Nesic, Aleksandra

Link to this page

Authority KeyName Variants
6a998bd9-89c8-447b-b8cd-c20f0d4e96a8
  • Nesic, Aleksandra (2)
Projects

Author's Bibliography

Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries

Davidović, Slađana; Miljković, Miona; Gordic, Milan; Cabrera-Barjas, Gustavo; Nesic, Aleksandra; Dimitrijević-Branković, Suzana

(2021)

TY  - JOUR
AU  - Davidović, Slađana
AU  - Miljković, Miona
AU  - Gordic, Milan
AU  - Cabrera-Barjas, Gustavo
AU  - Nesic, Aleksandra
AU  - Dimitrijević-Branković, Suzana
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4942
AB  - The development of edible films and coatings in the food packaging industry presents one of the modern strategies for protecting food products and ensuring their freshness and quality during their shelf lives. The application of microbial polysaccharides to the development of food package materials, as an alternative option to the commonly used plastic materials, is both economic and environmentally favorable. New edible films were developed using dextran from lactic acid bacterium Leuconostoc mesenteroides T3, and additionally plasticized by different concentrations of polyglycerol. The best tensile strength of the films was obtained using a formulation that contained 10 wt% of polyglycerol, which corresponded to a value of 4.6 MPa. The most flexible formulation, with elongation at break of 602%, was obtained with 30 wt% of polyglycerol. Water vapor permeability values of the films synthesized in this study were in the range of (3.45-8.81) * 10(-12) g/m s Pa. Such low values indicated that they could be efficient in preventing fruit from drying out during storage. Thus, the film formulations were used to coat blueberries in order to assess their quality during a storage time of 21 days at 8 degrees C. The results showed that dextran/polyglycerol films could be efficient in extending the shelf life of blueberries, which was evidenced by lower weight loss and total sugar solids values, as well as a delay in titratable acidity, in comparison to the uncoated blueberries.
T2  - Polymers
T1  - Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries
IS  - 23
VL  - 13
DO  - 10.3390/polym13234252
ER  - 
@article{
author = "Davidović, Slađana and Miljković, Miona and Gordic, Milan and Cabrera-Barjas, Gustavo and Nesic, Aleksandra and Dimitrijević-Branković, Suzana",
year = "2021",
abstract = "The development of edible films and coatings in the food packaging industry presents one of the modern strategies for protecting food products and ensuring their freshness and quality during their shelf lives. The application of microbial polysaccharides to the development of food package materials, as an alternative option to the commonly used plastic materials, is both economic and environmentally favorable. New edible films were developed using dextran from lactic acid bacterium Leuconostoc mesenteroides T3, and additionally plasticized by different concentrations of polyglycerol. The best tensile strength of the films was obtained using a formulation that contained 10 wt% of polyglycerol, which corresponded to a value of 4.6 MPa. The most flexible formulation, with elongation at break of 602%, was obtained with 30 wt% of polyglycerol. Water vapor permeability values of the films synthesized in this study were in the range of (3.45-8.81) * 10(-12) g/m s Pa. Such low values indicated that they could be efficient in preventing fruit from drying out during storage. Thus, the film formulations were used to coat blueberries in order to assess their quality during a storage time of 21 days at 8 degrees C. The results showed that dextran/polyglycerol films could be efficient in extending the shelf life of blueberries, which was evidenced by lower weight loss and total sugar solids values, as well as a delay in titratable acidity, in comparison to the uncoated blueberries.",
journal = "Polymers",
title = "Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries",
number = "23",
volume = "13",
doi = "10.3390/polym13234252"
}
Davidović, S., Miljković, M., Gordic, M., Cabrera-Barjas, G., Nesic, A.,& Dimitrijević-Branković, S.. (2021). Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries. in Polymers, 13(23).
https://doi.org/10.3390/polym13234252
Davidović S, Miljković M, Gordic M, Cabrera-Barjas G, Nesic A, Dimitrijević-Branković S. Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries. in Polymers. 2021;13(23).
doi:10.3390/polym13234252 .
Davidović, Slađana, Miljković, Miona, Gordic, Milan, Cabrera-Barjas, Gustavo, Nesic, Aleksandra, Dimitrijević-Branković, Suzana, "Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries" in Polymers, 13, no. 23 (2021),
https://doi.org/10.3390/polym13234252 . .
11
8

Valorization of food waste to produce intelligent nanofibrous beta-chitin films

Cabrera-Barjas, Gustavo; Radovanović, Neda; Arrepol, Gaston Bravo; de la Torre, Alexander F.; Valdes, Oscar; Nesic, Aleksandra

(2021)

TY  - JOUR
AU  - Cabrera-Barjas, Gustavo
AU  - Radovanović, Neda
AU  - Arrepol, Gaston Bravo
AU  - de la Torre, Alexander F.
AU  - Valdes, Oscar
AU  - Nesic, Aleksandra
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4785
AB  - The efficient use of waste from food processing industry is one of the innovative approaches within sustainable development, because it can be transferred into added value products, which could improve economic, energetic and environmental sectors. In this context, the squid pen waste from seafood industry was used as raw material to obtain nanofibrous beta-chitin films. In order to extend functionality of obtained films, elderberry extract obtained from biomass was added at different concentrations. The tensile strength of chitin-elderberry extract films was improved by 52%, elongation at break by 153% and water vapor barrier by 65%. The obtained material showed distinct color change when subjected to acidic or basic solutions. It was proven by CIELab color analysis that all color changes could be easily perceived visually. In addition, the obtained nanofibrous film was successfully used to monitor the freshness of Hake fish. Namely, when the film was introduced in a package that contained fresh fish, its color was efficiently changed within the time during the storage at 4 degrees C. The obtained results demonstrated that food processing waste could be efficiently valorized, and could give sustainable food package design as a spoilage indicator of high protein food.
T2  - International Journal of Biological Macromolecules
T1  - Valorization of food waste to produce intelligent nanofibrous beta-chitin films
EP  - 99
SP  - 92
VL  - 186
DO  - 10.1016/j.ijbiomac.2021.07.045
ER  - 
@article{
author = "Cabrera-Barjas, Gustavo and Radovanović, Neda and Arrepol, Gaston Bravo and de la Torre, Alexander F. and Valdes, Oscar and Nesic, Aleksandra",
year = "2021",
abstract = "The efficient use of waste from food processing industry is one of the innovative approaches within sustainable development, because it can be transferred into added value products, which could improve economic, energetic and environmental sectors. In this context, the squid pen waste from seafood industry was used as raw material to obtain nanofibrous beta-chitin films. In order to extend functionality of obtained films, elderberry extract obtained from biomass was added at different concentrations. The tensile strength of chitin-elderberry extract films was improved by 52%, elongation at break by 153% and water vapor barrier by 65%. The obtained material showed distinct color change when subjected to acidic or basic solutions. It was proven by CIELab color analysis that all color changes could be easily perceived visually. In addition, the obtained nanofibrous film was successfully used to monitor the freshness of Hake fish. Namely, when the film was introduced in a package that contained fresh fish, its color was efficiently changed within the time during the storage at 4 degrees C. The obtained results demonstrated that food processing waste could be efficiently valorized, and could give sustainable food package design as a spoilage indicator of high protein food.",
journal = "International Journal of Biological Macromolecules",
title = "Valorization of food waste to produce intelligent nanofibrous beta-chitin films",
pages = "99-92",
volume = "186",
doi = "10.1016/j.ijbiomac.2021.07.045"
}
Cabrera-Barjas, G., Radovanović, N., Arrepol, G. B., de la Torre, A. F., Valdes, O.,& Nesic, A.. (2021). Valorization of food waste to produce intelligent nanofibrous beta-chitin films. in International Journal of Biological Macromolecules, 186, 92-99.
https://doi.org/10.1016/j.ijbiomac.2021.07.045
Cabrera-Barjas G, Radovanović N, Arrepol GB, de la Torre AF, Valdes O, Nesic A. Valorization of food waste to produce intelligent nanofibrous beta-chitin films. in International Journal of Biological Macromolecules. 2021;186:92-99.
doi:10.1016/j.ijbiomac.2021.07.045 .
Cabrera-Barjas, Gustavo, Radovanović, Neda, Arrepol, Gaston Bravo, de la Torre, Alexander F., Valdes, Oscar, Nesic, Aleksandra, "Valorization of food waste to produce intelligent nanofibrous beta-chitin films" in International Journal of Biological Macromolecules, 186 (2021):92-99,
https://doi.org/10.1016/j.ijbiomac.2021.07.045 . .
1
7
8