Manojlović, Dragan

Link to this page

Authority KeyName Variants
36ee90d9-c209-4fa6-8e48-7d5b3bd48aae
  • Manojlović, Dragan (2)
Projects

Author's Bibliography

Activation of Osmium by the Surface Effects of Hydrogenated TiO2 Nanotube Arrays for Enhanced Hydrogen Evolution Reaction Performance

Krstajić Pajić, Mila N.; Dobrota, Ana S.; Mazare, Anca; Đurđić, Slađana; Hwang, Imgon; Skorodumova, Natalia V.; Manojlović, Dragan; Vasilić, Rastko; Pašti, Igor A.; Schmuki, Patrik; Lačnjevac, Uroš

(American Chemical Society, 2023)

TY  - JOUR
AU  - Krstajić Pajić, Mila N.
AU  - Dobrota, Ana S.
AU  - Mazare, Anca
AU  - Đurđić, Slađana
AU  - Hwang, Imgon
AU  - Skorodumova, Natalia V.
AU  - Manojlović, Dragan
AU  - Vasilić, Rastko
AU  - Pašti, Igor A.
AU  - Schmuki, Patrik
AU  - Lačnjevac, Uroš
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6576
AB  - Efficient cathodes for the hydrogen evolution reaction (HER) in acidic water electrolysis rely on the use of expensive platinum group metals (PGMs). However, to achieve economically viable operation, both the content of PGMs must be reduced and their intrinsically strong H adsorption mitigated. Herein, we show that the surface effects of hydrogenated TiO2 nanotube (TNT) arrays can make osmium, a so far less-explored PGM, a highly active HER electrocatalyst. These defect-rich TiO2 nanostructures provide an interactive scaffold for the galvanic deposition of Os particles with modulated adsorption properties. Through systematic investigations, we identify the synthesis conditions (OsCl3 concentration/temperature/reaction time) that yield a progressive improvement in Os deposition rate and mass loading, thereby decreasing the HER overpotential. At the same time, the Os particles deposited by this procedure remain mainly sub-nanometric and entirely cover the inner tube walls. An optimally balanced Os@TNT composite prepared at 3 mM/55 °C/30 min exhibits a record low overpotential (η) of 61 mV at a current density of 100 mA cm-2, a high mass activity of 20.8 A mgOs-1 at 80 mV, and a stable performance in an acidic medium. Density functional theory calculations indicate the existence of strong interactions between the hydrogenated TiO2 surface and small Os clusters, which may weaken the Os-H* binding strength and thus boost the intrinsic HER activity of Os centers. The results presented in this study offer new directions for the fabrication of cost-effective PGM-based catalysts and a better understanding of the synergistic electronic interactions at the PGM|TiO2 interface.
PB  - American Chemical Society
T1  - Activation of Osmium by the Surface Effects of Hydrogenated TiO2 Nanotube Arrays for Enhanced Hydrogen Evolution Reaction Performance
EP  - 31469
IS  - 26
SP  - 31459
VL  - 15
DO  - 10.1021/acsami.3c04498
ER  - 
@article{
author = "Krstajić Pajić, Mila N. and Dobrota, Ana S. and Mazare, Anca and Đurđić, Slađana and Hwang, Imgon and Skorodumova, Natalia V. and Manojlović, Dragan and Vasilić, Rastko and Pašti, Igor A. and Schmuki, Patrik and Lačnjevac, Uroš",
year = "2023",
abstract = "Efficient cathodes for the hydrogen evolution reaction (HER) in acidic water electrolysis rely on the use of expensive platinum group metals (PGMs). However, to achieve economically viable operation, both the content of PGMs must be reduced and their intrinsically strong H adsorption mitigated. Herein, we show that the surface effects of hydrogenated TiO2 nanotube (TNT) arrays can make osmium, a so far less-explored PGM, a highly active HER electrocatalyst. These defect-rich TiO2 nanostructures provide an interactive scaffold for the galvanic deposition of Os particles with modulated adsorption properties. Through systematic investigations, we identify the synthesis conditions (OsCl3 concentration/temperature/reaction time) that yield a progressive improvement in Os deposition rate and mass loading, thereby decreasing the HER overpotential. At the same time, the Os particles deposited by this procedure remain mainly sub-nanometric and entirely cover the inner tube walls. An optimally balanced Os@TNT composite prepared at 3 mM/55 °C/30 min exhibits a record low overpotential (η) of 61 mV at a current density of 100 mA cm-2, a high mass activity of 20.8 A mgOs-1 at 80 mV, and a stable performance in an acidic medium. Density functional theory calculations indicate the existence of strong interactions between the hydrogenated TiO2 surface and small Os clusters, which may weaken the Os-H* binding strength and thus boost the intrinsic HER activity of Os centers. The results presented in this study offer new directions for the fabrication of cost-effective PGM-based catalysts and a better understanding of the synergistic electronic interactions at the PGM|TiO2 interface.",
publisher = "American Chemical Society",
title = "Activation of Osmium by the Surface Effects of Hydrogenated TiO2 Nanotube Arrays for Enhanced Hydrogen Evolution Reaction Performance",
pages = "31469-31459",
number = "26",
volume = "15",
doi = "10.1021/acsami.3c04498"
}
Krstajić Pajić, M. N., Dobrota, A. S., Mazare, A., Đurđić, S., Hwang, I., Skorodumova, N. V., Manojlović, D., Vasilić, R., Pašti, I. A., Schmuki, P.,& Lačnjevac, U.. (2023). Activation of Osmium by the Surface Effects of Hydrogenated TiO2 Nanotube Arrays for Enhanced Hydrogen Evolution Reaction Performance. 
American Chemical Society., 15(26), 31459-31469.
https://doi.org/10.1021/acsami.3c04498
Krstajić Pajić MN, Dobrota AS, Mazare A, Đurđić S, Hwang I, Skorodumova NV, Manojlović D, Vasilić R, Pašti IA, Schmuki P, Lačnjevac U. Activation of Osmium by the Surface Effects of Hydrogenated TiO2 Nanotube Arrays for Enhanced Hydrogen Evolution Reaction Performance. 2023;15(26):31459-31469.
doi:10.1021/acsami.3c04498 .
Krstajić Pajić, Mila N., Dobrota, Ana S., Mazare, Anca, Đurđić, Slađana, Hwang, Imgon, Skorodumova, Natalia V., Manojlović, Dragan, Vasilić, Rastko, Pašti, Igor A., Schmuki, Patrik, Lačnjevac, Uroš, "Activation of Osmium by the Surface Effects of Hydrogenated TiO2 Nanotube Arrays for Enhanced Hydrogen Evolution Reaction Performance", 15, no. 26 (2023):31459-31469,
https://doi.org/10.1021/acsami.3c04498 . .
2
2

Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation

Stanković, Dalibor M.; Kukuruzar, Andrej; Savić, Slađana; Ognjanović, Miloš; Janković-Častvan, Ivona; Roglić, Goran; Antić, Bratislav; Manojlović, Dragan; Dojčinović, Biljana

(2021)

TY  - JOUR
AU  - Stanković, Dalibor M.
AU  - Kukuruzar, Andrej
AU  - Savić, Slađana
AU  - Ognjanović, Miloš
AU  - Janković-Častvan, Ivona
AU  - Roglić, Goran
AU  - Antić, Bratislav
AU  - Manojlović, Dragan
AU  - Dojčinović, Biljana
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4775
AB  - The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KC1 supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by similar to 40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.
T2  - Materials Chemistry and Physics
T1  - Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation
VL  - 273
DO  - 10.1016/j.matchemphys.2021.125154
ER  - 
@article{
author = "Stanković, Dalibor M. and Kukuruzar, Andrej and Savić, Slađana and Ognjanović, Miloš and Janković-Častvan, Ivona and Roglić, Goran and Antić, Bratislav and Manojlović, Dragan and Dojčinović, Biljana",
year = "2021",
abstract = "The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KC1 supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by similar to 40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.",
journal = "Materials Chemistry and Physics",
title = "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation",
volume = "273",
doi = "10.1016/j.matchemphys.2021.125154"
}
Stanković, D. M., Kukuruzar, A., Savić, S., Ognjanović, M., Janković-Častvan, I., Roglić, G., Antić, B., Manojlović, D.,& Dojčinović, B.. (2021). Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics, 273.
https://doi.org/10.1016/j.matchemphys.2021.125154
Stanković DM, Kukuruzar A, Savić S, Ognjanović M, Janković-Častvan I, Roglić G, Antić B, Manojlović D, Dojčinović B. Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics. 2021;273.
doi:10.1016/j.matchemphys.2021.125154 .
Stanković, Dalibor M., Kukuruzar, Andrej, Savić, Slađana, Ognjanović, Miloš, Janković-Častvan, Ivona, Roglić, Goran, Antić, Bratislav, Manojlović, Dragan, Dojčinović, Biljana, "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation" in Materials Chemistry and Physics, 273 (2021),
https://doi.org/10.1016/j.matchemphys.2021.125154 . .
1
3
2
3