Popović, Ana L.

Link to this page

Authority KeyName Variants
986cc3ee-2c4b-49f9-af16-e6183f513440
  • Popović, Ana L. (2)

Author's Bibliography

Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent

Popović, Ana L.; Veličković, Zlate; Radovanović, Željko; Đolić, Maja; Pavlović, Vladimir; Marinković, Aleksandar D.; Grzetić, Jelena D.

(Elsevier Ltd., 2022)

TY  - JOUR
AU  - Popović, Ana L.
AU  - Veličković, Zlate
AU  - Radovanović, Željko
AU  - Đolić, Maja
AU  - Pavlović, Vladimir
AU  - Marinković, Aleksandar D.
AU  - Grzetić, Jelena D.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5155
AB  - Highly effective lignin-based microspheres were prepared by inverse copolymerization of lignin (kraft) from suspension, with poly(ethylene imine) and amino-functionalized magnetite nanoparticles (A-LMS_Fe3O4) or manganese(IV)oxide nanoparticles (A-LMS_MnO2). The XRD, FTIR, SEM, BET, TEM techniques, including the porosity determination, were performed to analyze morphological and structural properties of synthesized microspheres. The effect of pH, the adsorbent dosage, temperature and contact duration on a batch-mode adsorption efficiency of arsenate and chromate (oxy)anions removal was tested. Spontaneous adsorption was found to be feasible, reaching the adsorption capacities of Cr(VI) (62.9 mg g-1), As(V) (47.8 mg g-1) by A-LMS_Fe3O4, and of Cr(VI) (73.9 mg g-1), As(V) (62.5 mg g-1) using A-LMS_MnO2 adsorbent. Fast removal rates were confirmed via kinetic study, using pseudo-second order, the Weber-Morris and the single resistance mass-transfer model, with a limiting step of the diffusion transport through pores. The correlation of fixed-bed-column results with Bohart-Adams, Thomas, Yoon-Nelson and Dose Response models displayed that breakthrough behavior was influenced by flow rate and the inlet concentration. Significant potential of produced bio-adsorbent is further confirmed by the pore surface diffusion modeling, desorption study and adsorption from multi-component system using artificial water.
PB  - Elsevier Ltd.
T2  - Journal of Environmental Chemical Engineering
T1  - Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent
IS  - 3
SP  - 108009
VL  - 10
DO  - 10.1016/j.jece.2022.108009
ER  - 
@article{
author = "Popović, Ana L. and Veličković, Zlate and Radovanović, Željko and Đolić, Maja and Pavlović, Vladimir and Marinković, Aleksandar D. and Grzetić, Jelena D.",
year = "2022",
abstract = "Highly effective lignin-based microspheres were prepared by inverse copolymerization of lignin (kraft) from suspension, with poly(ethylene imine) and amino-functionalized magnetite nanoparticles (A-LMS_Fe3O4) or manganese(IV)oxide nanoparticles (A-LMS_MnO2). The XRD, FTIR, SEM, BET, TEM techniques, including the porosity determination, were performed to analyze morphological and structural properties of synthesized microspheres. The effect of pH, the adsorbent dosage, temperature and contact duration on a batch-mode adsorption efficiency of arsenate and chromate (oxy)anions removal was tested. Spontaneous adsorption was found to be feasible, reaching the adsorption capacities of Cr(VI) (62.9 mg g-1), As(V) (47.8 mg g-1) by A-LMS_Fe3O4, and of Cr(VI) (73.9 mg g-1), As(V) (62.5 mg g-1) using A-LMS_MnO2 adsorbent. Fast removal rates were confirmed via kinetic study, using pseudo-second order, the Weber-Morris and the single resistance mass-transfer model, with a limiting step of the diffusion transport through pores. The correlation of fixed-bed-column results with Bohart-Adams, Thomas, Yoon-Nelson and Dose Response models displayed that breakthrough behavior was influenced by flow rate and the inlet concentration. Significant potential of produced bio-adsorbent is further confirmed by the pore surface diffusion modeling, desorption study and adsorption from multi-component system using artificial water.",
publisher = "Elsevier Ltd.",
journal = "Journal of Environmental Chemical Engineering",
title = "Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent",
number = "3",
pages = "108009",
volume = "10",
doi = "10.1016/j.jece.2022.108009"
}
Popović, A. L., Veličković, Z., Radovanović, Ž., Đolić, M., Pavlović, V., Marinković, A. D.,& Grzetić, J. D.. (2022). Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent. in Journal of Environmental Chemical Engineering
Elsevier Ltd.., 10(3), 108009.
https://doi.org/10.1016/j.jece.2022.108009
Popović AL, Veličković Z, Radovanović Ž, Đolić M, Pavlović V, Marinković AD, Grzetić JD. Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent. in Journal of Environmental Chemical Engineering. 2022;10(3):108009.
doi:10.1016/j.jece.2022.108009 .
Popović, Ana L., Veličković, Zlate, Radovanović, Željko, Đolić, Maja, Pavlović, Vladimir, Marinković, Aleksandar D., Grzetić, Jelena D., "Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent" in Journal of Environmental Chemical Engineering, 10, no. 3 (2022):108009,
https://doi.org/10.1016/j.jece.2022.108009 . .
6
6

Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres

Popović, Ana L.; Rusmirovic, Jelena D.; Veličković, Zlate; Kovacevic, Tihomir; Jovanovic, Aleksandar; Cvijetić, Ilija; Marinković, Aleksandar

(2021)

TY  - JOUR
AU  - Popović, Ana L.
AU  - Rusmirovic, Jelena D.
AU  - Veličković, Zlate
AU  - Kovacevic, Tihomir
AU  - Jovanovic, Aleksandar
AU  - Cvijetić, Ilija
AU  - Marinković, Aleksandar
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4967
AB  - In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13) >>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g(-1)). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g(-1))), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS biobased adsorbent.
T2  - Journal of Industrial and Engineering Chemistry
T1  - Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres
EP  - 314
SP  - 302
VL  - 93
DO  - 10.1016/j.jiec.2020.10.006
ER  - 
@article{
author = "Popović, Ana L. and Rusmirovic, Jelena D. and Veličković, Zlate and Kovacevic, Tihomir and Jovanovic, Aleksandar and Cvijetić, Ilija and Marinković, Aleksandar",
year = "2021",
abstract = "In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13) >>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g(-1)). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g(-1))), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS biobased adsorbent.",
journal = "Journal of Industrial and Engineering Chemistry",
title = "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres",
pages = "314-302",
volume = "93",
doi = "10.1016/j.jiec.2020.10.006"
}
Popović, A. L., Rusmirovic, J. D., Veličković, Z., Kovacevic, T., Jovanovic, A., Cvijetić, I.,& Marinković, A.. (2021). Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry, 93, 302-314.
https://doi.org/10.1016/j.jiec.2020.10.006
Popović AL, Rusmirovic JD, Veličković Z, Kovacevic T, Jovanovic A, Cvijetić I, Marinković A. Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry. 2021;93:302-314.
doi:10.1016/j.jiec.2020.10.006 .
Popović, Ana L., Rusmirovic, Jelena D., Veličković, Zlate, Kovacevic, Tihomir, Jovanovic, Aleksandar, Cvijetić, Ilija, Marinković, Aleksandar, "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres" in Journal of Industrial and Engineering Chemistry, 93 (2021):302-314,
https://doi.org/10.1016/j.jiec.2020.10.006 . .
39
14
40