Anžel, Ivan

Link to this page

Authority KeyName Variants
e07816ba-f77d-4ace-b3e6-d644f373f522
  • Anžel, Ivan (4)
Projects

Author's Bibliography

CFD analysis of exothermic reactions in al-au nano multi-layered foils

Raić, Karlo T.; Rudolf, Rebeka; Ternik, Primoz; Zunić, Zoran; Lazić, Vojkan; Stamenković, Dragoslav; Tanasković, Tatjana; Anžel, Ivan

(Institute of Metals and Technology, 2011)

TY  - JOUR
AU  - Raić, Karlo T.
AU  - Rudolf, Rebeka
AU  - Ternik, Primoz
AU  - Zunić, Zoran
AU  - Lazić, Vojkan
AU  - Stamenković, Dragoslav
AU  - Tanasković, Tatjana
AU  - Anžel, Ivan
PY  - 2011
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5628
AB  - This work presents the possibility of numerical modelling using Computational Fluid Dynamics (CFD) in the field of nano-foils. The governing equations were solved using a Finite Volume Methodology (FVM). The computational domain was discretized using a uniform Cartesian grid with the appropriate mesh size along the x and y directions employing the corresponding number of grid points. The field variables were discretized at the cell centres and the spatial, as well as the time, derivatives were approximated using the second-order accurate numerical scheme. The time-evolution of the temperature and concentration fields, as well as the atomic diffusion coefficient, will be presented for the appropriate Al-Au nano-foil geometry and boundary conditions.
PB  - Institute of Metals and Technology
T2  - Materiali in Tehnologije
T1  - CFD analysis of exothermic reactions in al-au nano multi-layered foils
EP  - 338
IS  - 4
SP  - 335
VL  - 45
UR  - https://hdl.handle.net/21.15107/rcub_smile_1642
ER  - 
@article{
author = "Raić, Karlo T. and Rudolf, Rebeka and Ternik, Primoz and Zunić, Zoran and Lazić, Vojkan and Stamenković, Dragoslav and Tanasković, Tatjana and Anžel, Ivan",
year = "2011",
abstract = "This work presents the possibility of numerical modelling using Computational Fluid Dynamics (CFD) in the field of nano-foils. The governing equations were solved using a Finite Volume Methodology (FVM). The computational domain was discretized using a uniform Cartesian grid with the appropriate mesh size along the x and y directions employing the corresponding number of grid points. The field variables were discretized at the cell centres and the spatial, as well as the time, derivatives were approximated using the second-order accurate numerical scheme. The time-evolution of the temperature and concentration fields, as well as the atomic diffusion coefficient, will be presented for the appropriate Al-Au nano-foil geometry and boundary conditions.",
publisher = "Institute of Metals and Technology",
journal = "Materiali in Tehnologije",
title = "CFD analysis of exothermic reactions in al-au nano multi-layered foils",
pages = "338-335",
number = "4",
volume = "45",
url = "https://hdl.handle.net/21.15107/rcub_smile_1642"
}
Raić, K. T., Rudolf, R., Ternik, P., Zunić, Z., Lazić, V., Stamenković, D., Tanasković, T.,& Anžel, I.. (2011). CFD analysis of exothermic reactions in al-au nano multi-layered foils. in Materiali in Tehnologije
Institute of Metals and Technology., 45(4), 335-338.
https://hdl.handle.net/21.15107/rcub_smile_1642
Raić KT, Rudolf R, Ternik P, Zunić Z, Lazić V, Stamenković D, Tanasković T, Anžel I. CFD analysis of exothermic reactions in al-au nano multi-layered foils. in Materiali in Tehnologije. 2011;45(4):335-338.
https://hdl.handle.net/21.15107/rcub_smile_1642 .
Raić, Karlo T., Rudolf, Rebeka, Ternik, Primoz, Zunić, Zoran, Lazić, Vojkan, Stamenković, Dragoslav, Tanasković, Tatjana, Anžel, Ivan, "CFD analysis of exothermic reactions in al-au nano multi-layered foils" in Materiali in Tehnologije, 45, no. 4 (2011):335-338,
https://hdl.handle.net/21.15107/rcub_smile_1642 .
4
11

Liquid metal/ceramic interfaces in dental practice and jewellery manufacturing

Raić, Karlo T.; Rudolf, Rebeka; Todorović, Aleksandar; Stamenković, Dragoslav; Anžel, Ivan

(Institute of Metals and Technology, 2010)

TY  - JOUR
AU  - Raić, Karlo T.
AU  - Rudolf, Rebeka
AU  - Todorović, Aleksandar
AU  - Stamenković, Dragoslav
AU  - Anžel, Ivan
PY  - 2010
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5603
AB  - Metal-ceramic fusing has been the essential step in obtaining materials that benefit from both ceramic and metal constituents. i e where the combined properties of metal and ceramic layers are desirable When considering fusing methods. soldering and active metal brazing are the most effective These processes involve braze melting and flowing between the two pieces of material In the first part the phenomena occurring on the boundary between the ceramics and the active filler metal during the metal-ceramics joining are discussed Three interconnected sub-processes are considered (1) wetting of the ceramic surface. (2) chemical reactions at the Interlace and (3) diffusion with a moving interface Then, the appearances at the grain boundary grooves of the ceramic surface are presented as phenomena on the catalytic surface In the second pan, examples from dental practice and jewellery manufacturing are used for comparative analysis Finally we discuss the composition and properties of the soldering and brazing alloys used for dental practice and jewellery manufacturing
PB  - Institute of Metals and Technology
T2  - Materiali in Tehnologije
T1  - Liquid metal/ceramic interfaces in dental practice and jewellery manufacturing
EP  - 66
IS  - 2
SP  - 59
VL  - 44
UR  - https://hdl.handle.net/21.15107/rcub_smile_1534
ER  - 
@article{
author = "Raić, Karlo T. and Rudolf, Rebeka and Todorović, Aleksandar and Stamenković, Dragoslav and Anžel, Ivan",
year = "2010",
abstract = "Metal-ceramic fusing has been the essential step in obtaining materials that benefit from both ceramic and metal constituents. i e where the combined properties of metal and ceramic layers are desirable When considering fusing methods. soldering and active metal brazing are the most effective These processes involve braze melting and flowing between the two pieces of material In the first part the phenomena occurring on the boundary between the ceramics and the active filler metal during the metal-ceramics joining are discussed Three interconnected sub-processes are considered (1) wetting of the ceramic surface. (2) chemical reactions at the Interlace and (3) diffusion with a moving interface Then, the appearances at the grain boundary grooves of the ceramic surface are presented as phenomena on the catalytic surface In the second pan, examples from dental practice and jewellery manufacturing are used for comparative analysis Finally we discuss the composition and properties of the soldering and brazing alloys used for dental practice and jewellery manufacturing",
publisher = "Institute of Metals and Technology",
journal = "Materiali in Tehnologije",
title = "Liquid metal/ceramic interfaces in dental practice and jewellery manufacturing",
pages = "66-59",
number = "2",
volume = "44",
url = "https://hdl.handle.net/21.15107/rcub_smile_1534"
}
Raić, K. T., Rudolf, R., Todorović, A., Stamenković, D.,& Anžel, I.. (2010). Liquid metal/ceramic interfaces in dental practice and jewellery manufacturing. in Materiali in Tehnologije
Institute of Metals and Technology., 44(2), 59-66.
https://hdl.handle.net/21.15107/rcub_smile_1534
Raić KT, Rudolf R, Todorović A, Stamenković D, Anžel I. Liquid metal/ceramic interfaces in dental practice and jewellery manufacturing. in Materiali in Tehnologije. 2010;44(2):59-66.
https://hdl.handle.net/21.15107/rcub_smile_1534 .
Raić, Karlo T., Rudolf, Rebeka, Todorović, Aleksandar, Stamenković, Dragoslav, Anžel, Ivan, "Liquid metal/ceramic interfaces in dental practice and jewellery manufacturing" in Materiali in Tehnologije, 44, no. 2 (2010):59-66,
https://hdl.handle.net/21.15107/rcub_smile_1534 .
4
5

Nanofoils for soldering and brazing in dental joining practice and jewellery manufacturing

Raić, Karlo T.; Rudolf, Rebeka; Kosec, Borut; Anžel, Ivan; Lazić, Vojkan; Todorović, Aleksandar

(Institute of Metals and Technology, 2010)

TY  - JOUR
AU  - Raić, Karlo T.
AU  - Rudolf, Rebeka
AU  - Kosec, Borut
AU  - Anžel, Ivan
AU  - Lazić, Vojkan
AU  - Todorović, Aleksandar
PY  - 2010
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5605
AB  - This paper describes the development of novel, reactive Al-Au nano-multilayered foils, their possible application in different fields and a discussion of the nano-foils' suitability for dental and jewellery applications. Moreover, this study includes the rapid joining of similar and dissimilar materials, by placing multilayer nano-foils and two layers of solder or braze. The foils precisely control the instantaneous release of heat energy for the joining and act as a controllable local heat source. The reactive foils' thickness is in the range 10 nm to less than 100 nm and they contain many nanoscale layers that alternate between materials with high mixing heats, such as Al and Au. The foil between the two solder/braze layers melts the solder/braze with the heat generated by the reaction and bonds the components. The use of reactive foils eliminates the need for a furnace and dramatically increases the soldering/brazing heating rate of the components being bonded. Thus, ceramics and metals can be fused over required areas without the thermal stresses that are encountered in furnace soldering or brazing. In addition, a completely new plasma technology is proposed for the manufacturing of nano-foils and the first results of the preliminary experimental testing are presented.
PB  - Institute of Metals and Technology
T2  - Materiali in Tehnologije
T1  - Nanofoils for soldering and brazing in dental joining practice and jewellery manufacturing
EP  - 9
IS  - 1
SP  - 3
VL  - 43
UR  - https://hdl.handle.net/21.15107/rcub_smile_1560
ER  - 
@article{
author = "Raić, Karlo T. and Rudolf, Rebeka and Kosec, Borut and Anžel, Ivan and Lazić, Vojkan and Todorović, Aleksandar",
year = "2010",
abstract = "This paper describes the development of novel, reactive Al-Au nano-multilayered foils, their possible application in different fields and a discussion of the nano-foils' suitability for dental and jewellery applications. Moreover, this study includes the rapid joining of similar and dissimilar materials, by placing multilayer nano-foils and two layers of solder or braze. The foils precisely control the instantaneous release of heat energy for the joining and act as a controllable local heat source. The reactive foils' thickness is in the range 10 nm to less than 100 nm and they contain many nanoscale layers that alternate between materials with high mixing heats, such as Al and Au. The foil between the two solder/braze layers melts the solder/braze with the heat generated by the reaction and bonds the components. The use of reactive foils eliminates the need for a furnace and dramatically increases the soldering/brazing heating rate of the components being bonded. Thus, ceramics and metals can be fused over required areas without the thermal stresses that are encountered in furnace soldering or brazing. In addition, a completely new plasma technology is proposed for the manufacturing of nano-foils and the first results of the preliminary experimental testing are presented.",
publisher = "Institute of Metals and Technology",
journal = "Materiali in Tehnologije",
title = "Nanofoils for soldering and brazing in dental joining practice and jewellery manufacturing",
pages = "9-3",
number = "1",
volume = "43",
url = "https://hdl.handle.net/21.15107/rcub_smile_1560"
}
Raić, K. T., Rudolf, R., Kosec, B., Anžel, I., Lazić, V.,& Todorović, A.. (2010). Nanofoils for soldering and brazing in dental joining practice and jewellery manufacturing. in Materiali in Tehnologije
Institute of Metals and Technology., 43(1), 3-9.
https://hdl.handle.net/21.15107/rcub_smile_1560
Raić KT, Rudolf R, Kosec B, Anžel I, Lazić V, Todorović A. Nanofoils for soldering and brazing in dental joining practice and jewellery manufacturing. in Materiali in Tehnologije. 2010;43(1):3-9.
https://hdl.handle.net/21.15107/rcub_smile_1560 .
Raić, Karlo T., Rudolf, Rebeka, Kosec, Borut, Anžel, Ivan, Lazić, Vojkan, Todorović, Aleksandar, "Nanofoils for soldering and brazing in dental joining practice and jewellery manufacturing" in Materiali in Tehnologije, 43, no. 1 (2010):3-9,
https://hdl.handle.net/21.15107/rcub_smile_1560 .
12
15

Distribution of the carbide phase in the viscoplastic layer during the rotational friction-welding of various steels

Ćirić, Radovan; Čantrak, Svetislav; Raić, Karlo T.; Rudolf, Rebeka; Anžel, Ivan

(Korean Institute of Metals and Materials, 2009)

TY  - JOUR
AU  - Ćirić, Radovan
AU  - Čantrak, Svetislav
AU  - Raić, Karlo T.
AU  - Rudolf, Rebeka
AU  - Anžel, Ivan
PY  - 2009
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5555
AB  - The paper presents the viscoplastic phenomena observed during the rotational friction-welding process of high-speed steel M2 (AISI SAE) with carbon steel 1060 (AISI SAE The structure, phase composition and distribution of the carbide phase in the friction plane and adjoining zones are examined by using optical microscopy (OM) with a system for quantitative analysis, and scanning electron microscopy (SEM) in addition to EDS analysis. The experimentally-checked mathematical relationship is suggested for the calculation of the radial movements of the carbide phase, immediately next to the friction plane. On the basis of qualitative and quantitative evaluation of the microstructural and rheological appearances, a model of carbide phase distribution is also established in the viscoplastic and viscous layers in the area of the friction plane.
PB  - Korean Institute of Metals and Materials
T2  - Metals and Materials International
T1  - Distribution of the carbide phase in the viscoplastic layer during the rotational friction-welding of various steels
EP  - 841
IS  - 5
SP  - 831
VL  - 15
DO  - 10.1007/s12540-009-0831-4
ER  - 
@article{
author = "Ćirić, Radovan and Čantrak, Svetislav and Raić, Karlo T. and Rudolf, Rebeka and Anžel, Ivan",
year = "2009",
abstract = "The paper presents the viscoplastic phenomena observed during the rotational friction-welding process of high-speed steel M2 (AISI SAE) with carbon steel 1060 (AISI SAE The structure, phase composition and distribution of the carbide phase in the friction plane and adjoining zones are examined by using optical microscopy (OM) with a system for quantitative analysis, and scanning electron microscopy (SEM) in addition to EDS analysis. The experimentally-checked mathematical relationship is suggested for the calculation of the radial movements of the carbide phase, immediately next to the friction plane. On the basis of qualitative and quantitative evaluation of the microstructural and rheological appearances, a model of carbide phase distribution is also established in the viscoplastic and viscous layers in the area of the friction plane.",
publisher = "Korean Institute of Metals and Materials",
journal = "Metals and Materials International",
title = "Distribution of the carbide phase in the viscoplastic layer during the rotational friction-welding of various steels",
pages = "841-831",
number = "5",
volume = "15",
doi = "10.1007/s12540-009-0831-4"
}
Ćirić, R., Čantrak, S., Raić, K. T., Rudolf, R.,& Anžel, I.. (2009). Distribution of the carbide phase in the viscoplastic layer during the rotational friction-welding of various steels. in Metals and Materials International
Korean Institute of Metals and Materials., 15(5), 831-841.
https://doi.org/10.1007/s12540-009-0831-4
Ćirić R, Čantrak S, Raić KT, Rudolf R, Anžel I. Distribution of the carbide phase in the viscoplastic layer during the rotational friction-welding of various steels. in Metals and Materials International. 2009;15(5):831-841.
doi:10.1007/s12540-009-0831-4 .
Ćirić, Radovan, Čantrak, Svetislav, Raić, Karlo T., Rudolf, Rebeka, Anžel, Ivan, "Distribution of the carbide phase in the viscoplastic layer during the rotational friction-welding of various steels" in Metals and Materials International, 15, no. 5 (2009):831-841,
https://doi.org/10.1007/s12540-009-0831-4 . .
1
1
2