalyst for oxygen reduction reaction was investigated in acid solution, in the absence and the presence of methanol, and its activity was compared towards the results on C/Pt catalysts. Kinetic analysis reveals that the oxygen reduction reaction on Nb-TiO2/Pt catalyst follows four-electron process leading to water, as in the case of C/Pt electrode, but the Tafel plots normalized to the electrochemically active surface area show very remarkable enhancement in activity of Nb-TiO2/Pt expressed through the value of the current density at the constant potential. Moreover, Nb-TiO2/Pt catalyst exhibits higher methanol tolerance during the oxygen reduction reaction than the C/Pt catalyst. The enhancement in the activity of Nb-TiO2/Pt is consequence of both: the interactions of Pt nanoparticles with the support and the energy shift of the surface d-states with respect to the Fermi level what changes the surface reactivity. © 2010 Elsevier B.V.
PB  - Elsevier
T2  - Journal of Power Sources
T1  - Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction
EP  - 3968
IS  - 13
SP  - 3961
VL  - 195
DO  - 10.1016/j.jpowsour.2010.01.035
UR  - https://hdl.handle.net/21.15107/rcub_dais_3418
ER  - 
@article{
author = "Elezović, Nevenka R. and Babić, Biljana M. and Gajić Krstajić, Ljiljana and Radmilović, Velimir R. and Krstajić, Nedeljko and Vračar, Ljiljana",
year = "2010",
abstract = "In order to point out the effect of the support to the catalyst for oxygen reduction reaction nano-crystalline Nb-doped TiO2 was synthesized through a modified sol-gel route procedure. The specific surface area of the support, SBET, and pore size distribution, were calculated from the adsorption isotherms using the gravimetric McBain method. The support was characterized by X-ray diffraction (XRD) technique. The borohydride reduction method was used to prepare Nb-TiO2 supported Pt (20 wt.%) catalyst. The synthesized catalyst was analyzed by TEM technique. Finally, the catalytic activity of this new catalyst for oxygen reduction reaction was investigated in acid solution, in the absence and the presence of methanol, and its activity was compared towards the results on C/Pt catalysts. Kinetic analysis reveals that the oxygen reduction reaction on Nb-TiO2/Pt catalyst follows four-electron process leading to water, as in the case of C/Pt electrode, but the Tafel plots normalized to the electrochemically active surface area show very remarkable enhancement in activity of Nb-TiO2/Pt expressed through the value of the current density at the constant potential. Moreover, Nb-TiO2/Pt catalyst exhibits higher methanol tolerance during the oxygen reduction reaction than the C/Pt catalyst. The enhancement in the activity of Nb-TiO2/Pt is consequence of both: the interactions of Pt nanoparticles with the support and the energy shift of the surface d-states with respect to the Fermi level what changes the surface reactivity. © 2010 Elsevier B.V.",
publisher = "Elsevier",
journal = "Journal of Power Sources",
title = "Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction",
pages = "3968-3961",
number = "13",
volume = "195",
doi = "10.1016/j.jpowsour.2010.01.035",
url = "https://hdl.handle.net/21.15107/rcub_dais_3418"
}
Elezović, N. R., Babić, B. M., Gajić Krstajić, L., Radmilović, V. R., Krstajić, N.,& Vračar, L.. (2010). Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction. in Journal of Power Sources
Elsevier., 195(13), 3961-3968.
https://doi.org/10.1016/j.jpowsour.2010.01.035
https://hdl.handle.net/21.15107/rcub_dais_3418
Elezović NR, Babić BM, Gajić Krstajić L, Radmilović VR, Krstajić N, Vračar L. Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction. in Journal of Power Sources. 2010;195(13):3961-3968.
doi:10.1016/j.jpowsour.2010.01.035
https://hdl.handle.net/21.15107/rcub_dais_3418 .
Elezović, Nevenka R., Babić, Biljana M., Gajić Krstajić, Ljiljana, Radmilović, Velimir R., Krstajić, Nedeljko, Vračar, Ljiljana, "Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction" in Journal of Power Sources, 195, no. 13 (2010):3961-3968,
https://doi.org/10.1016/j.jpowsour.2010.01.035 .,
https://hdl.handle.net/21.15107/rcub_dais_3418 .
3
79
64
76

Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction

Elezović, Nevenka; Gajić Krstajić, Ljiljana; Vračar, Ljiljana; Krstajić, Nedeljko

(Elsevier, 2010)

TY  - JOUR
AU  - Elezović, Nevenka
AU  - Gajić Krstajić, Ljiljana
AU  - Vračar, Ljiljana
AU  - Krstajić, Nedeljko
PY  - 2010
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5591
AB  - The influence of poisoning of MoOx-Pt catalyst by CO on the kinetics of H2 oxidation reaction (HOR) at MoOx-Pt electrode in 0.5 mol dm-3 HClO4 saturated with H 2 containing 100 ppm CO, was examined on rotating disc electrode (RDE) at 25 °C. MoOx-Pt nano-catalyst prepared by the polyole method combined with MoOx post-deposition was supported on commercial carbon black, Vulcan XC-72. The MoOx-Pt/C catalyst was characterized by TEM technique. The catalyst composition is very similar to the nominal one and post-deposited MoOx species block only a small fraction of the active Pt particle surface area. MoOx deposition on the carbon support can be ruled out from the EDAX results and from the low mobility of these oxides under used conditions. Based on Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations from a dual-pathway model were derived to describe oxidation current-potential behavior on RDE over entire potential range, at various CO coverages. The polarization RDE curves were fitted with derived polarization equations according to the proposed model. The fitting showed that the HOR proceeded most likely via the Tafel-Volmer (TV) pathway. A very high electrocatalytic activity observed at MoOx-Pt catalyst for the hydrogen oxidation reaction in the presence of 100 ppm CO is achieved through chemical surface reaction of adsorbed CO with Mo surface oxides. © 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
PB  - Elsevier
T2  - International Journal of Hydrogen Energy
T2  - International Journal of Hydrogen Energy
T1  - Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction
EP  - 12887
IS  - 23
SP  - 12878
VL  - 35
DO  - 10.1016/j.ijhydene.2010.09.004
UR  - https://hdl.handle.net/21.15107/rcub_dais_3410
ER  - 
@article{
author = "Elezović, Nevenka and Gajić Krstajić, Ljiljana and Vračar, Ljiljana and Krstajić, Nedeljko",
year = "2010",
abstract = "The influence of poisoning of MoOx-Pt catalyst by CO on the kinetics of H2 oxidation reaction (HOR) at MoOx-Pt electrode in 0.5 mol dm-3 HClO4 saturated with H 2 containing 100 ppm CO, was examined on rotating disc electrode (RDE) at 25 °C. MoOx-Pt nano-catalyst prepared by the polyole method combined with MoOx post-deposition was supported on commercial carbon black, Vulcan XC-72. The MoOx-Pt/C catalyst was characterized by TEM technique. The catalyst composition is very similar to the nominal one and post-deposited MoOx species block only a small fraction of the active Pt particle surface area. MoOx deposition on the carbon support can be ruled out from the EDAX results and from the low mobility of these oxides under used conditions. Based on Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations from a dual-pathway model were derived to describe oxidation current-potential behavior on RDE over entire potential range, at various CO coverages. The polarization RDE curves were fitted with derived polarization equations according to the proposed model. The fitting showed that the HOR proceeded most likely via the Tafel-Volmer (TV) pathway. A very high electrocatalytic activity observed at MoOx-Pt catalyst for the hydrogen oxidation reaction in the presence of 100 ppm CO is achieved through chemical surface reaction of adsorbed CO with Mo surface oxides. © 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.",
publisher = "Elsevier",
journal = "International Journal of Hydrogen Energy, International Journal of Hydrogen Energy",
title = "Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction",
pages = "12887-12878",
number = "23",
volume = "35",
doi = "10.1016/j.ijhydene.2010.09.004",
url = "https://hdl.handle.net/21.15107/rcub_dais_3410"
}
Elezović, N., Gajić Krstajić, L., Vračar, L.,& Krstajić, N.. (2010). Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction. in International Journal of Hydrogen Energy
Elsevier., 35(23), 12878-12887.
https://doi.org/10.1016/j.ijhydene.2010.09.004
https://hdl.handle.net/21.15107/rcub_dais_3410
Elezović N, Gajić Krstajić L, Vračar L, Krstajić N. Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction. in International Journal of Hydrogen Energy. 2010;35(23):12878-12887.
doi:10.1016/j.ijhydene.2010.09.004
https://hdl.handle.net/21.15107/rcub_dais_3410 .
Elezović, Nevenka, Gajić Krstajić, Ljiljana, Vračar, Ljiljana, Krstajić, Nedeljko, "Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction" in International Journal of Hydrogen Energy, 35, no. 23 (2010):12878-12887,
https://doi.org/10.1016/j.ijhydene.2010.09.004 .,
https://hdl.handle.net/21.15107/rcub_dais_3410 .
17
14
18

Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction

Elezović, Nevenka R.; Babić, Biljana M.; Radmilović, Velimir R; Vračar, Ljiljana M; Krstajić, Nedeljko V

(Pergamon-Elsevier Science Ltd, Oxford, 2009)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Babić, Biljana M.
AU  - Radmilović, Velimir R
AU  - Vračar, Ljiljana M
AU  - Krstajić, Nedeljko V
PY  - 2009
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5540
AB  - The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm(-3) HClO4 solution, at 25 degrees C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles. The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E - logj regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Electrochimica Acta
T1  - Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction
EP  - 2409
IS  - 9
SP  - 2404
VL  - 54
DO  - 10.1016/j.electacta.2008.03.015
ER  - 
@article{
author = "Elezović, Nevenka R. and Babić, Biljana M. and Radmilović, Velimir R and Vračar, Ljiljana M and Krstajić, Nedeljko V",
year = "2009",
abstract = "The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm(-3) HClO4 solution, at 25 degrees C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles. The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E - logj regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Electrochimica Acta",
title = "Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction",
pages = "2409-2404",
number = "9",
volume = "54",
doi = "10.1016/j.electacta.2008.03.015"
}
Elezović, N. R., Babić, B. M., Radmilović, V. R., Vračar, L. M.,& Krstajić, N. V.. (2009). Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction. in Electrochimica Acta
Pergamon-Elsevier Science Ltd, Oxford., 54(9), 2404-2409.
https://doi.org/10.1016/j.electacta.2008.03.015
Elezović NR, Babić BM, Radmilović VR, Vračar LM, Krstajić NV. Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction. in Electrochimica Acta. 2009;54(9):2404-2409.
doi:10.1016/j.electacta.2008.03.015 .
Elezović, Nevenka R., Babić, Biljana M., Radmilović, Velimir R, Vračar, Ljiljana M, Krstajić, Nedeljko V, "Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction" in Electrochimica Acta, 54, no. 9 (2009):2404-2409,
https://doi.org/10.1016/j.electacta.2008.03.015 . .
77
68
77

Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction

Elezović, Nevenka R.; Babić, Biljana M.; Vračar, Ljiljana M; Radmilović, Velimir R; Krstajić, Nedeljko V

(Royal Soc Chemistry, Cambridge, 2009)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Babić, Biljana M.
AU  - Vračar, Ljiljana M
AU  - Radmilović, Velimir R
AU  - Krstajić, Nedeljko V
PY  - 2009
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5537
AB  - The hydrogen oxidation reaction (HOR) was studied at the home made TiOx-Pt/C nanocatalysts in 0.5 mol dm(-3) HClO4 at 25 degrees C. Pt/C catalyst was first synthesized by modified ethylene glycol method (EG) on commercially used carbon support (Vulcan XC-72). Then TiOx-Pt/C catalyst was prepared by the polyole method followed by TiOx post-deposition. The synthesized catalyst was characterized by XRD, TEM and EDX techniques. It was found that Pt/C catalyst nanoparticles were homogenously distributed over carbon support with the mean particle size of about 2.4 nm. The quite similar, homogenous distribution and particle size were obtained for Pt/C doped by TiOx catalyst which was the confirmation that TiOx post-deposition did not lead to significant growth of the Pt nanoparticles. The electrochemically active surface area of the catalyst was determined by using the cyclic voltammetry technique. The kinetics of hydrogen oxidation was investigated by the linear sweep voltammetry technique at the rotating disc electrode (RDE). The kinetic equations used for the analysis were derived considering the reversible or irreversible nature of the kinetics of the HOR. It was found that the hydrogen oxidation reaction for an investigated catalyst proceeded as an electrochemically reversible reaction. The values determined for the kinetic parameters-Tafel slope of 28 mV dec(-1) and exchange current density about 0.4 mA cm(Pt)(-2) are in good agreement with usually reported values for a hydrogen oxidation reaction with platinum catalysts in acid solutions.
PB  - Royal Soc Chemistry, Cambridge
T2  - Physical Chemistry Chemical Physics
T1  - Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction
EP  - 5197
IS  - 25
SP  - 5192
VL  - 11
DO  - 10.1039/b822249e
ER  - 
@article{
author = "Elezović, Nevenka R. and Babić, Biljana M. and Vračar, Ljiljana M and Radmilović, Velimir R and Krstajić, Nedeljko V",
year = "2009",
abstract = "The hydrogen oxidation reaction (HOR) was studied at the home made TiOx-Pt/C nanocatalysts in 0.5 mol dm(-3) HClO4 at 25 degrees C. Pt/C catalyst was first synthesized by modified ethylene glycol method (EG) on commercially used carbon support (Vulcan XC-72). Then TiOx-Pt/C catalyst was prepared by the polyole method followed by TiOx post-deposition. The synthesized catalyst was characterized by XRD, TEM and EDX techniques. It was found that Pt/C catalyst nanoparticles were homogenously distributed over carbon support with the mean particle size of about 2.4 nm. The quite similar, homogenous distribution and particle size were obtained for Pt/C doped by TiOx catalyst which was the confirmation that TiOx post-deposition did not lead to significant growth of the Pt nanoparticles. The electrochemically active surface area of the catalyst was determined by using the cyclic voltammetry technique. The kinetics of hydrogen oxidation was investigated by the linear sweep voltammetry technique at the rotating disc electrode (RDE). The kinetic equations used for the analysis were derived considering the reversible or irreversible nature of the kinetics of the HOR. It was found that the hydrogen oxidation reaction for an investigated catalyst proceeded as an electrochemically reversible reaction. The values determined for the kinetic parameters-Tafel slope of 28 mV dec(-1) and exchange current density about 0.4 mA cm(Pt)(-2) are in good agreement with usually reported values for a hydrogen oxidation reaction with platinum catalysts in acid solutions.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Physical Chemistry Chemical Physics",
title = "Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction",
pages = "5197-5192",
number = "25",
volume = "11",
doi = "10.1039/b822249e"
}
Elezović, N. R., Babić, B. M., Vračar, L. M., Radmilović, V. R.,& Krstajić, N. V.. (2009). Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction. in Physical Chemistry Chemical Physics
Royal Soc Chemistry, Cambridge., 11(25), 5192-5197.
https://doi.org/10.1039/b822249e
Elezović NR, Babić BM, Vračar LM, Radmilović VR, Krstajić NV. Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction. in Physical Chemistry Chemical Physics. 2009;11(25):5192-5197.
doi:10.1039/b822249e .
Elezović, Nevenka R., Babić, Biljana M., Vračar, Ljiljana M, Radmilović, Velimir R, Krstajić, Nedeljko V, "Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction" in Physical Chemistry Chemical Physics, 11, no. 25 (2009):5192-5197,
https://doi.org/10.1039/b822249e . .
13
9
13