Janković, Bojan

Link to this page

Authority KeyName Variants
orcid::0000-0001-5232-4160
  • Janković, Bojan (3)
Projects

Author's Bibliography

Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐ co ‐maleic anhydride) sodium salt and strontium titanate

Elhmali, Houda Taher; Stajčić, Ivana; Petrović, Miloš; Janković, Bojan; Simović, Bojana; Stajčić, Aleksandar; Radojević, Vesna

(John Wiley and Sons Inc., 2024)

TY  - JOUR
AU  - Elhmali, Houda Taher
AU  - Stajčić, Ivana
AU  - Petrović, Miloš
AU  - Janković, Bojan
AU  - Simović, Bojana
AU  - Stajčić, Aleksandar
AU  - Radojević, Vesna
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7474
AB  - Since acrylate-based materials are widely used in dentistry, their drawbacks such as low impact resistance and hardness, require continuous research in the field of materials science in order to avoid sudden fracture caused by chewing or fall. In this study, auto-polymerizing poly(methyl methacrylate) (PMMA), commonly used as denture base material, was reinforced with poly(4-styrenesulfonic acid-co-maleic anhydride) sodium salt (PSSMA) and strontium titanate (STO), with the aim of improving impact behavior and microhardness. Morphological analysis confirmed formation of phase-separated and co-continuous microscopic structures of PSSMA in PMMA, without visible agglomerates of STO nanoparticles, indicating that PSSMA-STO interaction contributed to a better distribution of nanoparticles. Fourier transformed infrared spectroscopy revealed that PSSMA and STO did not interfere in the polymerization of methyl methacrylate. This was further supported by thermal analysis, which also showed that the addition of PSSMA and STO had no significant influence on thermal degradation. On the other side, PSSMA and STO significantly enhanced mechanical performance of PMMA. The modulus of elasticity increased by up to 48.6%, total absorbed impact energy improved by up to 108.4%, and microhardness increased by up to 272.8% when PSSMA was combined with STO for reinforcing denture PMMA. These results demonstrate the significant potential of PSSMA, which could be combined with other ceramic nanoparticles for denture reinforcement in the future. Highlights: This research presents novel dental hybrid composite. Influence of strontium titanate (STO) and poly(4-styrenesulfonic acid-co-maleic anhydride) sodium salt (PSSMA) on poly(methyl methacrylate) (PMMA) was investigated. PSSMA/STO improved modulus of elasticity, microhardness and impact resistance. Sample with 5 wt% PSSMA and 1 wt% STO showed the highest improvement compared to PMMA. Presented hybrid composite could use as denture base material.
PB  - John Wiley and Sons Inc.
T2  - Polymer Composites
T1  - Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐                                          co                                        ‐maleic anhydride) sodium salt and strontium titanate
DO  - 10.1002/pc.28574
ER  - 
@article{
author = "Elhmali, Houda Taher and Stajčić, Ivana and Petrović, Miloš and Janković, Bojan and Simović, Bojana and Stajčić, Aleksandar and Radojević, Vesna",
year = "2024",
abstract = "Since acrylate-based materials are widely used in dentistry, their drawbacks such as low impact resistance and hardness, require continuous research in the field of materials science in order to avoid sudden fracture caused by chewing or fall. In this study, auto-polymerizing poly(methyl methacrylate) (PMMA), commonly used as denture base material, was reinforced with poly(4-styrenesulfonic acid-co-maleic anhydride) sodium salt (PSSMA) and strontium titanate (STO), with the aim of improving impact behavior and microhardness. Morphological analysis confirmed formation of phase-separated and co-continuous microscopic structures of PSSMA in PMMA, without visible agglomerates of STO nanoparticles, indicating that PSSMA-STO interaction contributed to a better distribution of nanoparticles. Fourier transformed infrared spectroscopy revealed that PSSMA and STO did not interfere in the polymerization of methyl methacrylate. This was further supported by thermal analysis, which also showed that the addition of PSSMA and STO had no significant influence on thermal degradation. On the other side, PSSMA and STO significantly enhanced mechanical performance of PMMA. The modulus of elasticity increased by up to 48.6%, total absorbed impact energy improved by up to 108.4%, and microhardness increased by up to 272.8% when PSSMA was combined with STO for reinforcing denture PMMA. These results demonstrate the significant potential of PSSMA, which could be combined with other ceramic nanoparticles for denture reinforcement in the future. Highlights: This research presents novel dental hybrid composite. Influence of strontium titanate (STO) and poly(4-styrenesulfonic acid-co-maleic anhydride) sodium salt (PSSMA) on poly(methyl methacrylate) (PMMA) was investigated. PSSMA/STO improved modulus of elasticity, microhardness and impact resistance. Sample with 5 wt% PSSMA and 1 wt% STO showed the highest improvement compared to PMMA. Presented hybrid composite could use as denture base material.",
publisher = "John Wiley and Sons Inc.",
journal = "Polymer Composites",
title = "Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐                                          co                                        ‐maleic anhydride) sodium salt and strontium titanate",
doi = "10.1002/pc.28574"
}
Elhmali, H. T., Stajčić, I., Petrović, M., Janković, B., Simović, B., Stajčić, A.,& Radojević, V.. (2024). Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐                                          co                                        ‐maleic anhydride) sodium salt and strontium titanate. in Polymer Composites
John Wiley and Sons Inc...
https://doi.org/10.1002/pc.28574
Elhmali HT, Stajčić I, Petrović M, Janković B, Simović B, Stajčić A, Radojević V. Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐                                          co                                        ‐maleic anhydride) sodium salt and strontium titanate. in Polymer Composites. 2024;.
doi:10.1002/pc.28574 .
Elhmali, Houda Taher, Stajčić, Ivana, Petrović, Miloš, Janković, Bojan, Simović, Bojana, Stajčić, Aleksandar, Radojević, Vesna, "Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐                                          co                                        ‐maleic anhydride) sodium salt and strontium titanate" in Polymer Composites (2024),
https://doi.org/10.1002/pc.28574 . .

Thermo-oxidative evolution and physico-chemical characterization of seashell waste for application in commercial sectors

Janković, Bojan; Smičiklas, Ivana D.; Manić, Nebojša; Mraković, Ana; Mandić, Milica; Veljović, Đorđe; Jović, Mihajlo

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Janković, Bojan
AU  - Smičiklas, Ivana D.
AU  - Manić, Nebojša
AU  - Mraković, Ana
AU  - Mandić, Milica
AU  - Veljović, Đorđe
AU  - Jović, Mihajlo
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4469
AB  - Thermo-oxidative degradation of mollusk shells to CaO through intermediate phase of CaCO3 has been investigated using various analytical techniques. Powders of shells species (Dosinia exoleta and Ostrea edulis), with particle size fractions of 0.045 - 0.125 mm, 0.125-0.2 mm, and 0.2-1 mm, were subjected to degradation at the various heating rates (5, 10, 15 and 20 degrees C min(-1)). Degradation pathway of this carbonate-rich waste material has not yet been analyzed in detail at particulate level. Understanding transformation process in air should lead to control over yield and morphology of final product. Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) techniques were used to benchmark transformation steps at different heating rates and final decarbonation temperatures, while scanning electron microscope (SEM) was used to analyze the effect of temperature on evolution of morphological changes for particles of different fractions. It was found that sintering in the presence of carbon dioxide (CO2) could be triggered by agglomeration of CaO crystals, enhanced by CO2 adsorption that increases surface energy.
PB  - Elsevier, Amsterdam
T2  - Thermochimica Acta
T1  - Thermo-oxidative evolution and physico-chemical characterization of seashell waste for application in commercial sectors
VL  - 686
DO  - 10.1016/j.tca.2020.178568
ER  - 
@article{
author = "Janković, Bojan and Smičiklas, Ivana D. and Manić, Nebojša and Mraković, Ana and Mandić, Milica and Veljović, Đorđe and Jović, Mihajlo",
year = "2020",
abstract = "Thermo-oxidative degradation of mollusk shells to CaO through intermediate phase of CaCO3 has been investigated using various analytical techniques. Powders of shells species (Dosinia exoleta and Ostrea edulis), with particle size fractions of 0.045 - 0.125 mm, 0.125-0.2 mm, and 0.2-1 mm, were subjected to degradation at the various heating rates (5, 10, 15 and 20 degrees C min(-1)). Degradation pathway of this carbonate-rich waste material has not yet been analyzed in detail at particulate level. Understanding transformation process in air should lead to control over yield and morphology of final product. Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) techniques were used to benchmark transformation steps at different heating rates and final decarbonation temperatures, while scanning electron microscope (SEM) was used to analyze the effect of temperature on evolution of morphological changes for particles of different fractions. It was found that sintering in the presence of carbon dioxide (CO2) could be triggered by agglomeration of CaO crystals, enhanced by CO2 adsorption that increases surface energy.",
publisher = "Elsevier, Amsterdam",
journal = "Thermochimica Acta",
title = "Thermo-oxidative evolution and physico-chemical characterization of seashell waste for application in commercial sectors",
volume = "686",
doi = "10.1016/j.tca.2020.178568"
}
Janković, B., Smičiklas, I. D., Manić, N., Mraković, A., Mandić, M., Veljović, Đ.,& Jović, M.. (2020). Thermo-oxidative evolution and physico-chemical characterization of seashell waste for application in commercial sectors. in Thermochimica Acta
Elsevier, Amsterdam., 686.
https://doi.org/10.1016/j.tca.2020.178568
Janković B, Smičiklas ID, Manić N, Mraković A, Mandić M, Veljović Đ, Jović M. Thermo-oxidative evolution and physico-chemical characterization of seashell waste for application in commercial sectors. in Thermochimica Acta. 2020;686.
doi:10.1016/j.tca.2020.178568 .
Janković, Bojan, Smičiklas, Ivana D., Manić, Nebojša, Mraković, Ana, Mandić, Milica, Veljović, Đorđe, Jović, Mihajlo, "Thermo-oxidative evolution and physico-chemical characterization of seashell waste for application in commercial sectors" in Thermochimica Acta, 686 (2020),
https://doi.org/10.1016/j.tca.2020.178568 . .
3
8
5
9

Characterization analysis of Poplar fluff pyrolysis products. Multi-component kinetic study

Janković, Bojan; Manić, Nebojša; Dodevski, Vladimir; Popović, Jasmina; Rušmirović, Jelena D.; Tosić, Miloš

(Elsevier Sci Ltd, Oxford, 2019)

TY  - JOUR
AU  - Janković, Bojan
AU  - Manić, Nebojša
AU  - Dodevski, Vladimir
AU  - Popović, Jasmina
AU  - Rušmirović, Jelena D.
AU  - Tosić, Miloš
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5879
AB  - This paper describes the pyrolysis of Poplar fluff (from Populus alba) using on-line apparatus, and carbonization process at 850 degrees C using the fixed bed reactor. Characteristics of pyrolysis products were examined. Elemental and chemical analyses were shown that Poplar fluff has higher energy content characterized by increased content of fibrous structure (particularly cellulose). Independent parallel reactions model very well describes devolatilization process. It was found that increased amount of extractives can significantly affect on increased release of light gaseous products, but declining hydrocarbons, mostly the alkanes. Liquid product is mainly composed of phenolics, aldehydes, acids, esters and ketones. The carbonization process produces the great abundance of polycyclic aromatic hydrocarbons (PAH's), where naphthalene is the most abundant. Mechanism for PAH's formation was suggested. This study represents the first step in a much wider and more comprehensive way in thermal conversion processes of this type of fuel.
PB  - Elsevier Sci Ltd, Oxford
T2  - Fuel
T1  - Characterization analysis of Poplar fluff pyrolysis products. Multi-component kinetic study
EP  - 128
SP  - 111
VL  - 238
DO  - 10.1016/j.fuel.2018.10.064
ER  - 
@article{
author = "Janković, Bojan and Manić, Nebojša and Dodevski, Vladimir and Popović, Jasmina and Rušmirović, Jelena D. and Tosić, Miloš",
year = "2019",
abstract = "This paper describes the pyrolysis of Poplar fluff (from Populus alba) using on-line apparatus, and carbonization process at 850 degrees C using the fixed bed reactor. Characteristics of pyrolysis products were examined. Elemental and chemical analyses were shown that Poplar fluff has higher energy content characterized by increased content of fibrous structure (particularly cellulose). Independent parallel reactions model very well describes devolatilization process. It was found that increased amount of extractives can significantly affect on increased release of light gaseous products, but declining hydrocarbons, mostly the alkanes. Liquid product is mainly composed of phenolics, aldehydes, acids, esters and ketones. The carbonization process produces the great abundance of polycyclic aromatic hydrocarbons (PAH's), where naphthalene is the most abundant. Mechanism for PAH's formation was suggested. This study represents the first step in a much wider and more comprehensive way in thermal conversion processes of this type of fuel.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Fuel",
title = "Characterization analysis of Poplar fluff pyrolysis products. Multi-component kinetic study",
pages = "128-111",
volume = "238",
doi = "10.1016/j.fuel.2018.10.064"
}
Janković, B., Manić, N., Dodevski, V., Popović, J., Rušmirović, J. D.,& Tosić, M.. (2019). Characterization analysis of Poplar fluff pyrolysis products. Multi-component kinetic study. in Fuel
Elsevier Sci Ltd, Oxford., 238, 111-128.
https://doi.org/10.1016/j.fuel.2018.10.064
Janković B, Manić N, Dodevski V, Popović J, Rušmirović JD, Tosić M. Characterization analysis of Poplar fluff pyrolysis products. Multi-component kinetic study. in Fuel. 2019;238:111-128.
doi:10.1016/j.fuel.2018.10.064 .
Janković, Bojan, Manić, Nebojša, Dodevski, Vladimir, Popović, Jasmina, Rušmirović, Jelena D., Tosić, Miloš, "Characterization analysis of Poplar fluff pyrolysis products. Multi-component kinetic study" in Fuel, 238 (2019):111-128,
https://doi.org/10.1016/j.fuel.2018.10.064 . .
7
18
16
16