Vojnović, Sandra

Link to this page

Authority KeyName Variants
7eb1fd17-8890-43c7-b94a-6a09a675e1ac
  • Vojnović, Sandra (2)

Author's Bibliography

Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings

Vuković, Jovana S.; Babić Radić, Marija M.; Trifunović, Saša B.; Koch, Thomas; Perić-Grujić, Aleksandra A.; Vojnović, Sandra; Tomić, Simonida Lj.

(John Wiley and Sons Inc., 2023)

TY  - JOUR
AU  - Vuković, Jovana S.
AU  - Babić Radić, Marija M.
AU  - Trifunović, Saša B.
AU  - Koch, Thomas
AU  - Perić-Grujić, Aleksandra A.
AU  - Vojnović, Sandra
AU  - Tomić, Simonida Lj.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6759
AB  - Antibacterial hydrogels, as an advanced approach, can create optimal conditions for wound healing, even in the fight against stubborn and difficult-to-treat wound infections. Interestingly, pH is an often neglected clinical parameter, although it has a significant impact on the wound healing process. At different stages of wound healing, the pH in the wound bed changes from slightly alkaline to neutral to acidic. To develop novel pH-sensitive antibacterial hydrogel dressings, Zn2+-loaded poly(2-hydroxyethyl acrylate/itaconic acid) hydrogels are synthesized. The hydrogels exhibit pH-sensitive swelling in the physiologically relevant pH range, with a pronounced swelling ability at neutral pH. The controlled release of Zn2+ occurs in a buffer of pH 7.40 at 37 °C. The liquid transport mechanism and release kinetics are evaluated using the specific kinetic models of Ritger-Peppas and Peppas-Sahlin. The effect of Zn2+ on structural, thermal, swelling, cytocompatibility, and antibacterial properties is evaluated by Fourier transform infrared spectroscopy, differential scanning calorimetry, swelling studies, MTT, and antibacterial tests. The hydrogels show excellent antibacterial activity against Escherichia coli. The research opens new perspectives for efficient wound healing management, and the extension of the study will be orchestrated by optimising the hydrogel composition to achieve improved performance.
PB  - John Wiley and Sons Inc.
T2  - Macromolecular Chemistry and Physics
T1  - Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings
SP  - 2300310
DO  - 10.1002/macp.202300310
ER  - 
@article{
author = "Vuković, Jovana S. and Babić Radić, Marija M. and Trifunović, Saša B. and Koch, Thomas and Perić-Grujić, Aleksandra A. and Vojnović, Sandra and Tomić, Simonida Lj.",
year = "2023",
abstract = "Antibacterial hydrogels, as an advanced approach, can create optimal conditions for wound healing, even in the fight against stubborn and difficult-to-treat wound infections. Interestingly, pH is an often neglected clinical parameter, although it has a significant impact on the wound healing process. At different stages of wound healing, the pH in the wound bed changes from slightly alkaline to neutral to acidic. To develop novel pH-sensitive antibacterial hydrogel dressings, Zn2+-loaded poly(2-hydroxyethyl acrylate/itaconic acid) hydrogels are synthesized. The hydrogels exhibit pH-sensitive swelling in the physiologically relevant pH range, with a pronounced swelling ability at neutral pH. The controlled release of Zn2+ occurs in a buffer of pH 7.40 at 37 °C. The liquid transport mechanism and release kinetics are evaluated using the specific kinetic models of Ritger-Peppas and Peppas-Sahlin. The effect of Zn2+ on structural, thermal, swelling, cytocompatibility, and antibacterial properties is evaluated by Fourier transform infrared spectroscopy, differential scanning calorimetry, swelling studies, MTT, and antibacterial tests. The hydrogels show excellent antibacterial activity against Escherichia coli. The research opens new perspectives for efficient wound healing management, and the extension of the study will be orchestrated by optimising the hydrogel composition to achieve improved performance.",
publisher = "John Wiley and Sons Inc.",
journal = "Macromolecular Chemistry and Physics",
title = "Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings",
pages = "2300310",
doi = "10.1002/macp.202300310"
}
Vuković, J. S., Babić Radić, M. M., Trifunović, S. B., Koch, T., Perić-Grujić, A. A., Vojnović, S.,& Tomić, S. Lj.. (2023). Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings. in Macromolecular Chemistry and Physics
John Wiley and Sons Inc.., 2300310.
https://doi.org/10.1002/macp.202300310
Vuković JS, Babić Radić MM, Trifunović SB, Koch T, Perić-Grujić AA, Vojnović S, Tomić SL. Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings. in Macromolecular Chemistry and Physics. 2023;:2300310.
doi:10.1002/macp.202300310 .
Vuković, Jovana S., Babić Radić, Marija M., Trifunović, Saša B., Koch, Thomas, Perić-Grujić, Aleksandra A., Vojnović, Sandra, Tomić, Simonida Lj., "Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings" in Macromolecular Chemistry and Physics (2023):2300310,
https://doi.org/10.1002/macp.202300310 . .

Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties

Tadić, Marin; Trpkov, Đorđe; Kopanja, Lazar; Vojnović, Sandra; Panjan, Matjaž

(2019)

TY  - JOUR
AU  - Tadić, Marin
AU  - Trpkov, Đorđe
AU  - Kopanja, Lazar
AU  - Vojnović, Sandra
AU  - Panjan, Matjaž
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5892
AB  - In this work, we present the magnetic and structural properties of α-Fe 2 O 3 nanoparticles synthesized by the hydrothermal synthesis method. XRD, FTIR and Raman spectroscopy indicate that the samples consist of single-phase α-Fe 2 O 3 nanoparticles. A microstructural analysis by TEM and SEM shows: (i) irregular nanoparticles (∼50 nm), (ii) plate-like nanoparticles (with thickness t∼10 nm and diameter d∼50–80 nm) and (iii) microsized ellipsoid 3D superstructures (with length l∼3.5 and diameter d∼1.5 μm) composed of nanosized building blocks (∼50 nm). We used circularity, elongation and convexity measures to quantitatively analyze the shape of the particles. Irregular hematite nanoparticles were synthesized using a water solution of ferric precursor and sodium acetate during the hydrothermal reaction (reaction conditions: T = 180 °C, t = 12 h). The same hydrothermal reaction temperature, reaction duration and ferric precursor (without sodium acetate) were used for synthesizing hematite ellipsoid 3D superstructures. Addition of urea and glycine surfactants in hydrothermal reaction resulted in the formation of nanoplate hematite particles. The role of these surfactants on the structure and morphology of the particles was also investigated. Magnetic measurements at the room temperature displayed a wide range of coercivities, from H C = 73 Oe for irregular nanoparticles, H C = 689 Oe for nanoplates to H C = 2688 Oe for hematite ellipsoid 3D superstructures. The measured coercivity for the ellipsoid superstructure was about 35 times higher than in the case of irregular hematite nanoparticles and about 4 times than the coercivity of hematite nanoplates. Magnetic properties of synthesized samples were related to their structure and morphology. We conclude that shape anisotropy influenced enhancement of the coercivity in hematite nanoplates whereas hematite ellipsoid 3D superstructure (nanoparticle clusters) induced the formation of multidomain magnetic structure and highest coercivity revealing its superior structure for enhanced magnetic properties. The synthesized hematite nanoparticle structures exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating a safe use of these nanoparticles for practical applications. © 2019 Elsevier B.V.
T2  - Journal of Alloys and Compounds
T1  - Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties
EP  - 609
SP  - 599
VL  - 792
DO  - 10.1016/j.jallcom.2019.03.414
ER  - 
@article{
author = "Tadić, Marin and Trpkov, Đorđe and Kopanja, Lazar and Vojnović, Sandra and Panjan, Matjaž",
year = "2019",
abstract = "In this work, we present the magnetic and structural properties of α-Fe 2 O 3 nanoparticles synthesized by the hydrothermal synthesis method. XRD, FTIR and Raman spectroscopy indicate that the samples consist of single-phase α-Fe 2 O 3 nanoparticles. A microstructural analysis by TEM and SEM shows: (i) irregular nanoparticles (∼50 nm), (ii) plate-like nanoparticles (with thickness t∼10 nm and diameter d∼50–80 nm) and (iii) microsized ellipsoid 3D superstructures (with length l∼3.5 and diameter d∼1.5 μm) composed of nanosized building blocks (∼50 nm). We used circularity, elongation and convexity measures to quantitatively analyze the shape of the particles. Irregular hematite nanoparticles were synthesized using a water solution of ferric precursor and sodium acetate during the hydrothermal reaction (reaction conditions: T = 180 °C, t = 12 h). The same hydrothermal reaction temperature, reaction duration and ferric precursor (without sodium acetate) were used for synthesizing hematite ellipsoid 3D superstructures. Addition of urea and glycine surfactants in hydrothermal reaction resulted in the formation of nanoplate hematite particles. The role of these surfactants on the structure and morphology of the particles was also investigated. Magnetic measurements at the room temperature displayed a wide range of coercivities, from H C = 73 Oe for irregular nanoparticles, H C = 689 Oe for nanoplates to H C = 2688 Oe for hematite ellipsoid 3D superstructures. The measured coercivity for the ellipsoid superstructure was about 35 times higher than in the case of irregular hematite nanoparticles and about 4 times than the coercivity of hematite nanoplates. Magnetic properties of synthesized samples were related to their structure and morphology. We conclude that shape anisotropy influenced enhancement of the coercivity in hematite nanoplates whereas hematite ellipsoid 3D superstructure (nanoparticle clusters) induced the formation of multidomain magnetic structure and highest coercivity revealing its superior structure for enhanced magnetic properties. The synthesized hematite nanoparticle structures exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating a safe use of these nanoparticles for practical applications. © 2019 Elsevier B.V.",
journal = "Journal of Alloys and Compounds",
title = "Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties",
pages = "609-599",
volume = "792",
doi = "10.1016/j.jallcom.2019.03.414"
}
Tadić, M., Trpkov, Đ., Kopanja, L., Vojnović, S.,& Panjan, M.. (2019). Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. in Journal of Alloys and Compounds, 792, 599-609.
https://doi.org/10.1016/j.jallcom.2019.03.414
Tadić M, Trpkov Đ, Kopanja L, Vojnović S, Panjan M. Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. in Journal of Alloys and Compounds. 2019;792:599-609.
doi:10.1016/j.jallcom.2019.03.414 .
Tadić, Marin, Trpkov, Đorđe, Kopanja, Lazar, Vojnović, Sandra, Panjan, Matjaž, "Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties" in Journal of Alloys and Compounds, 792 (2019):599-609,
https://doi.org/10.1016/j.jallcom.2019.03.414 . .
159
67
152