Babić, Marija

Link to this page

Authority KeyName Variants
orcid::0000-0002-9338-5725
  • Babić, Marija (17)
  • Babić Radić, Marija M. (9)
  • Babić, Marija M. (1)
Projects
Synthesis and characterization of novel functional polymers and polymeric nanocomposites Chemical and structural designing of nanomaterials for application in medicine and tissue engineering
Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy)
Study of the Synthesis, Structure and Activity of Natural and Synthetic Organic Compounds Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering)
SCOPES program of the Swiss National Science Foundation (SNSF)Swiss National Science Foundation (SNSF) Serbia-Slovenia bilateral project (No 32)
Swiss Agency for Development and Cooperation (SDC) [IZ73ZO_152327] Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200287 (Innovation Center of the Faculty of Technology and Metallurgy)
Istraživanje uslova selektovnog flotiranja Pb-Cu-Zn rude iz ležišta ""Podvirovi"" Phillip Morris
SCOPES program of the Swiss National Science Foundation (SNSF) and the Swiss Agency for Development and Cooperation (SDC) (Grant No IZ73ZO_152327). SCOPES (Scientific co-operation between Eastern Europe and Switzerland) project [IZ73Z0_152327]
The SCOPES program of the Swiss National Science Foundation (SNSF) and the Swiss Agency for Development and Cooperation (SDC) (Grants No IZ73ZO_152327).

Author's Bibliography

Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform

Babić Radić, Marija M.; Vukomanović, Marija; Nikodinović-Runić, Jasmina; Tomić, Simonida

(MDPI, 2024)

TY  - JOUR
AU  - Babić Radić, Marija M.
AU  - Vukomanović, Marija
AU  - Nikodinović-Runić, Jasmina
AU  - Tomić, Simonida
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7410
AB  - This study proposes synthesis and evaluation of gelatin-/alginate-based hydrogel scaffolds reinforced with titanium dioxide (TiO2) nanoparticles which, through their combination with allantoin, quercetin, and caffeic acid, provide multi-target therapy directed on all phases of the wound healing process. These scaffolds provide the simultaneous release of bioactive agents and concurrently support cell/tissue repair through the replicated structure of a native extracellular matrix. The hydrogel scaffolds were synthesized via a crosslinking reaction using EDC as a crosslinker for gelatin. Synthesized hydrogel scaffolds and the effect of TiO2 on their properties were characterized by structural, mechanical, morphological, and swelling properties, and the porosity, wettability, adhesion to skin tissue, and simultaneous release features. The biocompatibility of the scaffolds was tested in vitro on fibroblasts (MRC5 cells) and in vivo (Caenorhabditis elegans) in a survival probe. The scaffolds revealed porous interconnected morphology, porosity of 88.33 to 96.76%, elastic modulus of 1.53 to 4.29 MPa, full hydrophilicity, favorable skin adhesivity, and biocompatibility. The simultaneous release was investigated in vitro indicating dependence on the scaffold’s composition and type of bioactive agents. The novel scaffolds designed as multi-target therapy have significant promise for improved wound healing in a beneficial and non-invasive manner.
PB  - MDPI
T2  - Pharmaceutics
T1  - Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform
IS  - 3
SP  - 372
VL  - 16
DO  - 10.3390/pharmaceutics16030372
ER  - 
@article{
author = "Babić Radić, Marija M. and Vukomanović, Marija and Nikodinović-Runić, Jasmina and Tomić, Simonida",
year = "2024",
abstract = "This study proposes synthesis and evaluation of gelatin-/alginate-based hydrogel scaffolds reinforced with titanium dioxide (TiO2) nanoparticles which, through their combination with allantoin, quercetin, and caffeic acid, provide multi-target therapy directed on all phases of the wound healing process. These scaffolds provide the simultaneous release of bioactive agents and concurrently support cell/tissue repair through the replicated structure of a native extracellular matrix. The hydrogel scaffolds were synthesized via a crosslinking reaction using EDC as a crosslinker for gelatin. Synthesized hydrogel scaffolds and the effect of TiO2 on their properties were characterized by structural, mechanical, morphological, and swelling properties, and the porosity, wettability, adhesion to skin tissue, and simultaneous release features. The biocompatibility of the scaffolds was tested in vitro on fibroblasts (MRC5 cells) and in vivo (Caenorhabditis elegans) in a survival probe. The scaffolds revealed porous interconnected morphology, porosity of 88.33 to 96.76%, elastic modulus of 1.53 to 4.29 MPa, full hydrophilicity, favorable skin adhesivity, and biocompatibility. The simultaneous release was investigated in vitro indicating dependence on the scaffold’s composition and type of bioactive agents. The novel scaffolds designed as multi-target therapy have significant promise for improved wound healing in a beneficial and non-invasive manner.",
publisher = "MDPI",
journal = "Pharmaceutics",
title = "Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform",
number = "3",
pages = "372",
volume = "16",
doi = "10.3390/pharmaceutics16030372"
}
Babić Radić, M. M., Vukomanović, M., Nikodinović-Runić, J.,& Tomić, S.. (2024). Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform. in Pharmaceutics
MDPI., 16(3), 372.
https://doi.org/10.3390/pharmaceutics16030372
Babić Radić MM, Vukomanović M, Nikodinović-Runić J, Tomić S. Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform. in Pharmaceutics. 2024;16(3):372.
doi:10.3390/pharmaceutics16030372 .
Babić Radić, Marija M., Vukomanović, Marija, Nikodinović-Runić, Jasmina, Tomić, Simonida, "Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform" in Pharmaceutics, 16, no. 3 (2024):372,
https://doi.org/10.3390/pharmaceutics16030372 . .

Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings

Vuković, Jovana S.; Babić Radić, Marija M.; Trifunović, Saša B.; Koch, Thomas; Perić-Grujić, Aleksandra A.; Vojnović, Sandra; Tomić, Simonida Lj.

(John Wiley and Sons Inc., 2023)

TY  - JOUR
AU  - Vuković, Jovana S.
AU  - Babić Radić, Marija M.
AU  - Trifunović, Saša B.
AU  - Koch, Thomas
AU  - Perić-Grujić, Aleksandra A.
AU  - Vojnović, Sandra
AU  - Tomić, Simonida Lj.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6759
AB  - Antibacterial hydrogels, as an advanced approach, can create optimal conditions for wound healing, even in the fight against stubborn and difficult-to-treat wound infections. Interestingly, pH is an often neglected clinical parameter, although it has a significant impact on the wound healing process. At different stages of wound healing, the pH in the wound bed changes from slightly alkaline to neutral to acidic. To develop novel pH-sensitive antibacterial hydrogel dressings, Zn2+-loaded poly(2-hydroxyethyl acrylate/itaconic acid) hydrogels are synthesized. The hydrogels exhibit pH-sensitive swelling in the physiologically relevant pH range, with a pronounced swelling ability at neutral pH. The controlled release of Zn2+ occurs in a buffer of pH 7.40 at 37 °C. The liquid transport mechanism and release kinetics are evaluated using the specific kinetic models of Ritger-Peppas and Peppas-Sahlin. The effect of Zn2+ on structural, thermal, swelling, cytocompatibility, and antibacterial properties is evaluated by Fourier transform infrared spectroscopy, differential scanning calorimetry, swelling studies, MTT, and antibacterial tests. The hydrogels show excellent antibacterial activity against Escherichia coli. The research opens new perspectives for efficient wound healing management, and the extension of the study will be orchestrated by optimising the hydrogel composition to achieve improved performance.
PB  - John Wiley and Sons Inc.
T2  - Macromolecular Chemistry and Physics
T1  - Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings
SP  - 2300310
DO  - 10.1002/macp.202300310
ER  - 
@article{
author = "Vuković, Jovana S. and Babić Radić, Marija M. and Trifunović, Saša B. and Koch, Thomas and Perić-Grujić, Aleksandra A. and Vojnović, Sandra and Tomić, Simonida Lj.",
year = "2023",
abstract = "Antibacterial hydrogels, as an advanced approach, can create optimal conditions for wound healing, even in the fight against stubborn and difficult-to-treat wound infections. Interestingly, pH is an often neglected clinical parameter, although it has a significant impact on the wound healing process. At different stages of wound healing, the pH in the wound bed changes from slightly alkaline to neutral to acidic. To develop novel pH-sensitive antibacterial hydrogel dressings, Zn2+-loaded poly(2-hydroxyethyl acrylate/itaconic acid) hydrogels are synthesized. The hydrogels exhibit pH-sensitive swelling in the physiologically relevant pH range, with a pronounced swelling ability at neutral pH. The controlled release of Zn2+ occurs in a buffer of pH 7.40 at 37 °C. The liquid transport mechanism and release kinetics are evaluated using the specific kinetic models of Ritger-Peppas and Peppas-Sahlin. The effect of Zn2+ on structural, thermal, swelling, cytocompatibility, and antibacterial properties is evaluated by Fourier transform infrared spectroscopy, differential scanning calorimetry, swelling studies, MTT, and antibacterial tests. The hydrogels show excellent antibacterial activity against Escherichia coli. The research opens new perspectives for efficient wound healing management, and the extension of the study will be orchestrated by optimising the hydrogel composition to achieve improved performance.",
publisher = "John Wiley and Sons Inc.",
journal = "Macromolecular Chemistry and Physics",
title = "Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings",
pages = "2300310",
doi = "10.1002/macp.202300310"
}
Vuković, J. S., Babić Radić, M. M., Trifunović, S. B., Koch, T., Perić-Grujić, A. A., Vojnović, S.,& Tomić, S. Lj.. (2023). Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings. in Macromolecular Chemistry and Physics
John Wiley and Sons Inc.., 2300310.
https://doi.org/10.1002/macp.202300310
Vuković JS, Babić Radić MM, Trifunović SB, Koch T, Perić-Grujić AA, Vojnović S, Tomić SL. Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings. in Macromolecular Chemistry and Physics. 2023;:2300310.
doi:10.1002/macp.202300310 .
Vuković, Jovana S., Babić Radić, Marija M., Trifunović, Saša B., Koch, Thomas, Perić-Grujić, Aleksandra A., Vojnović, Sandra, Tomić, Simonida Lj., "Zn2+/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings" in Macromolecular Chemistry and Physics (2023):2300310,
https://doi.org/10.1002/macp.202300310 . .

Manuka Honey/2-Hydroxyethyl Methacrylate/Gelatin Hybrid Hydrogel Scaffolds for Potential Tissue Regeneration

Tomić, Simonida Lj.; Vuković, Jovana S.; Babić Radić, Marija M.; Filipović, Vuk V.; Živanović, Dubravka P.; Nikolić, Miloš M.; Nikodinović-Runić, Jasmina

(MDPI, 2023)

TY  - JOUR
AU  - Tomić, Simonida Lj.
AU  - Vuković, Jovana S.
AU  - Babić Radić, Marija M.
AU  - Filipović, Vuk V.
AU  - Živanović, Dubravka P.
AU  - Nikolić, Miloš M.
AU  - Nikodinović-Runić, Jasmina
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5869
AB  - Scaffolding biomaterials are gaining great importance due to their beneficial properties for medical purposes. Targeted biomaterial engineering strategies through the synergy of different material types can be applied to design hybrid scaffolding biomaterials with advantageous properties for biomedical applications. In our research, a novel combination of the bioactive agent Manuka honey (MHo) with 2-hydroxyethyl methacrylate/gelatin (HG) hydrogel scaffolds was created as an efficient bioactive platform for biomedical applications. The effects of Manuka honey content on structural characteristics, porosity, swelling performance, in vitro degradation, and in vitro biocompatibility (fibroblast and keratinocyte cell lines) of hybrid hydrogel scaffolds were studied using Fourier transform infrared spectroscopy, the gravimetric method, and in vitro MTT biocompatibility assays. The engineered hybrid hydrogel scaffolds show advantageous properties, including porosity in the range of 71.25% to 90.09%, specific pH- and temperature-dependent swelling performance, and convenient absorption capacity. In vitro degradation studies showed scaffold degradability ranging from 6.27% to 27.18% for four weeks. In vitro biocompatibility assays on healthy human fibroblast (MRC5 cells) and keratinocyte (HaCaT cells) cell lines by MTT tests showed that cell viability depends on the Manuka honey content loaded in the HG hydrogel scaffolds. A sample containing the highest Manuka honey content (30%) exhibited the best biocompatible properties. The obtained results reveal that the synergy of the bioactive agent, Manuka honey, with 2-hydroxyethyl methacrylate/gelatin as hybrid hydrogel scaffolds has potential for biomedical purposes. By tuning the Manuka honey content in HG hydrogel scaffolds advantageous properties of hybrid scaffolds can be achieved for biomedical applications.
PB  - MDPI
T2  - Polymers
T1  - Manuka Honey/2-Hydroxyethyl Methacrylate/Gelatin Hybrid Hydrogel Scaffolds for Potential Tissue Regeneration
IS  - 3
SP  - 589
VL  - 15
DO  - 10.3390/polym15030589
ER  - 
@article{
author = "Tomić, Simonida Lj. and Vuković, Jovana S. and Babić Radić, Marija M. and Filipović, Vuk V. and Živanović, Dubravka P. and Nikolić, Miloš M. and Nikodinović-Runić, Jasmina",
year = "2023",
abstract = "Scaffolding biomaterials are gaining great importance due to their beneficial properties for medical purposes. Targeted biomaterial engineering strategies through the synergy of different material types can be applied to design hybrid scaffolding biomaterials with advantageous properties for biomedical applications. In our research, a novel combination of the bioactive agent Manuka honey (MHo) with 2-hydroxyethyl methacrylate/gelatin (HG) hydrogel scaffolds was created as an efficient bioactive platform for biomedical applications. The effects of Manuka honey content on structural characteristics, porosity, swelling performance, in vitro degradation, and in vitro biocompatibility (fibroblast and keratinocyte cell lines) of hybrid hydrogel scaffolds were studied using Fourier transform infrared spectroscopy, the gravimetric method, and in vitro MTT biocompatibility assays. The engineered hybrid hydrogel scaffolds show advantageous properties, including porosity in the range of 71.25% to 90.09%, specific pH- and temperature-dependent swelling performance, and convenient absorption capacity. In vitro degradation studies showed scaffold degradability ranging from 6.27% to 27.18% for four weeks. In vitro biocompatibility assays on healthy human fibroblast (MRC5 cells) and keratinocyte (HaCaT cells) cell lines by MTT tests showed that cell viability depends on the Manuka honey content loaded in the HG hydrogel scaffolds. A sample containing the highest Manuka honey content (30%) exhibited the best biocompatible properties. The obtained results reveal that the synergy of the bioactive agent, Manuka honey, with 2-hydroxyethyl methacrylate/gelatin as hybrid hydrogel scaffolds has potential for biomedical purposes. By tuning the Manuka honey content in HG hydrogel scaffolds advantageous properties of hybrid scaffolds can be achieved for biomedical applications.",
publisher = "MDPI",
journal = "Polymers",
title = "Manuka Honey/2-Hydroxyethyl Methacrylate/Gelatin Hybrid Hydrogel Scaffolds for Potential Tissue Regeneration",
number = "3",
pages = "589",
volume = "15",
doi = "10.3390/polym15030589"
}
Tomić, S. Lj., Vuković, J. S., Babić Radić, M. M., Filipović, V. V., Živanović, D. P., Nikolić, M. M.,& Nikodinović-Runić, J.. (2023). Manuka Honey/2-Hydroxyethyl Methacrylate/Gelatin Hybrid Hydrogel Scaffolds for Potential Tissue Regeneration. in Polymers
MDPI., 15(3), 589.
https://doi.org/10.3390/polym15030589
Tomić SL, Vuković JS, Babić Radić MM, Filipović VV, Živanović DP, Nikolić MM, Nikodinović-Runić J. Manuka Honey/2-Hydroxyethyl Methacrylate/Gelatin Hybrid Hydrogel Scaffolds for Potential Tissue Regeneration. in Polymers. 2023;15(3):589.
doi:10.3390/polym15030589 .
Tomić, Simonida Lj., Vuković, Jovana S., Babić Radić, Marija M., Filipović, Vuk V., Živanović, Dubravka P., Nikolić, Miloš M., Nikodinović-Runić, Jasmina, "Manuka Honey/2-Hydroxyethyl Methacrylate/Gelatin Hybrid Hydrogel Scaffolds for Potential Tissue Regeneration" in Polymers, 15, no. 3 (2023):589,
https://doi.org/10.3390/polym15030589 . .
1
3
3

2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform

Babić Radić, Marija M.; Filipović, Vuk V.; Vuković, Jovana S.; Vukomanović, Marija; Ilić-Tomić, Tatjana; Nikodinović-Runić, Jasmina; Tomić, Simonida Lj.

(MDPI, 2023)

TY  - JOUR
AU  - Babić Radić, Marija M.
AU  - Filipović, Vuk V.
AU  - Vuković, Jovana S.
AU  - Vukomanović, Marija
AU  - Ilić-Tomić, Tatjana
AU  - Nikodinović-Runić, Jasmina
AU  - Tomić, Simonida Lj.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6360
AB  - The idea of this study was to create a new scaffolding system based on 2-hydroxyethyl methacrylate, gelatin, and alginate that contains titanium(IV) oxide nanoparticles as a platform for the controlled release of the bioactive agent curcumin. The innovative strategy to develop hybrid scaffolds was the modified porogenation method. The effect of the scaffold composition on the chemical, morphology, porosity, mechanical, hydrophilicity, swelling, degradation, biocompatibility, loading, and release features of hybrid scaffolds was evaluated. A porous structure with interconnected pores in the range of 52.33–65.76%, favorable swelling capacity, fully hydrophilic surfaces, degradability to 45% for 6 months, curcumin loading efficiency above 96%, and favorable controlled release profiles were obtained. By applying four kinetic models of release, valuable parameters were obtained for the curcumin/PHEMA/gelatin/alginate/TiO2 release platform. Cytotoxicity test results depend on the composition of the scaffolds and showed satisfactory cell growth with visible cell accumulation on the hybrid surfaces. The constructed hybrid scaffolds have suitable high-performance properties, suggesting potential for further in vivo and clinical studies.
PB  - MDPI
T2  - Polymers
T1  - 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform
IS  - 7
SP  - 1643
VL  - 15
DO  - 10.3390/polym15071643
ER  - 
@article{
author = "Babić Radić, Marija M. and Filipović, Vuk V. and Vuković, Jovana S. and Vukomanović, Marija and Ilić-Tomić, Tatjana and Nikodinović-Runić, Jasmina and Tomić, Simonida Lj.",
year = "2023",
abstract = "The idea of this study was to create a new scaffolding system based on 2-hydroxyethyl methacrylate, gelatin, and alginate that contains titanium(IV) oxide nanoparticles as a platform for the controlled release of the bioactive agent curcumin. The innovative strategy to develop hybrid scaffolds was the modified porogenation method. The effect of the scaffold composition on the chemical, morphology, porosity, mechanical, hydrophilicity, swelling, degradation, biocompatibility, loading, and release features of hybrid scaffolds was evaluated. A porous structure with interconnected pores in the range of 52.33–65.76%, favorable swelling capacity, fully hydrophilic surfaces, degradability to 45% for 6 months, curcumin loading efficiency above 96%, and favorable controlled release profiles were obtained. By applying four kinetic models of release, valuable parameters were obtained for the curcumin/PHEMA/gelatin/alginate/TiO2 release platform. Cytotoxicity test results depend on the composition of the scaffolds and showed satisfactory cell growth with visible cell accumulation on the hybrid surfaces. The constructed hybrid scaffolds have suitable high-performance properties, suggesting potential for further in vivo and clinical studies.",
publisher = "MDPI",
journal = "Polymers",
title = "2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform",
number = "7",
pages = "1643",
volume = "15",
doi = "10.3390/polym15071643"
}
Babić Radić, M. M., Filipović, V. V., Vuković, J. S., Vukomanović, M., Ilić-Tomić, T., Nikodinović-Runić, J.,& Tomić, S. Lj.. (2023). 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform. in Polymers
MDPI., 15(7), 1643.
https://doi.org/10.3390/polym15071643
Babić Radić MM, Filipović VV, Vuković JS, Vukomanović M, Ilić-Tomić T, Nikodinović-Runić J, Tomić SL. 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform. in Polymers. 2023;15(7):1643.
doi:10.3390/polym15071643 .
Babić Radić, Marija M., Filipović, Vuk V., Vuković, Jovana S., Vukomanović, Marija, Ilić-Tomić, Tatjana, Nikodinović-Runić, Jasmina, Tomić, Simonida Lj., "2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform" in Polymers, 15, no. 7 (2023):1643,
https://doi.org/10.3390/polym15071643 . .
4
4

Alginate-Based Hydrogels and Scaffolds for Biomedical Applications

Tomić, Simonida Lj.; Babić Radić, Marija M.; Vuković, Jovana S.; Filipović, Vuk V.; Nikodinović-Runić, Jasmina; Vukomanović, Marija

(MDPI, 2023)

TY  - JOUR
AU  - Tomić, Simonida Lj.
AU  - Babić Radić, Marija M.
AU  - Vuković, Jovana S.
AU  - Filipović, Vuk V.
AU  - Nikodinović-Runić, Jasmina
AU  - Vukomanović, Marija
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6356
AB  - Alginate is a natural polymer of marine origin and, due to its exceptional properties, has great importance as an essential component for the preparation of hydrogels and scaffolds for biomedical applications. The design of biologically interactive hydrogels and scaffolds with advanced, expected and required properties are one of the key issues for successful outcomes in the healing of injured tissues. This review paper presents the multifunctional biomedical applications of alginate-based hydrogels and scaffolds in selected areas, highlighting the key effect of alginate and its influence on the essential properties of the selected biomedical applications. The first part covers scientific achievements for alginate in dermal tissue regeneration, drug delivery systems, cancer treatment, and antimicrobials. The second part is dedicated to our scientific results obtained for the research opus of hydrogel materials for scaffolds based on alginate in synergy with different materials (polymers and bioactive agents). Alginate has proved to be an exceptional polymer for combining with other naturally occurring and synthetic polymers, as well as loading bioactive therapeutic agents to achieve dermal, controlled drug delivery, cancer treatment, and antimicrobial purposes. Our research was based on combinations of alginate with gelatin, 2-hydroxyethyl methacrylate, apatite, graphene oxide and iron(III) oxide, as well as curcumin and resveratrol as bioactive agents. Important features of the prepared scaffolds, such as morphology, porosity, absorption capacity, hydrophilicity, mechanical properties, in vitro degradation, and in vitro and in vivo biocompatibility, have shown favorable properties for the aforementioned applications, and alginate has been an important link in achieving these properties. Alginate, as a component of these systems, proved to be an indispensable factor and played an excellent “role” in the optimal adjustment of the tested properties. This study provides valuable data and information for researchers and demonstrates the importance of the role of alginate as a biomaterial in the design of hydrogels and scaffolds that are powerful medical “tools” for biomedical applications.
PB  - MDPI
T2  - Marine Drugs
T1  - Alginate-Based Hydrogels and Scaffolds for Biomedical Applications
IS  - 3
SP  - 177
VL  - 21
DO  - 10.3390/md21030177
ER  - 
@article{
author = "Tomić, Simonida Lj. and Babić Radić, Marija M. and Vuković, Jovana S. and Filipović, Vuk V. and Nikodinović-Runić, Jasmina and Vukomanović, Marija",
year = "2023",
abstract = "Alginate is a natural polymer of marine origin and, due to its exceptional properties, has great importance as an essential component for the preparation of hydrogels and scaffolds for biomedical applications. The design of biologically interactive hydrogels and scaffolds with advanced, expected and required properties are one of the key issues for successful outcomes in the healing of injured tissues. This review paper presents the multifunctional biomedical applications of alginate-based hydrogels and scaffolds in selected areas, highlighting the key effect of alginate and its influence on the essential properties of the selected biomedical applications. The first part covers scientific achievements for alginate in dermal tissue regeneration, drug delivery systems, cancer treatment, and antimicrobials. The second part is dedicated to our scientific results obtained for the research opus of hydrogel materials for scaffolds based on alginate in synergy with different materials (polymers and bioactive agents). Alginate has proved to be an exceptional polymer for combining with other naturally occurring and synthetic polymers, as well as loading bioactive therapeutic agents to achieve dermal, controlled drug delivery, cancer treatment, and antimicrobial purposes. Our research was based on combinations of alginate with gelatin, 2-hydroxyethyl methacrylate, apatite, graphene oxide and iron(III) oxide, as well as curcumin and resveratrol as bioactive agents. Important features of the prepared scaffolds, such as morphology, porosity, absorption capacity, hydrophilicity, mechanical properties, in vitro degradation, and in vitro and in vivo biocompatibility, have shown favorable properties for the aforementioned applications, and alginate has been an important link in achieving these properties. Alginate, as a component of these systems, proved to be an indispensable factor and played an excellent “role” in the optimal adjustment of the tested properties. This study provides valuable data and information for researchers and demonstrates the importance of the role of alginate as a biomaterial in the design of hydrogels and scaffolds that are powerful medical “tools” for biomedical applications.",
publisher = "MDPI",
journal = "Marine Drugs",
title = "Alginate-Based Hydrogels and Scaffolds for Biomedical Applications",
number = "3",
pages = "177",
volume = "21",
doi = "10.3390/md21030177"
}
Tomić, S. Lj., Babić Radić, M. M., Vuković, J. S., Filipović, V. V., Nikodinović-Runić, J.,& Vukomanović, M.. (2023). Alginate-Based Hydrogels and Scaffolds for Biomedical Applications. in Marine Drugs
MDPI., 21(3), 177.
https://doi.org/10.3390/md21030177
Tomić SL, Babić Radić MM, Vuković JS, Filipović VV, Nikodinović-Runić J, Vukomanović M. Alginate-Based Hydrogels and Scaffolds for Biomedical Applications. in Marine Drugs. 2023;21(3):177.
doi:10.3390/md21030177 .
Tomić, Simonida Lj., Babić Radić, Marija M., Vuković, Jovana S., Filipović, Vuk V., Nikodinović-Runić, Jasmina, Vukomanović, Marija, "Alginate-Based Hydrogels and Scaffolds for Biomedical Applications" in Marine Drugs, 21, no. 3 (2023):177,
https://doi.org/10.3390/md21030177 . .
17
12

Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(beta-amino esters), and Hydroxyapatite

Filipović, Vuk V.; Babić Radić, Marija M.; Vuković, Jovana S.; Vukomanović, Marija; Rubert, Marina; Hofmann, Sandra; Müller, Ralph; Tomić, Simonida Lj.

(2022)

TY  - JOUR
AU  - Filipović, Vuk V.
AU  - Babić Radić, Marija M.
AU  - Vuković, Jovana S.
AU  - Vukomanović, Marija
AU  - Rubert, Marina
AU  - Hofmann, Sandra
AU  - Müller, Ralph
AU  - Tomić, Simonida Lj.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5018
AB  - New composite 3D scaffolds were developed as a combination of synthetic polymer, poly(2-hydroxyethyl methacrylate) (PHEMA), and a natural polymer, gelatin, with a ceramic component, nanohydroxyapatite (ID nHAp) dopped with metal ions. The combination of a synthetic polymer, to be able to tune the structure and the physicochemical and mechanical properties, and a natural polymer, to ensure the specific biological functions of the scaffold, with inorganic filler was applied. The goal was to make a new material with superior properties for applications in the biomedical field which mimics as closely as possible the native bone extracellular matrix (ECM). Biodegradable PHEMA hydrogel was obtained by crosslinking HEMA by poly(beta-amino esters) (PBAE). The scaffold's physicochemical and mechanical properties, in vitro degradation, and biological activity were assessed so to study the effects of the incorporation of nHAp in the (PHEMA/PBAE/gelatin) hydrogel, as well as the effect of the different pore-forming methods. Cryogels had higher elasticity, swelling, porosity, and percent of mass loss during degradation than the samples obtained by porogenation. The composite scaffolds had a higher mechanical strength, 10.14 MPa for the porogenated samples and 5.87 MPa for the cryogels, but a slightly lower degree of swelling, percent of mass loss, and porosity than the hybrid ones. All the scaffolds were nontoxic and had a high cell adhesion rate, which was 15-20% higher in the composite samples. Cell metabolic activity after 2 and 7 days of culture was higher in the composites, although not statistically different. After 28 days, cell metabolic activity was similar in all scaffolds and the TCP control. No effect of integrating nHAp into the scaffolds on osteogenic cell differentiation could be observed. Synergetic effects occurred which influenced the mechanical behavior, structure, physicochemical properties, and interactions with biological species.
T2  - Polymers
T1  - Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(beta-amino esters), and Hydroxyapatite
IS  - 1
SP  - 18
VL  - 14
DO  - 10.3390/polym14010018
ER  - 
@article{
author = "Filipović, Vuk V. and Babić Radić, Marija M. and Vuković, Jovana S. and Vukomanović, Marija and Rubert, Marina and Hofmann, Sandra and Müller, Ralph and Tomić, Simonida Lj.",
year = "2022",
abstract = "New composite 3D scaffolds were developed as a combination of synthetic polymer, poly(2-hydroxyethyl methacrylate) (PHEMA), and a natural polymer, gelatin, with a ceramic component, nanohydroxyapatite (ID nHAp) dopped with metal ions. The combination of a synthetic polymer, to be able to tune the structure and the physicochemical and mechanical properties, and a natural polymer, to ensure the specific biological functions of the scaffold, with inorganic filler was applied. The goal was to make a new material with superior properties for applications in the biomedical field which mimics as closely as possible the native bone extracellular matrix (ECM). Biodegradable PHEMA hydrogel was obtained by crosslinking HEMA by poly(beta-amino esters) (PBAE). The scaffold's physicochemical and mechanical properties, in vitro degradation, and biological activity were assessed so to study the effects of the incorporation of nHAp in the (PHEMA/PBAE/gelatin) hydrogel, as well as the effect of the different pore-forming methods. Cryogels had higher elasticity, swelling, porosity, and percent of mass loss during degradation than the samples obtained by porogenation. The composite scaffolds had a higher mechanical strength, 10.14 MPa for the porogenated samples and 5.87 MPa for the cryogels, but a slightly lower degree of swelling, percent of mass loss, and porosity than the hybrid ones. All the scaffolds were nontoxic and had a high cell adhesion rate, which was 15-20% higher in the composite samples. Cell metabolic activity after 2 and 7 days of culture was higher in the composites, although not statistically different. After 28 days, cell metabolic activity was similar in all scaffolds and the TCP control. No effect of integrating nHAp into the scaffolds on osteogenic cell differentiation could be observed. Synergetic effects occurred which influenced the mechanical behavior, structure, physicochemical properties, and interactions with biological species.",
journal = "Polymers",
title = "Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(beta-amino esters), and Hydroxyapatite",
number = "1",
pages = "18",
volume = "14",
doi = "10.3390/polym14010018"
}
Filipović, V. V., Babić Radić, M. M., Vuković, J. S., Vukomanović, M., Rubert, M., Hofmann, S., Müller, R.,& Tomić, S. Lj.. (2022). Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(beta-amino esters), and Hydroxyapatite. in Polymers, 14(1), 18.
https://doi.org/10.3390/polym14010018
Filipović VV, Babić Radić MM, Vuković JS, Vukomanović M, Rubert M, Hofmann S, Müller R, Tomić SL. Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(beta-amino esters), and Hydroxyapatite. in Polymers. 2022;14(1):18.
doi:10.3390/polym14010018 .
Filipović, Vuk V., Babić Radić, Marija M., Vuković, Jovana S., Vukomanović, Marija, Rubert, Marina, Hofmann, Sandra, Müller, Ralph, Tomić, Simonida Lj., "Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(beta-amino esters), and Hydroxyapatite" in Polymers, 14, no. 1 (2022):18,
https://doi.org/10.3390/polym14010018 . .
10
9

Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials

Babić Radić, Marija M.; Filipovic, Vuk V.; Vukomanovic, Marija; Nikodinović-Runić, Jasmina; Tomić, Simonida

(2022)

TY  - JOUR
AU  - Babić Radić, Marija M.
AU  - Filipovic, Vuk V.
AU  - Vukomanovic, Marija
AU  - Nikodinović-Runić, Jasmina
AU  - Tomić, Simonida
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5023
AB  - The design and evaluation of novel 2-hydroxyethyl methacrylate/gelatin/alginate/graphene oxide hydrogels as innovative scaffolding biomaterials, which concurrently are the suitable drug delivery carrier, was proposed. The hydrogels were prepared by the adapted porogen leaching method; this is also the first time this method has been used to incorporate nanocolloidal graphene oxide through the hydrogel and simultaneously form porous structures. The effects of a material's composition on its chemical, morphological, mechanical, and swelling properties, as well as on cell viability and in vitro degradation, were assessed using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), measurements of Young's modulus, gravimetric method and MTT test, respectively. The engineered hydrogels show good swelling capacity, fully hydrophilic surfaces, tunable porosity (from 56 to 76%) and mechanical properties (from 1.69 to 4.78 MPa), curcumin entrapment efficiency above 99% and excellent curcumin release performances. In vitro cytotoxicity on healthy human fibroblast (MRC5 cells) by MTT test reveal that the materials are nontoxic and biocompatible, proposing novel hydrogels for in vivo clinical evaluation to optimize tissue regeneration treatments by coupling the hydrogels with cells and different active agents to create material/biofactor hybrids with new levels of biofunctionality.
T2  - Gels
T1  - Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials
IS  - 1
SP  - 22
VL  - 8
DO  - 10.3390/gels8010022
ER  - 
@article{
author = "Babić Radić, Marija M. and Filipovic, Vuk V. and Vukomanovic, Marija and Nikodinović-Runić, Jasmina and Tomić, Simonida",
year = "2022",
abstract = "The design and evaluation of novel 2-hydroxyethyl methacrylate/gelatin/alginate/graphene oxide hydrogels as innovative scaffolding biomaterials, which concurrently are the suitable drug delivery carrier, was proposed. The hydrogels were prepared by the adapted porogen leaching method; this is also the first time this method has been used to incorporate nanocolloidal graphene oxide through the hydrogel and simultaneously form porous structures. The effects of a material's composition on its chemical, morphological, mechanical, and swelling properties, as well as on cell viability and in vitro degradation, were assessed using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), measurements of Young's modulus, gravimetric method and MTT test, respectively. The engineered hydrogels show good swelling capacity, fully hydrophilic surfaces, tunable porosity (from 56 to 76%) and mechanical properties (from 1.69 to 4.78 MPa), curcumin entrapment efficiency above 99% and excellent curcumin release performances. In vitro cytotoxicity on healthy human fibroblast (MRC5 cells) by MTT test reveal that the materials are nontoxic and biocompatible, proposing novel hydrogels for in vivo clinical evaluation to optimize tissue regeneration treatments by coupling the hydrogels with cells and different active agents to create material/biofactor hybrids with new levels of biofunctionality.",
journal = "Gels",
title = "Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials",
number = "1",
pages = "22",
volume = "8",
doi = "10.3390/gels8010022"
}
Babić Radić, M. M., Filipovic, V. V., Vukomanovic, M., Nikodinović-Runić, J.,& Tomić, S.. (2022). Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials. in Gels, 8(1), 22.
https://doi.org/10.3390/gels8010022
Babić Radić MM, Filipovic VV, Vukomanovic M, Nikodinović-Runić J, Tomić S. Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials. in Gels. 2022;8(1):22.
doi:10.3390/gels8010022 .
Babić Radić, Marija M., Filipovic, Vuk V., Vukomanovic, Marija, Nikodinović-Runić, Jasmina, Tomić, Simonida, "Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials" in Gels, 8, no. 1 (2022):22,
https://doi.org/10.3390/gels8010022 . .
16
15

Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials

Babić Radić, Marija M.; Filipović, Vuk V.; Vuković, Jovana S.; Vukomanović, Marija; Rubert, Marina; Hofmann, Sandra; Müller, Ralph; Tomić, Simonida Lj.

(MDPI, 2022)

TY  - JOUR
AU  - Babić Radić, Marija M.
AU  - Filipović, Vuk V.
AU  - Vuković, Jovana S.
AU  - Vukomanović, Marija
AU  - Rubert, Marina
AU  - Hofmann, Sandra
AU  - Müller, Ralph
AU  - Tomić, Simonida Lj.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5201
AB  - Our goal was to create bioimitated scaffolding materials for biomedical purposes. The guiding idea was that we used an interpenetrating structural hierarchy of natural extracellular matrix as a “pattern” to design hydrogel scaffolds that show favorable properties for tissue regeneration. Polymeric hydrogel scaffolds are made in a simple, environmentally friendly way without additional functionalization. Gelatin and 2-hydroxyethyl methacrylate were selected to prepare interpenetrating polymeric networks and linear alginate chains were added as an interpenetrant to study their influence on the scaffold’s functionalities. Cryogelation and porogenation methods were used to obtain the designed scaffolding biomaterials. The scaffold’s structural, morphological, and mechanical properties, in vitro degradation, and cell viability properties were assessed to study the effects of the preparation method and alginate loading. Apatite as an inorganic agent was incorporated into cryogelated scaffolds to perform an extensive biological assay. Cryogelated scaffolds possess superior functionalities essential for tissue regeneration: fully hydrophilicity, degradability and mechanical features (2.08–9.75 MPa), and an optimal LDH activity. Furthermore, cryogelated scaffolds loaded with apatite showed good cell adhesion capacity, biocompatibility, and non-toxic behavior. All scaffolds performed equally in terms of metabolic activity and osteoconductivity. Cryogelated scaffolds with/without HAp could represent a new advance to promote osteoconductivity and enhance hard tissue repair. The obtained series of scaffolding biomaterials described here can provide a wide range of potential applications in the area of biomedical engineering.
PB  - MDPI
T2  - Polymers
T1  - Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials
IS  - 15
SP  - 3112
VL  - 14
DO  - 10.3390/polym14153112
ER  - 
@article{
author = "Babić Radić, Marija M. and Filipović, Vuk V. and Vuković, Jovana S. and Vukomanović, Marija and Rubert, Marina and Hofmann, Sandra and Müller, Ralph and Tomić, Simonida Lj.",
year = "2022",
abstract = "Our goal was to create bioimitated scaffolding materials for biomedical purposes. The guiding idea was that we used an interpenetrating structural hierarchy of natural extracellular matrix as a “pattern” to design hydrogel scaffolds that show favorable properties for tissue regeneration. Polymeric hydrogel scaffolds are made in a simple, environmentally friendly way without additional functionalization. Gelatin and 2-hydroxyethyl methacrylate were selected to prepare interpenetrating polymeric networks and linear alginate chains were added as an interpenetrant to study their influence on the scaffold’s functionalities. Cryogelation and porogenation methods were used to obtain the designed scaffolding biomaterials. The scaffold’s structural, morphological, and mechanical properties, in vitro degradation, and cell viability properties were assessed to study the effects of the preparation method and alginate loading. Apatite as an inorganic agent was incorporated into cryogelated scaffolds to perform an extensive biological assay. Cryogelated scaffolds possess superior functionalities essential for tissue regeneration: fully hydrophilicity, degradability and mechanical features (2.08–9.75 MPa), and an optimal LDH activity. Furthermore, cryogelated scaffolds loaded with apatite showed good cell adhesion capacity, biocompatibility, and non-toxic behavior. All scaffolds performed equally in terms of metabolic activity and osteoconductivity. Cryogelated scaffolds with/without HAp could represent a new advance to promote osteoconductivity and enhance hard tissue repair. The obtained series of scaffolding biomaterials described here can provide a wide range of potential applications in the area of biomedical engineering.",
publisher = "MDPI",
journal = "Polymers",
title = "Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials",
number = "15",
pages = "3112",
volume = "14",
doi = "10.3390/polym14153112"
}
Babić Radić, M. M., Filipović, V. V., Vuković, J. S., Vukomanović, M., Rubert, M., Hofmann, S., Müller, R.,& Tomić, S. Lj.. (2022). Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials. in Polymers
MDPI., 14(15), 3112.
https://doi.org/10.3390/polym14153112
Babić Radić MM, Filipović VV, Vuković JS, Vukomanović M, Rubert M, Hofmann S, Müller R, Tomić SL. Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials. in Polymers. 2022;14(15):3112.
doi:10.3390/polym14153112 .
Babić Radić, Marija M., Filipović, Vuk V., Vuković, Jovana S., Vukomanović, Marija, Rubert, Marina, Hofmann, Sandra, Müller, Ralph, Tomić, Simonida Lj., "Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials" in Polymers, 14, no. 15 (2022):3112,
https://doi.org/10.3390/polym14153112 . .
7
5

In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin IPN Hydrogel Scaffolds

Vuković, Jovana S.; Filipović, Vuk V.; Babić Radić, Marija M.; Vukomanović, Marija; Milivojević, Dušan; Ilić-Tomić, Tatjana; Nikodinović-Runić, Jasmina; Tomić, Simonida Lj.

(MDPI, 2022)

TY  - JOUR
AU  - Vuković, Jovana S.
AU  - Filipović, Vuk V.
AU  - Babić Radić, Marija M.
AU  - Vukomanović, Marija
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Nikodinović-Runić, Jasmina
AU  - Tomić, Simonida Lj.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5242
AB  - Scaffold hydrogel biomaterials designed to have advantageous biofunctional properties, which can be applied for controlled bioactive agent release, represent an important concept in biomedical tissue engineering. Our goal was to create scaffolding materials that mimic living tissue for biomedical utilization. In this study, two novel series of interpenetrating hydrogel networks (IPNs) based on 2-hydroxyethyl methacrylate/gelatin and 2-hydroxyethyl methacrylate/alginate were crosslinked using N-ethyl-N′-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Characterization included examining the effects of crosslinker type and concentration on structure, morphological and mechanical properties, in vitro swelling, hydrophilicity as well as on the in vitro cell viability (fibroblast cells) and in vivo (Caenorhabditis elegans) interactions of novel biomaterials. The engineered IPN hydrogel scaffolds show an interconnected pore morphology and porosity range of 62.36 to 85.20%, favorable in vitro swelling capacity, full hydrophilicity, and Young’s modulus values in the range of 1.40 to 7.50 MPa. In vitro assay on healthy human fibroblast (MRC5 cells) by MTT test and in vivo (Caenorhabditis elegans) survival assays show the advantageous biocompatible properties of novel IPN hydrogel scaffolds. Furthermore, in vitro controlled release study of the therapeutic agent resveratrol showed that these novel scaffolding systems are suitable controlled release platforms. The results revealed that the use of EDC and the combination of EDC/NHS crosslinkers can be applied to prepare and tune the properties of the IPN 2-hydroxyethyl methacrylate/alginate and 2-hydroxyethyl methacrylate/gelatin hydrogel scaffolds series, which have shown great potential for biomedical engineering applications.
PB  - MDPI
T2  - Polymers
T1  - In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin IPN Hydrogel Scaffolds
IS  - 20
SP  - 4459
VL  - 14
DO  - 10.3390/polym14204459
ER  - 
@article{
author = "Vuković, Jovana S. and Filipović, Vuk V. and Babić Radić, Marija M. and Vukomanović, Marija and Milivojević, Dušan and Ilić-Tomić, Tatjana and Nikodinović-Runić, Jasmina and Tomić, Simonida Lj.",
year = "2022",
abstract = "Scaffold hydrogel biomaterials designed to have advantageous biofunctional properties, which can be applied for controlled bioactive agent release, represent an important concept in biomedical tissue engineering. Our goal was to create scaffolding materials that mimic living tissue for biomedical utilization. In this study, two novel series of interpenetrating hydrogel networks (IPNs) based on 2-hydroxyethyl methacrylate/gelatin and 2-hydroxyethyl methacrylate/alginate were crosslinked using N-ethyl-N′-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Characterization included examining the effects of crosslinker type and concentration on structure, morphological and mechanical properties, in vitro swelling, hydrophilicity as well as on the in vitro cell viability (fibroblast cells) and in vivo (Caenorhabditis elegans) interactions of novel biomaterials. The engineered IPN hydrogel scaffolds show an interconnected pore morphology and porosity range of 62.36 to 85.20%, favorable in vitro swelling capacity, full hydrophilicity, and Young’s modulus values in the range of 1.40 to 7.50 MPa. In vitro assay on healthy human fibroblast (MRC5 cells) by MTT test and in vivo (Caenorhabditis elegans) survival assays show the advantageous biocompatible properties of novel IPN hydrogel scaffolds. Furthermore, in vitro controlled release study of the therapeutic agent resveratrol showed that these novel scaffolding systems are suitable controlled release platforms. The results revealed that the use of EDC and the combination of EDC/NHS crosslinkers can be applied to prepare and tune the properties of the IPN 2-hydroxyethyl methacrylate/alginate and 2-hydroxyethyl methacrylate/gelatin hydrogel scaffolds series, which have shown great potential for biomedical engineering applications.",
publisher = "MDPI",
journal = "Polymers",
title = "In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin IPN Hydrogel Scaffolds",
number = "20",
pages = "4459",
volume = "14",
doi = "10.3390/polym14204459"
}
Vuković, J. S., Filipović, V. V., Babić Radić, M. M., Vukomanović, M., Milivojević, D., Ilić-Tomić, T., Nikodinović-Runić, J.,& Tomić, S. Lj.. (2022). In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin IPN Hydrogel Scaffolds. in Polymers
MDPI., 14(20), 4459.
https://doi.org/10.3390/polym14204459
Vuković JS, Filipović VV, Babić Radić MM, Vukomanović M, Milivojević D, Ilić-Tomić T, Nikodinović-Runić J, Tomić SL. In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin IPN Hydrogel Scaffolds. in Polymers. 2022;14(20):4459.
doi:10.3390/polym14204459 .
Vuković, Jovana S., Filipović, Vuk V., Babić Radić, Marija M., Vukomanović, Marija, Milivojević, Dušan, Ilić-Tomić, Tatjana, Nikodinović-Runić, Jasmina, Tomić, Simonida Lj., "In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin IPN Hydrogel Scaffolds" in Polymers, 14, no. 20 (2022):4459,
https://doi.org/10.3390/polym14204459 . .
1
8
6

Novel Hydrogel Scaffolds Based on Alginate, Gelatin, 2-Hydroxyethyl Methacrylate, and Hydroxyapatite

Tomić, Simonida; Nikodinović-Runić, Jasmina; Vukomanovic, Marija; Babić, Marija M.; Vuković, Jovana

(2021)

TY  - JOUR
AU  - Tomić, Simonida
AU  - Nikodinović-Runić, Jasmina
AU  - Vukomanovic, Marija
AU  - Babić, Marija M.
AU  - Vuković, Jovana
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4926
AB  - Hydrogel scaffolding biomaterials are one of the most attractive polymeric biomaterials for regenerative engineering and can be engineered into tissue mimetic scaffolds to support cell growth due to their similarity to the native extracellular matrix. The novel, versatile hydrogel scaffolds based on alginate, gelatin, 2-hydroxyethyl methacrylate, and inorganic agent hydroxyapatite were prepared by modified cryogelation. The chemical composition, morphology, porosity, mechanical properties, effects on cell viability, in vitro degradation, in vitro and in vivo biocompatibility were tested to correlate the material's composition with the corresponding properties. Scaffolds showed an interconnected porous microstructure, satisfactory mechanical strength, favorable hydrophilicity, degradation, and suitable in vitro and in vivo biocompatible behavior. Materials showed good biocompatibility with healthy human fibroblast in cell culture, as well as in vivo with zebrafish assay, suggesting newly synthesized hydrogel scaffolds as a potential new generation of hydrogel scaffolding biomaterials with tunable properties for versatile biomedical applications and tissue regeneration.
T2  - Polymers
T1  - Novel Hydrogel Scaffolds Based on Alginate, Gelatin, 2-Hydroxyethyl Methacrylate, and Hydroxyapatite
IS  - 6
SP  - 932
VL  - 13
DO  - 10.3390/polym13060932
ER  - 
@article{
author = "Tomić, Simonida and Nikodinović-Runić, Jasmina and Vukomanovic, Marija and Babić, Marija M. and Vuković, Jovana",
year = "2021",
abstract = "Hydrogel scaffolding biomaterials are one of the most attractive polymeric biomaterials for regenerative engineering and can be engineered into tissue mimetic scaffolds to support cell growth due to their similarity to the native extracellular matrix. The novel, versatile hydrogel scaffolds based on alginate, gelatin, 2-hydroxyethyl methacrylate, and inorganic agent hydroxyapatite were prepared by modified cryogelation. The chemical composition, morphology, porosity, mechanical properties, effects on cell viability, in vitro degradation, in vitro and in vivo biocompatibility were tested to correlate the material's composition with the corresponding properties. Scaffolds showed an interconnected porous microstructure, satisfactory mechanical strength, favorable hydrophilicity, degradation, and suitable in vitro and in vivo biocompatible behavior. Materials showed good biocompatibility with healthy human fibroblast in cell culture, as well as in vivo with zebrafish assay, suggesting newly synthesized hydrogel scaffolds as a potential new generation of hydrogel scaffolding biomaterials with tunable properties for versatile biomedical applications and tissue regeneration.",
journal = "Polymers",
title = "Novel Hydrogel Scaffolds Based on Alginate, Gelatin, 2-Hydroxyethyl Methacrylate, and Hydroxyapatite",
number = "6",
pages = "932",
volume = "13",
doi = "10.3390/polym13060932"
}
Tomić, S., Nikodinović-Runić, J., Vukomanovic, M., Babić, M. M.,& Vuković, J.. (2021). Novel Hydrogel Scaffolds Based on Alginate, Gelatin, 2-Hydroxyethyl Methacrylate, and Hydroxyapatite. in Polymers, 13(6), 932.
https://doi.org/10.3390/polym13060932
Tomić S, Nikodinović-Runić J, Vukomanovic M, Babić MM, Vuković J. Novel Hydrogel Scaffolds Based on Alginate, Gelatin, 2-Hydroxyethyl Methacrylate, and Hydroxyapatite. in Polymers. 2021;13(6):932.
doi:10.3390/polym13060932 .
Tomić, Simonida, Nikodinović-Runić, Jasmina, Vukomanovic, Marija, Babić, Marija M., Vuković, Jovana, "Novel Hydrogel Scaffolds Based on Alginate, Gelatin, 2-Hydroxyethyl Methacrylate, and Hydroxyapatite" in Polymers, 13, no. 6 (2021):932,
https://doi.org/10.3390/polym13060932 . .
18
1
16

Controlled Curcumin Release from Hydrogel Scaffold Platform Based on 2-Hydroxyethyl Methacrylate/Gelatin/Alginate/Iron(III) Oxide

Babić, Marija; Vukomanović, Marija; Stefanić, Martin; Nikodinović-Runić, Jasmina; Tomić, Simonida

(Wiley-VCH Verlag Gmbh, Weinheim, 2020)

TY  - JOUR
AU  - Babić, Marija
AU  - Vukomanović, Marija
AU  - Stefanić, Martin
AU  - Nikodinović-Runić, Jasmina
AU  - Tomić, Simonida
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4358
AB  - The strategy of combining polymers of natural and synthetic origin with inorganic components to use their unique synergistic effect for the development of the novel, sophisticated, and efficient 3D polymeric biomaterials, whose structure and properties mimic the extracellular matrix and simultaneously represent the suitable hydrogel platform for controlled drug release, is presented. The novel versatile 2-hydroxyethyl methacrylate/gelatin/alginate/iron(III) oxide based hydrogels are prepared by a simple but effective method-modified porogenation. Chemical composition, morphology, swelling capacity, porosity, mechanical properties, effects on cell viability, and in vitro degradation are tested to correlate the material's composition with the corresponding properties. The hydrogels show an interconnected porous microstructure, satisfactory mechanical strength, pH-sensitivity, and favorable curcumin release performances. The materials show good compatibility with healthy human fibroblast in cell culture judged by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, suggesting newly synthesized hydrogels as potentially a new generation of 3D biomaterials with tunable properties for versatile biomedical and pharmaceutical applications.
PB  - Wiley-VCH Verlag Gmbh, Weinheim
T2  - Macromolecular Chemistry and Physics
T1  - Controlled Curcumin Release from Hydrogel Scaffold Platform Based on 2-Hydroxyethyl Methacrylate/Gelatin/Alginate/Iron(III) Oxide
IS  - 20
SP  - 2000186
VL  - 221
DO  - 10.1002/macp.202000186
ER  - 
@article{
author = "Babić, Marija and Vukomanović, Marija and Stefanić, Martin and Nikodinović-Runić, Jasmina and Tomić, Simonida",
year = "2020",
abstract = "The strategy of combining polymers of natural and synthetic origin with inorganic components to use their unique synergistic effect for the development of the novel, sophisticated, and efficient 3D polymeric biomaterials, whose structure and properties mimic the extracellular matrix and simultaneously represent the suitable hydrogel platform for controlled drug release, is presented. The novel versatile 2-hydroxyethyl methacrylate/gelatin/alginate/iron(III) oxide based hydrogels are prepared by a simple but effective method-modified porogenation. Chemical composition, morphology, swelling capacity, porosity, mechanical properties, effects on cell viability, and in vitro degradation are tested to correlate the material's composition with the corresponding properties. The hydrogels show an interconnected porous microstructure, satisfactory mechanical strength, pH-sensitivity, and favorable curcumin release performances. The materials show good compatibility with healthy human fibroblast in cell culture judged by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, suggesting newly synthesized hydrogels as potentially a new generation of 3D biomaterials with tunable properties for versatile biomedical and pharmaceutical applications.",
publisher = "Wiley-VCH Verlag Gmbh, Weinheim",
journal = "Macromolecular Chemistry and Physics",
title = "Controlled Curcumin Release from Hydrogel Scaffold Platform Based on 2-Hydroxyethyl Methacrylate/Gelatin/Alginate/Iron(III) Oxide",
number = "20",
pages = "2000186",
volume = "221",
doi = "10.1002/macp.202000186"
}
Babić, M., Vukomanović, M., Stefanić, M., Nikodinović-Runić, J.,& Tomić, S.. (2020). Controlled Curcumin Release from Hydrogel Scaffold Platform Based on 2-Hydroxyethyl Methacrylate/Gelatin/Alginate/Iron(III) Oxide. in Macromolecular Chemistry and Physics
Wiley-VCH Verlag Gmbh, Weinheim., 221(20), 2000186.
https://doi.org/10.1002/macp.202000186
Babić M, Vukomanović M, Stefanić M, Nikodinović-Runić J, Tomić S. Controlled Curcumin Release from Hydrogel Scaffold Platform Based on 2-Hydroxyethyl Methacrylate/Gelatin/Alginate/Iron(III) Oxide. in Macromolecular Chemistry and Physics. 2020;221(20):2000186.
doi:10.1002/macp.202000186 .
Babić, Marija, Vukomanović, Marija, Stefanić, Martin, Nikodinović-Runić, Jasmina, Tomić, Simonida, "Controlled Curcumin Release from Hydrogel Scaffold Platform Based on 2-Hydroxyethyl Methacrylate/Gelatin/Alginate/Iron(III) Oxide" in Macromolecular Chemistry and Physics, 221, no. 20 (2020):2000186,
https://doi.org/10.1002/macp.202000186 . .
1
11
3
10

Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties

Tomić, Simonida; Babić, Marija; Vuković, Jovana; Đokić, Lidija; Pavić, Aleksandar; Nikodinović-Runić, Jasmina

(Springer, Dordrecht, 2020)

TY  - JOUR
AU  - Tomić, Simonida
AU  - Babić, Marija
AU  - Vuković, Jovana
AU  - Đokić, Lidija
AU  - Pavić, Aleksandar
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4379
AB  - We have studied the effect of compositions and methods of preparation on the physico-chemical and biocompatible behavior of the hydrogel matrices. Hydrogel matrices are synthesized by free radical polymerization of 2-hydroxyethyl methacrylate net and with gelatin. Highly porous hydrogel structures were obtained by porogenation, and by cryogenic treatment followed by freeze-drying. All samples were characterized for structural, morphological, absorption, degradation and in vitro (healthy human fibroblast cell line) and in vivo (zebrafishDanio rerio) biocompatible properties. The obtained results show that cryo samples, especially with gelatin show better, favorable absorption, morphological and biocompatible properties in comparison with PHEMA samples, which makes these materials highly attractive for biomedical uses.
PB  - Springer, Dordrecht
T2  - Journal of Polymer Research
T1  - Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties
IS  - 10
SP  - 305
VL  - 27
DO  - 10.1007/s10965-020-02219-w
ER  - 
@article{
author = "Tomić, Simonida and Babić, Marija and Vuković, Jovana and Đokić, Lidija and Pavić, Aleksandar and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "We have studied the effect of compositions and methods of preparation on the physico-chemical and biocompatible behavior of the hydrogel matrices. Hydrogel matrices are synthesized by free radical polymerization of 2-hydroxyethyl methacrylate net and with gelatin. Highly porous hydrogel structures were obtained by porogenation, and by cryogenic treatment followed by freeze-drying. All samples were characterized for structural, morphological, absorption, degradation and in vitro (healthy human fibroblast cell line) and in vivo (zebrafishDanio rerio) biocompatible properties. The obtained results show that cryo samples, especially with gelatin show better, favorable absorption, morphological and biocompatible properties in comparison with PHEMA samples, which makes these materials highly attractive for biomedical uses.",
publisher = "Springer, Dordrecht",
journal = "Journal of Polymer Research",
title = "Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties",
number = "10",
pages = "305",
volume = "27",
doi = "10.1007/s10965-020-02219-w"
}
Tomić, S., Babić, M., Vuković, J., Đokić, L., Pavić, A.,& Nikodinović-Runić, J.. (2020). Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties. in Journal of Polymer Research
Springer, Dordrecht., 27(10), 305.
https://doi.org/10.1007/s10965-020-02219-w
Tomić S, Babić M, Vuković J, Đokić L, Pavić A, Nikodinović-Runić J. Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties. in Journal of Polymer Research. 2020;27(10):305.
doi:10.1007/s10965-020-02219-w .
Tomić, Simonida, Babić, Marija, Vuković, Jovana, Đokić, Lidija, Pavić, Aleksandar, Nikodinović-Runić, Jasmina, "Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties" in Journal of Polymer Research, 27, no. 10 (2020):305,
https://doi.org/10.1007/s10965-020-02219-w . .
2
2

Semi-interpenetrating networks based on (Meth)acrylate, itaconic acid, and poly(vinyl pyrrolidone) hydrogels for biomedical applications

Babić, Marija; Tomić, Simonida

(Springer Singapore, 2020)

TY  - CHAP
AU  - Babić, Marija
AU  - Tomić, Simonida
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4581
AB  - In this study, three series of semi-interpenetrating networks were synthesized based on 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), itaconic acid (IA), and poly(vinyl pyrrolidone) (PVP) as interpenetrating polymer. Syntheses were performed by free radical cross-linking/polymerization reaction. The first series represented hydrogels based on 2-hydroxyethyl methacrylate, poly(vinyl pyrrolidone), and itaconic acid, varying of poly(vinyl pyrrolidone) content. The second series of samples were hydrogels based on 2-hydroxyethyl acrylate, poly(vinyl pyrrolidone), and itaconic acid, varying of itaconic acid content. The third series of synthesized samples were based on 2-hydroxyethyl acrylate, poly(vinyl pyrrolidone), and itaconic acid, varying of poly(vinyl pyrrolidone) content. The content of component was varied in order to examine the influence on the structure, pH- and temperature-sensitive swelling-“intelligent” behavior, mechanical properties of hydrogels, as well as antimicrobial and biocompatible potential of hydrogels. Poly(vinyl pyrrolidone) is a linear polymer, which shows satisfactory biocompatibility and hydrophilicity. Itaconic acid gives pH-sensitive-“intelligent” behavior and better hydrophilicity. Hydrogels based on HEMA and HEA show excellent biocompatibility and satisfactory hydrophilicity. All three series of samples showed satisfactory cytocompatibility, as well as the antimicrobial potential tested against most common microbes. The results obtained and presented in this research can contribute to the development of new efficient polymeric biomaterials for biomedical applications.
PB  - Springer Singapore
T2  - Interpenetrating Polymer Network: Biomedical Applications
T1  - Semi-interpenetrating networks based on (Meth)acrylate, itaconic acid, and poly(vinyl pyrrolidone) hydrogels for biomedical applications
EP  - 288
SP  - 263
DO  - 10.1007/978-981-15-0283-5_10
ER  - 
@inbook{
author = "Babić, Marija and Tomić, Simonida",
year = "2020",
abstract = "In this study, three series of semi-interpenetrating networks were synthesized based on 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), itaconic acid (IA), and poly(vinyl pyrrolidone) (PVP) as interpenetrating polymer. Syntheses were performed by free radical cross-linking/polymerization reaction. The first series represented hydrogels based on 2-hydroxyethyl methacrylate, poly(vinyl pyrrolidone), and itaconic acid, varying of poly(vinyl pyrrolidone) content. The second series of samples were hydrogels based on 2-hydroxyethyl acrylate, poly(vinyl pyrrolidone), and itaconic acid, varying of itaconic acid content. The third series of synthesized samples were based on 2-hydroxyethyl acrylate, poly(vinyl pyrrolidone), and itaconic acid, varying of poly(vinyl pyrrolidone) content. The content of component was varied in order to examine the influence on the structure, pH- and temperature-sensitive swelling-“intelligent” behavior, mechanical properties of hydrogels, as well as antimicrobial and biocompatible potential of hydrogels. Poly(vinyl pyrrolidone) is a linear polymer, which shows satisfactory biocompatibility and hydrophilicity. Itaconic acid gives pH-sensitive-“intelligent” behavior and better hydrophilicity. Hydrogels based on HEMA and HEA show excellent biocompatibility and satisfactory hydrophilicity. All three series of samples showed satisfactory cytocompatibility, as well as the antimicrobial potential tested against most common microbes. The results obtained and presented in this research can contribute to the development of new efficient polymeric biomaterials for biomedical applications.",
publisher = "Springer Singapore",
journal = "Interpenetrating Polymer Network: Biomedical Applications",
booktitle = "Semi-interpenetrating networks based on (Meth)acrylate, itaconic acid, and poly(vinyl pyrrolidone) hydrogels for biomedical applications",
pages = "288-263",
doi = "10.1007/978-981-15-0283-5_10"
}
Babić, M.,& Tomić, S.. (2020). Semi-interpenetrating networks based on (Meth)acrylate, itaconic acid, and poly(vinyl pyrrolidone) hydrogels for biomedical applications. in Interpenetrating Polymer Network: Biomedical Applications
Springer Singapore., 263-288.
https://doi.org/10.1007/978-981-15-0283-5_10
Babić M, Tomić S. Semi-interpenetrating networks based on (Meth)acrylate, itaconic acid, and poly(vinyl pyrrolidone) hydrogels for biomedical applications. in Interpenetrating Polymer Network: Biomedical Applications. 2020;:263-288.
doi:10.1007/978-981-15-0283-5_10 .
Babić, Marija, Tomić, Simonida, "Semi-interpenetrating networks based on (Meth)acrylate, itaconic acid, and poly(vinyl pyrrolidone) hydrogels for biomedical applications" in Interpenetrating Polymer Network: Biomedical Applications (2020):263-288,
https://doi.org/10.1007/978-981-15-0283-5_10 . .
2
2

In Vitro and In Vivo Biocompatibility of Novel Zwitterionic Poly(Beta Amino)Ester Hydrogels Based on Diacrylate and Glycine for Site-Specific Controlled Drug Release

Filipović, Vuk; Babić, Marija; Gođevac, Dejan; Pavić, Aleksandar; Nikodinović-Runić, Jasmina; Tomić, Simonida

(Wiley-VCH Verlag Gmbh, Weinheim, 2019)

TY  - JOUR
AU  - Filipović, Vuk
AU  - Babić, Marija
AU  - Gođevac, Dejan
AU  - Pavić, Aleksandar
AU  - Nikodinović-Runić, Jasmina
AU  - Tomić, Simonida
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4076
AB  - New (beta-aminoester) hydrogels (PBAE) based on di(ethylene glycol)diacrylate and glycine are successfully synthesized and characterized for the first time in this work. PBAE macromers are obtained using Michael addition. By changing the diacrylate/amine stoichiometric ratio, but maintaining it  gt 1, samples with different chemical structure containing acrylate end-groups are obtained. The hydrogels are synthesized from macromers utilizing free radical polymerization. Chemical structure of macromers and hydrogels is confirmed by proton nuclear magnetic resonance, and Fourier transform infra-red spectroscopy. Swelling and degradation rates in physiological pH range change notably with pH and monomer molar ratio, validating pH sensitivity and zwitterionic behavior, which can be finely tuned by changing any of these parameters. In vitro cytotoxicity and in vivo acute embryotoxicity in zebrafish (Danio rerio) performed to assess the biocompatibility of the novel hydrogel materials and their degradation products reveal that materials are nontoxic and biocompatible. The Cephalexin in vitro drug release study, at pH values 2.20, 5.50, and 7.40, demonstrates pH-sensitive delivery with the release profiles effectively controlled by pH and the hydrogel composition. PBAE hydrogels exhibit great potential for a variety of biomedical applications, including tissue regeneration and intelligent drug delivery systems.
PB  - Wiley-VCH Verlag Gmbh, Weinheim
T2  - Macromolecular Chemistry and Physics
T1  - In Vitro and In Vivo Biocompatibility of Novel Zwitterionic Poly(Beta Amino)Ester Hydrogels Based on Diacrylate and Glycine for Site-Specific Controlled Drug Release
IS  - 17
SP  - 1900188
VL  - 220
DO  - 10.1002/macp.201900188
ER  - 
@article{
author = "Filipović, Vuk and Babić, Marija and Gođevac, Dejan and Pavić, Aleksandar and Nikodinović-Runić, Jasmina and Tomić, Simonida",
year = "2019",
abstract = "New (beta-aminoester) hydrogels (PBAE) based on di(ethylene glycol)diacrylate and glycine are successfully synthesized and characterized for the first time in this work. PBAE macromers are obtained using Michael addition. By changing the diacrylate/amine stoichiometric ratio, but maintaining it  gt 1, samples with different chemical structure containing acrylate end-groups are obtained. The hydrogels are synthesized from macromers utilizing free radical polymerization. Chemical structure of macromers and hydrogels is confirmed by proton nuclear magnetic resonance, and Fourier transform infra-red spectroscopy. Swelling and degradation rates in physiological pH range change notably with pH and monomer molar ratio, validating pH sensitivity and zwitterionic behavior, which can be finely tuned by changing any of these parameters. In vitro cytotoxicity and in vivo acute embryotoxicity in zebrafish (Danio rerio) performed to assess the biocompatibility of the novel hydrogel materials and their degradation products reveal that materials are nontoxic and biocompatible. The Cephalexin in vitro drug release study, at pH values 2.20, 5.50, and 7.40, demonstrates pH-sensitive delivery with the release profiles effectively controlled by pH and the hydrogel composition. PBAE hydrogels exhibit great potential for a variety of biomedical applications, including tissue regeneration and intelligent drug delivery systems.",
publisher = "Wiley-VCH Verlag Gmbh, Weinheim",
journal = "Macromolecular Chemistry and Physics",
title = "In Vitro and In Vivo Biocompatibility of Novel Zwitterionic Poly(Beta Amino)Ester Hydrogels Based on Diacrylate and Glycine for Site-Specific Controlled Drug Release",
number = "17",
pages = "1900188",
volume = "220",
doi = "10.1002/macp.201900188"
}
Filipović, V., Babić, M., Gođevac, D., Pavić, A., Nikodinović-Runić, J.,& Tomić, S.. (2019). In Vitro and In Vivo Biocompatibility of Novel Zwitterionic Poly(Beta Amino)Ester Hydrogels Based on Diacrylate and Glycine for Site-Specific Controlled Drug Release. in Macromolecular Chemistry and Physics
Wiley-VCH Verlag Gmbh, Weinheim., 220(17), 1900188.
https://doi.org/10.1002/macp.201900188
Filipović V, Babić M, Gođevac D, Pavić A, Nikodinović-Runić J, Tomić S. In Vitro and In Vivo Biocompatibility of Novel Zwitterionic Poly(Beta Amino)Ester Hydrogels Based on Diacrylate and Glycine for Site-Specific Controlled Drug Release. in Macromolecular Chemistry and Physics. 2019;220(17):1900188.
doi:10.1002/macp.201900188 .
Filipović, Vuk, Babić, Marija, Gođevac, Dejan, Pavić, Aleksandar, Nikodinović-Runić, Jasmina, Tomić, Simonida, "In Vitro and In Vivo Biocompatibility of Novel Zwitterionic Poly(Beta Amino)Ester Hydrogels Based on Diacrylate and Glycine for Site-Specific Controlled Drug Release" in Macromolecular Chemistry and Physics, 220, no. 17 (2019):1900188,
https://doi.org/10.1002/macp.201900188 . .
4
4
2
3

The innovative combined microwave-assisted and photo-polymerization technique for synthesis of the novel degradable hydroxyethyl (meth)acrylate/gelatin based scaffolds

Babić, Marija; Božić, Bojan; Božić, Biljana; Ušćumlić, Gordana; Tomić, Simonida

(Elsevier Science Bv, Amsterdam, 2018)

TY  - JOUR
AU  - Babić, Marija
AU  - Božić, Bojan
AU  - Božić, Biljana
AU  - Ušćumlić, Gordana
AU  - Tomić, Simonida
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3979
AB  - The discovery of novel biodegradable biomaterials able to support and control cellular activity as well as development of an enhanced and efficient method for their fabrication, are of paramount importance in the field of tissue engineering. This study highlights the design of novel degradable hydrogels based on gelatin and hydroxyethyl (meth)acrylates using the innovative combined two-step sequential microwave-assisted and UV photo-polymerization technique. Chemical composition, morphology, swelling capacity and degradation rate of the synthesized hydrogels were evaluated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), swelling and weight loss measurements. As an initial step for evaluation of performance of the hydrogels in the biological environment, the in vitro biocompatibility of these hydrogels, was evaluated using L929 mouse fibroblasts. Obtained results demonstrated that the hydrogels possess a porous morphology with interconnected pores, 50% in vitro degradation after 7 months, and satisfied biocompatibility on L929 fibroblast cells. These unique performances of the hydrogels make them promising candidates for in vivo evaluation in clinical studies aiming at tissue regeneration.
PB  - Elsevier Science Bv, Amsterdam
T2  - Materials Letters
T1  - The innovative combined microwave-assisted and photo-polymerization technique for synthesis of the novel degradable hydroxyethyl (meth)acrylate/gelatin based scaffolds
EP  - 240
SP  - 236
VL  - 213
DO  - 10.1016/j.matlet.2017.11.087
ER  - 
@article{
author = "Babić, Marija and Božić, Bojan and Božić, Biljana and Ušćumlić, Gordana and Tomić, Simonida",
year = "2018",
abstract = "The discovery of novel biodegradable biomaterials able to support and control cellular activity as well as development of an enhanced and efficient method for their fabrication, are of paramount importance in the field of tissue engineering. This study highlights the design of novel degradable hydrogels based on gelatin and hydroxyethyl (meth)acrylates using the innovative combined two-step sequential microwave-assisted and UV photo-polymerization technique. Chemical composition, morphology, swelling capacity and degradation rate of the synthesized hydrogels were evaluated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), swelling and weight loss measurements. As an initial step for evaluation of performance of the hydrogels in the biological environment, the in vitro biocompatibility of these hydrogels, was evaluated using L929 mouse fibroblasts. Obtained results demonstrated that the hydrogels possess a porous morphology with interconnected pores, 50% in vitro degradation after 7 months, and satisfied biocompatibility on L929 fibroblast cells. These unique performances of the hydrogels make them promising candidates for in vivo evaluation in clinical studies aiming at tissue regeneration.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Materials Letters",
title = "The innovative combined microwave-assisted and photo-polymerization technique for synthesis of the novel degradable hydroxyethyl (meth)acrylate/gelatin based scaffolds",
pages = "240-236",
volume = "213",
doi = "10.1016/j.matlet.2017.11.087"
}
Babić, M., Božić, B., Božić, B., Ušćumlić, G.,& Tomić, S.. (2018). The innovative combined microwave-assisted and photo-polymerization technique for synthesis of the novel degradable hydroxyethyl (meth)acrylate/gelatin based scaffolds. in Materials Letters
Elsevier Science Bv, Amsterdam., 213, 236-240.
https://doi.org/10.1016/j.matlet.2017.11.087
Babić M, Božić B, Božić B, Ušćumlić G, Tomić S. The innovative combined microwave-assisted and photo-polymerization technique for synthesis of the novel degradable hydroxyethyl (meth)acrylate/gelatin based scaffolds. in Materials Letters. 2018;213:236-240.
doi:10.1016/j.matlet.2017.11.087 .
Babić, Marija, Božić, Bojan, Božić, Biljana, Ušćumlić, Gordana, Tomić, Simonida, "The innovative combined microwave-assisted and photo-polymerization technique for synthesis of the novel degradable hydroxyethyl (meth)acrylate/gelatin based scaffolds" in Materials Letters, 213 (2018):236-240,
https://doi.org/10.1016/j.matlet.2017.11.087 . .
5
4
5

Evaluation of novel antiproliferative controlled drug delivery system based on poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels and nickel complex with Oxaprozin

Babić, Marija; Božić, Bojan; Božić, Biljana; Filipović, Jovanka; Ušćumlić, Gordana; Tomić, Simonida

(Elsevier, Amsterdam, 2016)

TY  - JOUR
AU  - Babić, Marija
AU  - Božić, Bojan
AU  - Božić, Biljana
AU  - Filipović, Jovanka
AU  - Ušćumlić, Gordana
AU  - Tomić, Simonida
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3409
AB  - A series of dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) (P(HPA/IA)) hydrogels were synthesized and evaluated as potential highly effective antiproliferative drug delivery system. Investigated hydrophobic antiproliferative agent, Ni(II) complex with Oxaprozin, was successfully synthesized and efficiently loaded into the'"intelligent" P(HPA/IA) hydrogels. Swelling studies showed that loaded agent did not annul pH- and temperature-sensitivity of the investigated hydrogels. In vitro antiproliferative activity of investigated complex against human cervical (HeLa) and melanoma cancer (FemX) cell lines was tested. The results of in vitro release study at different pH values confirmed synthesized hydrogels loaded with investigated complex as a highly effective pH-triggered drug delivery system for the advanced anticancer therapy as well as for the targeted treatment of intestine/colon cancers.
PB  - Elsevier, Amsterdam
T2  - Materials Letters
T1  - Evaluation of novel antiproliferative controlled drug delivery system based on poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels and nickel complex with Oxaprozin
EP  - 217
SP  - 214
VL  - 163
DO  - 10.1016/j.matlet.2015.10.078
ER  - 
@article{
author = "Babić, Marija and Božić, Bojan and Božić, Biljana and Filipović, Jovanka and Ušćumlić, Gordana and Tomić, Simonida",
year = "2016",
abstract = "A series of dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) (P(HPA/IA)) hydrogels were synthesized and evaluated as potential highly effective antiproliferative drug delivery system. Investigated hydrophobic antiproliferative agent, Ni(II) complex with Oxaprozin, was successfully synthesized and efficiently loaded into the'"intelligent" P(HPA/IA) hydrogels. Swelling studies showed that loaded agent did not annul pH- and temperature-sensitivity of the investigated hydrogels. In vitro antiproliferative activity of investigated complex against human cervical (HeLa) and melanoma cancer (FemX) cell lines was tested. The results of in vitro release study at different pH values confirmed synthesized hydrogels loaded with investigated complex as a highly effective pH-triggered drug delivery system for the advanced anticancer therapy as well as for the targeted treatment of intestine/colon cancers.",
publisher = "Elsevier, Amsterdam",
journal = "Materials Letters",
title = "Evaluation of novel antiproliferative controlled drug delivery system based on poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels and nickel complex with Oxaprozin",
pages = "217-214",
volume = "163",
doi = "10.1016/j.matlet.2015.10.078"
}
Babić, M., Božić, B., Božić, B., Filipović, J., Ušćumlić, G.,& Tomić, S.. (2016). Evaluation of novel antiproliferative controlled drug delivery system based on poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels and nickel complex with Oxaprozin. in Materials Letters
Elsevier, Amsterdam., 163, 214-217.
https://doi.org/10.1016/j.matlet.2015.10.078
Babić M, Božić B, Božić B, Filipović J, Ušćumlić G, Tomić S. Evaluation of novel antiproliferative controlled drug delivery system based on poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels and nickel complex with Oxaprozin. in Materials Letters. 2016;163:214-217.
doi:10.1016/j.matlet.2015.10.078 .
Babić, Marija, Božić, Bojan, Božić, Biljana, Filipović, Jovanka, Ušćumlić, Gordana, Tomić, Simonida, "Evaluation of novel antiproliferative controlled drug delivery system based on poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels and nickel complex with Oxaprozin" in Materials Letters, 163 (2016):214-217,
https://doi.org/10.1016/j.matlet.2015.10.078 . .
16
13
14

Synthesis and characterization of polymeric matrices based on 2-hydroxyalkyl acrylate and itaconic acid for controlled release of oxaprozin

Babić, Marija

(Univerzitet u Beogradu, Tehnološko-metalurški fakultet, 2016)

TY  - THES
AU  - Babić, Marija
PY  - 2016
UR  - http://eteze.bg.ac.rs/application/showtheses?thesesId=3033
UR  - https://fedorabg.bg.ac.rs/fedora/get/o:11264/bdef:Content/download
UR  - http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=47785999
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4630
AB  - In order to improve the efficiency of pharmacotherapy by development of the sophisticated drug delivery systems, two series of hydrogels were synthesized in this study. Hydrogels were synthesized by the free-radical crosslinking polymerization at 50 °C for 24 h. In the first series the polymeric hydrogels are based on 2-hydroxyethyl acrylate and itaconic acid, whereas in the second series the samples are based on 2-hydroxypropyl acrylate and itaconic acid. In order to investigate the influence of the hydrogel composition on its properties in both series of the hydrogels amount of the itaconic acid was varied (0.0; 2.0; 3.5; 5.0 and 7.0 mol %). The started monomers were selected as structural analogs of 2-hydroxyethyl methacrylate which is thoroughly investigated and widely used monomer especially in biomedical and pharmaceutical applications. In order to improve the hydrophilicity and pH-sensitivity of the synthesized copolymers itaconic acid was used. The hydrophobic drug - oxaprozin was successfully synthesized and incorporated into the hydrogels by diffusion method. For evaluation of synthesized hydrogels as polymeric matrices for drug delivery complexes of oxaprozin with transition metal (Ni(II) and Zn(II)) as potential antiproliferative agents were used also. In order to investigate the influence of the chemical composition and of the presence of drug on the properties of synthesized hydrogels, chemical structure, morphology, thermal properties, swelling and „intelligent’’ behavior of synthesized hydrogels were examined. The entrapment efficiency of drug into synthesized hydrogels and their application in controlled drug delivery systems were investigated. The therapeutic benefits of the oxaprozin are accompanied with several serious side effects in upper gastrointestinal tract. The goal of this study was to design the polymeric matrices which can prevent the release of oxaprozin in the acidic environment of the stomach and reduce its side effects in upper part of the gastrointestinal tract. Therefore, the study of drug release from investigated hydrogels...
AB  - U cilju unapređenja efikasnosti farmakoterapije razvojem sofisticiranih sistema za kontrolisano otpuštanje aktivnih supstanci u ovom radu su sintetisane dve serije hidrogelova reakcijom polimerizacije preko slobodnih radikala, na 50 °C u toku 24 h. Prvu seriju hidrogelova čine hidrogelovi na bazi 2-hidroksietil akrilata i itakonske kiseline (P(HEA/IK)), dok drugu seriju čine hidrogelovi na bazi 2-hidroksipropil akrilata i itakonske kiseline (P(HPA/IK)). U obe serije hidrogelova variran je molski udeo itakonske kiseline (0,0; 2,0; 3,5; 5,0 i 7,0 mol % IK) kako bi se ispitao uticaj sastava hidrogela na njegova svojstva kao matrice za kontrolisano otpuštanje aktivnih supstanci. Polazni monomeri, 2-hidroksietil akrilat i 2-hidroksipropil akrilat, su odabrani kao strukturni analozi temeljno ispitanog i opsežno primenjivanog (naročito u biomedicini i farmaciji) monomer - 2-hidroksietil metakrilat-a. U reakcijama kopolimerizacije je korišćena itakonska kiselina zbog njenog značajnog doprinosa hidrofilnosti i pH-osetljivosti sintetisanih kopolimera. Hidrofobna aktivna supstanca - oksaprozin je uspešno sintetisana i ugrađena u ispitivane hidrogelove metodom difuzije. Pored aktivne supstance oksaprozin, u cilju određivanja podobnosti sintetisanih hidrogelova kao polimernih matrica za kontrolisano otpuštanje aktivnih supstanci, korišćeni su i derivati oksaprozina (Ni(II) i Zn(II) kompleks sa oksaprozinom), kao potencijalno biološki aktivne supstance sa antiproliferativnim efektom. U cilju ispitivanja uticaja hemijskog sastava kao i prisustva aktivne supstance na svojstva sintetisanih hidrogelova, izvršena je analiza hemijske strukture, morfologije, termičkih svojstava, bubrenja i „inteligentnog“ ponašanja sintetisanih hidrogelova, pre i nakon ugradnje aktivne supstance. Pored toga, ispitana je efikasnost ugradnje aktivne supstance u sintetisane hidrogelove, kao i mogućnost njihove primene u vidu polimernih matrica za kontrolisano otpuštanje aktivnih supstanci. S obzirom da terapija oksaprozinom podrazumeva uglavnom njegovu dugoročnu oralnu upotrebu i neretko je praćena ozbiljnim neželjenim efektima posebno izraženim...
PB  - Univerzitet u Beogradu, Tehnološko-metalurški fakultet
T1  - Synthesis and characterization of polymeric matrices based on 2-hydroxyalkyl acrylate and itaconic acid for controlled release of oxaprozin
T1  - Sinteza i karakterizacija polimernih matrica na bazi 2-hidroksialkil akrilata i itakonske kiseline za kontrolisano otpuštanje oksaprozina
UR  - https://hdl.handle.net/21.15107/rcub_technorep_4630
ER  - 
@phdthesis{
author = "Babić, Marija",
year = "2016",
abstract = "In order to improve the efficiency of pharmacotherapy by development of the sophisticated drug delivery systems, two series of hydrogels were synthesized in this study. Hydrogels were synthesized by the free-radical crosslinking polymerization at 50 °C for 24 h. In the first series the polymeric hydrogels are based on 2-hydroxyethyl acrylate and itaconic acid, whereas in the second series the samples are based on 2-hydroxypropyl acrylate and itaconic acid. In order to investigate the influence of the hydrogel composition on its properties in both series of the hydrogels amount of the itaconic acid was varied (0.0; 2.0; 3.5; 5.0 and 7.0 mol %). The started monomers were selected as structural analogs of 2-hydroxyethyl methacrylate which is thoroughly investigated and widely used monomer especially in biomedical and pharmaceutical applications. In order to improve the hydrophilicity and pH-sensitivity of the synthesized copolymers itaconic acid was used. The hydrophobic drug - oxaprozin was successfully synthesized and incorporated into the hydrogels by diffusion method. For evaluation of synthesized hydrogels as polymeric matrices for drug delivery complexes of oxaprozin with transition metal (Ni(II) and Zn(II)) as potential antiproliferative agents were used also. In order to investigate the influence of the chemical composition and of the presence of drug on the properties of synthesized hydrogels, chemical structure, morphology, thermal properties, swelling and „intelligent’’ behavior of synthesized hydrogels were examined. The entrapment efficiency of drug into synthesized hydrogels and their application in controlled drug delivery systems were investigated. The therapeutic benefits of the oxaprozin are accompanied with several serious side effects in upper gastrointestinal tract. The goal of this study was to design the polymeric matrices which can prevent the release of oxaprozin in the acidic environment of the stomach and reduce its side effects in upper part of the gastrointestinal tract. Therefore, the study of drug release from investigated hydrogels..., U cilju unapređenja efikasnosti farmakoterapije razvojem sofisticiranih sistema za kontrolisano otpuštanje aktivnih supstanci u ovom radu su sintetisane dve serije hidrogelova reakcijom polimerizacije preko slobodnih radikala, na 50 °C u toku 24 h. Prvu seriju hidrogelova čine hidrogelovi na bazi 2-hidroksietil akrilata i itakonske kiseline (P(HEA/IK)), dok drugu seriju čine hidrogelovi na bazi 2-hidroksipropil akrilata i itakonske kiseline (P(HPA/IK)). U obe serije hidrogelova variran je molski udeo itakonske kiseline (0,0; 2,0; 3,5; 5,0 i 7,0 mol % IK) kako bi se ispitao uticaj sastava hidrogela na njegova svojstva kao matrice za kontrolisano otpuštanje aktivnih supstanci. Polazni monomeri, 2-hidroksietil akrilat i 2-hidroksipropil akrilat, su odabrani kao strukturni analozi temeljno ispitanog i opsežno primenjivanog (naročito u biomedicini i farmaciji) monomer - 2-hidroksietil metakrilat-a. U reakcijama kopolimerizacije je korišćena itakonska kiselina zbog njenog značajnog doprinosa hidrofilnosti i pH-osetljivosti sintetisanih kopolimera. Hidrofobna aktivna supstanca - oksaprozin je uspešno sintetisana i ugrađena u ispitivane hidrogelove metodom difuzije. Pored aktivne supstance oksaprozin, u cilju određivanja podobnosti sintetisanih hidrogelova kao polimernih matrica za kontrolisano otpuštanje aktivnih supstanci, korišćeni su i derivati oksaprozina (Ni(II) i Zn(II) kompleks sa oksaprozinom), kao potencijalno biološki aktivne supstance sa antiproliferativnim efektom. U cilju ispitivanja uticaja hemijskog sastava kao i prisustva aktivne supstance na svojstva sintetisanih hidrogelova, izvršena je analiza hemijske strukture, morfologije, termičkih svojstava, bubrenja i „inteligentnog“ ponašanja sintetisanih hidrogelova, pre i nakon ugradnje aktivne supstance. Pored toga, ispitana je efikasnost ugradnje aktivne supstance u sintetisane hidrogelove, kao i mogućnost njihove primene u vidu polimernih matrica za kontrolisano otpuštanje aktivnih supstanci. S obzirom da terapija oksaprozinom podrazumeva uglavnom njegovu dugoročnu oralnu upotrebu i neretko je praćena ozbiljnim neželjenim efektima posebno izraženim...",
publisher = "Univerzitet u Beogradu, Tehnološko-metalurški fakultet",
title = "Synthesis and characterization of polymeric matrices based on 2-hydroxyalkyl acrylate and itaconic acid for controlled release of oxaprozin, Sinteza i karakterizacija polimernih matrica na bazi 2-hidroksialkil akrilata i itakonske kiseline za kontrolisano otpuštanje oksaprozina",
url = "https://hdl.handle.net/21.15107/rcub_technorep_4630"
}
Babić, M.. (2016). Synthesis and characterization of polymeric matrices based on 2-hydroxyalkyl acrylate and itaconic acid for controlled release of oxaprozin. 
Univerzitet u Beogradu, Tehnološko-metalurški fakultet..
https://hdl.handle.net/21.15107/rcub_technorep_4630
Babić M. Synthesis and characterization of polymeric matrices based on 2-hydroxyalkyl acrylate and itaconic acid for controlled release of oxaprozin. 2016;.
https://hdl.handle.net/21.15107/rcub_technorep_4630 .
Babić, Marija, "Synthesis and characterization of polymeric matrices based on 2-hydroxyalkyl acrylate and itaconic acid for controlled release of oxaprozin" (2016),
https://hdl.handle.net/21.15107/rcub_technorep_4630 .

2-Hydroxyethyl Metahcrylate/Gelatin based Superporous Hydrogels for Tissue Regeneration

Tomić, Simonida; Babić, Marija; Vuković, Jovana; Perišić, Marija D.; Filipović, Vuk; Davidović, Slađana; Filipović, Jovanka M.

(Amer Inst Physics, Melville, 2016)

TY  - CONF
AU  - Tomić, Simonida
AU  - Babić, Marija
AU  - Vuković, Jovana
AU  - Perišić, Marija D.
AU  - Filipović, Vuk
AU  - Davidović, Slađana
AU  - Filipović, Jovanka M.
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3296
AB  - In this study, superporous hydrogels were synthesized by free radical polymerization of 2-hydroxyethyl methacrylate without and in the presence of gelatin. Highly porous hydrogel structures were obtained by two different techniques: using a gas blowing agent, sodium bicarbonate, and a cryogenic treatment followed by freeze-drying. After the gel synthesis, gelatin molecules were covalently immobilised onto PHEMA via glytaraldehyde activation. All samples were characterized for morphological, mechanical, swelling and antibacterial properties. The results obtained show that samples with gelatin show better properties in comparison with PHEMA samples, which make these materials highly attractive for developing hydrogel scaffolds for tissue regeneration.
PB  - Amer Inst Physics, Melville
C3  - VIII International Conference on Times of Polymers and Composites: From Aerospace to Nanotechnology
T1  - 2-Hydroxyethyl Metahcrylate/Gelatin based Superporous Hydrogels for Tissue Regeneration
SP  - 4949668
VL  - 1736
DO  - 10.1063/1.4949668
ER  - 
@conference{
author = "Tomić, Simonida and Babić, Marija and Vuković, Jovana and Perišić, Marija D. and Filipović, Vuk and Davidović, Slađana and Filipović, Jovanka M.",
year = "2016",
abstract = "In this study, superporous hydrogels were synthesized by free radical polymerization of 2-hydroxyethyl methacrylate without and in the presence of gelatin. Highly porous hydrogel structures were obtained by two different techniques: using a gas blowing agent, sodium bicarbonate, and a cryogenic treatment followed by freeze-drying. After the gel synthesis, gelatin molecules were covalently immobilised onto PHEMA via glytaraldehyde activation. All samples were characterized for morphological, mechanical, swelling and antibacterial properties. The results obtained show that samples with gelatin show better properties in comparison with PHEMA samples, which make these materials highly attractive for developing hydrogel scaffolds for tissue regeneration.",
publisher = "Amer Inst Physics, Melville",
journal = "VIII International Conference on Times of Polymers and Composites: From Aerospace to Nanotechnology",
title = "2-Hydroxyethyl Metahcrylate/Gelatin based Superporous Hydrogels for Tissue Regeneration",
pages = "4949668",
volume = "1736",
doi = "10.1063/1.4949668"
}
Tomić, S., Babić, M., Vuković, J., Perišić, M. D., Filipović, V., Davidović, S.,& Filipović, J. M.. (2016). 2-Hydroxyethyl Metahcrylate/Gelatin based Superporous Hydrogels for Tissue Regeneration. in VIII International Conference on Times of Polymers and Composites: From Aerospace to Nanotechnology
Amer Inst Physics, Melville., 1736, 4949668.
https://doi.org/10.1063/1.4949668
Tomić S, Babić M, Vuković J, Perišić MD, Filipović V, Davidović S, Filipović JM. 2-Hydroxyethyl Metahcrylate/Gelatin based Superporous Hydrogels for Tissue Regeneration. in VIII International Conference on Times of Polymers and Composites: From Aerospace to Nanotechnology. 2016;1736:4949668.
doi:10.1063/1.4949668 .
Tomić, Simonida, Babić, Marija, Vuković, Jovana, Perišić, Marija D., Filipović, Vuk, Davidović, Slađana, Filipović, Jovanka M., "2-Hydroxyethyl Metahcrylate/Gelatin based Superporous Hydrogels for Tissue Regeneration" in VIII International Conference on Times of Polymers and Composites: From Aerospace to Nanotechnology, 1736 (2016):4949668,
https://doi.org/10.1063/1.4949668 . .

Removal of Pb2+ from aqueous solution by P(HEA/IA) hydrogels

Antić, Katarina; Babić, Marija; Vuković, Jovana; Onjia, Antonije; Filipović, Jovanka M.; Tomić, Simonida

(Savez hemijskih inženjera, Beograd, 2016)

TY  - JOUR
AU  - Antić, Katarina
AU  - Babić, Marija
AU  - Vuković, Jovana
AU  - Onjia, Antonije
AU  - Filipović, Jovanka M.
AU  - Tomić, Simonida
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3231
AB  - A series of poly(2-hydroxyethyl acrylate-co-itaconic acid), P(HEA/IA), hydrogels with different HEA/IA ratio, were synthesized using free radical crosslinking/copolymerization and investigated as sorbents for Pb2+ from aqueous solutions. Hydrogels were characterized using DMA, FTIR, DSC, SEM and AFM. The adsorption was found to be highly dependent on hydrogel composition, solution pH, sorbent weight, ionic strength and contact time. Five isotherm models, Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich, were applied to the sorption data. The best fit was obtained with Redlich-Peterson isotherm. The separation factor, RL, value indicated favorable sorption for Pb2+. The maximum sorption capacities were 392.2 and 409.8 mg/g for P(HEA/2IA) and P(HEA/10IA), respectively. Kinetic data showed best fit with pseudo-second-order model. Thermodynamic studies revealed that the reaction was exothermic and proceeds with a decrease in entropy. Moreover, P(HEA/IA) hydrogel showed the most pronounced sorption toward Pb2+ from environment containing Cu2+, Zn2+, Cd2+, Ni2+ and Co2+. Sorption/desorption experiments, showed that the P(HEA/IA) hydrogels could be reused without significant loss of the initial properties even after three adsorption-desorption cycles.
PB  - Savez hemijskih inženjera, Beograd
T2  - Hemijska industrija
T1  - Removal of Pb2+ from aqueous solution by P(HEA/IA) hydrogels
EP  - 705
IS  - 6
SP  - 695
VL  - 70
DO  - 10.2298/HEMIND151225006A
ER  - 
@article{
author = "Antić, Katarina and Babić, Marija and Vuković, Jovana and Onjia, Antonije and Filipović, Jovanka M. and Tomić, Simonida",
year = "2016",
abstract = "A series of poly(2-hydroxyethyl acrylate-co-itaconic acid), P(HEA/IA), hydrogels with different HEA/IA ratio, were synthesized using free radical crosslinking/copolymerization and investigated as sorbents for Pb2+ from aqueous solutions. Hydrogels were characterized using DMA, FTIR, DSC, SEM and AFM. The adsorption was found to be highly dependent on hydrogel composition, solution pH, sorbent weight, ionic strength and contact time. Five isotherm models, Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich, were applied to the sorption data. The best fit was obtained with Redlich-Peterson isotherm. The separation factor, RL, value indicated favorable sorption for Pb2+. The maximum sorption capacities were 392.2 and 409.8 mg/g for P(HEA/2IA) and P(HEA/10IA), respectively. Kinetic data showed best fit with pseudo-second-order model. Thermodynamic studies revealed that the reaction was exothermic and proceeds with a decrease in entropy. Moreover, P(HEA/IA) hydrogel showed the most pronounced sorption toward Pb2+ from environment containing Cu2+, Zn2+, Cd2+, Ni2+ and Co2+. Sorption/desorption experiments, showed that the P(HEA/IA) hydrogels could be reused without significant loss of the initial properties even after three adsorption-desorption cycles.",
publisher = "Savez hemijskih inženjera, Beograd",
journal = "Hemijska industrija",
title = "Removal of Pb2+ from aqueous solution by P(HEA/IA) hydrogels",
pages = "705-695",
number = "6",
volume = "70",
doi = "10.2298/HEMIND151225006A"
}
Antić, K., Babić, M., Vuković, J., Onjia, A., Filipović, J. M.,& Tomić, S.. (2016). Removal of Pb2+ from aqueous solution by P(HEA/IA) hydrogels. in Hemijska industrija
Savez hemijskih inženjera, Beograd., 70(6), 695-705.
https://doi.org/10.2298/HEMIND151225006A
Antić K, Babić M, Vuković J, Onjia A, Filipović JM, Tomić S. Removal of Pb2+ from aqueous solution by P(HEA/IA) hydrogels. in Hemijska industrija. 2016;70(6):695-705.
doi:10.2298/HEMIND151225006A .
Antić, Katarina, Babić, Marija, Vuković, Jovana, Onjia, Antonije, Filipović, Jovanka M., Tomić, Simonida, "Removal of Pb2+ from aqueous solution by P(HEA/IA) hydrogels" in Hemijska industrija, 70, no. 6 (2016):695-705,
https://doi.org/10.2298/HEMIND151225006A . .
7
4
7

In vitro cytotoxicity assessment of intelligent acrylate based hydrogels with incorporated copper in wound management

Vuković, Jovana; Babić, Marija; Antić, Katarina; Filipović, Jovanka M.; Stojanović, Sanja T.; Najman, Stevo; Tomić, Simonida

(Elsevier Science Sa, Lausanne, 2016)

TY  - JOUR
AU  - Vuković, Jovana
AU  - Babić, Marija
AU  - Antić, Katarina
AU  - Filipović, Jovanka M.
AU  - Stojanović, Sanja T.
AU  - Najman, Stevo
AU  - Tomić, Simonida
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3352
AB  - In order to evaluate biological response and potential toxicity prior to clinical use as wound dressing materials, three series of hydrogels, based on 2-hydroxyethyl acrylate (HEA) and itaconic acid (IA), unloaded, with incorporated copper(II) ions and reduced copper, were subjected to cytotoxicity testing on L929 cell line (mouse fibroblasts). MTT test revealed proper fibroblast growth in the presence of tested hydrogels, with an absence of any acute toxic effects. Mechanical properties of all three hydrogel series were studied by dynamic mechanical analysis (DMA) and obtained results indicated dominant elastic over viscous behaviour, which supports their application in wound management. The temperature sensitive behaviour of the hydrogels was detected in swelling study conducted in wide range of temperature values 25-50 degrees C, in buffer pH 7.40. The hydrogels exhibited excellent microbial barrier characteristics against Pseudomonas aeruginosa, reducing the risk of bacterial infection in wound bed.
PB  - Elsevier Science Sa, Lausanne
T2  - Materials Chemistry and Physics
T1  - In vitro cytotoxicity assessment of intelligent acrylate based hydrogels with incorporated copper in wound management
EP  - 163
SP  - 158
VL  - 175
DO  - 10.1016/j.matchemphys.2016.03.009
ER  - 
@article{
author = "Vuković, Jovana and Babić, Marija and Antić, Katarina and Filipović, Jovanka M. and Stojanović, Sanja T. and Najman, Stevo and Tomić, Simonida",
year = "2016",
abstract = "In order to evaluate biological response and potential toxicity prior to clinical use as wound dressing materials, three series of hydrogels, based on 2-hydroxyethyl acrylate (HEA) and itaconic acid (IA), unloaded, with incorporated copper(II) ions and reduced copper, were subjected to cytotoxicity testing on L929 cell line (mouse fibroblasts). MTT test revealed proper fibroblast growth in the presence of tested hydrogels, with an absence of any acute toxic effects. Mechanical properties of all three hydrogel series were studied by dynamic mechanical analysis (DMA) and obtained results indicated dominant elastic over viscous behaviour, which supports their application in wound management. The temperature sensitive behaviour of the hydrogels was detected in swelling study conducted in wide range of temperature values 25-50 degrees C, in buffer pH 7.40. The hydrogels exhibited excellent microbial barrier characteristics against Pseudomonas aeruginosa, reducing the risk of bacterial infection in wound bed.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Materials Chemistry and Physics",
title = "In vitro cytotoxicity assessment of intelligent acrylate based hydrogels with incorporated copper in wound management",
pages = "163-158",
volume = "175",
doi = "10.1016/j.matchemphys.2016.03.009"
}
Vuković, J., Babić, M., Antić, K., Filipović, J. M., Stojanović, S. T., Najman, S.,& Tomić, S.. (2016). In vitro cytotoxicity assessment of intelligent acrylate based hydrogels with incorporated copper in wound management. in Materials Chemistry and Physics
Elsevier Science Sa, Lausanne., 175, 158-163.
https://doi.org/10.1016/j.matchemphys.2016.03.009
Vuković J, Babić M, Antić K, Filipović JM, Stojanović ST, Najman S, Tomić S. In vitro cytotoxicity assessment of intelligent acrylate based hydrogels with incorporated copper in wound management. in Materials Chemistry and Physics. 2016;175:158-163.
doi:10.1016/j.matchemphys.2016.03.009 .
Vuković, Jovana, Babić, Marija, Antić, Katarina, Filipović, Jovanka M., Stojanović, Sanja T., Najman, Stevo, Tomić, Simonida, "In vitro cytotoxicity assessment of intelligent acrylate based hydrogels with incorporated copper in wound management" in Materials Chemistry and Physics, 175 (2016):158-163,
https://doi.org/10.1016/j.matchemphys.2016.03.009 . .
8
5
10

Evaluation of poly(hydroxyethyl acrylate/itaconic acid) hydrogels for controlled delivery of transition metal complexes with Oxaprozin as potential antiproliferative agents

Babić, Marija; Božić, Bojan; Božić, Biljana; Filipović, Jovanka M.; Ušćumlić, Gordana; Tomić, Simonida

(Springer, New York, 2015)

TY  - JOUR
AU  - Babić, Marija
AU  - Božić, Bojan
AU  - Božić, Biljana
AU  - Filipović, Jovanka M.
AU  - Ušćumlić, Gordana
AU  - Tomić, Simonida
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3126
AB  - A series of dual-sensitive poly(2-hydroxyethyl acrylate/itaconic acid) (P(HEA/IA)) hydrogels were synthesized and evaluated as drug delivery systems for potential antiproliferative agents. Investigated hydrophobic compounds, Mn(II) and Zn(II) complexes with Oxaprozin, were efficiently loaded into the P(HEA/IA) hydrogels, which was confirmed by FTIR and UV-Vis spectroscopy. Swelling studies, conducted in the physiological pH range of 2.20-8.00 and in temperature range of 30-50 A degrees C, demonstrated that loaded transition metal complexes in P(HEA/IA) hydrogels did not annul pH and temperature sensitivity of the hydrogels. In vitro antiproliferative activity of Mn(II) and Zn(II) complexes with Oxaprozin against human cervical (HeLa) and melanoma cancer (Fem X) cell lines was tested. Results of in vitro release study investigated at different pH conditions confirmed P(HEA/IA) hydrogels as a highly effective pH-triggered drug delivery system for hydrophobic antiproliferative agents. These performances indicate that P(HEA/IA) hydrogels loaded with transition metal complexes can be further studied as a promising candidate for anticancer therapy, as well as for targeted treatment of intestine/colon cancers.
PB  - Springer, New York
T2  - Journal of Materials Science
T1  - Evaluation of poly(hydroxyethyl acrylate/itaconic acid) hydrogels for controlled delivery of transition metal complexes with Oxaprozin as potential antiproliferative agents
EP  - 6219
IS  - 18
SP  - 6208
VL  - 50
DO  - 10.1007/s10853-015-9179-6
ER  - 
@article{
author = "Babić, Marija and Božić, Bojan and Božić, Biljana and Filipović, Jovanka M. and Ušćumlić, Gordana and Tomić, Simonida",
year = "2015",
abstract = "A series of dual-sensitive poly(2-hydroxyethyl acrylate/itaconic acid) (P(HEA/IA)) hydrogels were synthesized and evaluated as drug delivery systems for potential antiproliferative agents. Investigated hydrophobic compounds, Mn(II) and Zn(II) complexes with Oxaprozin, were efficiently loaded into the P(HEA/IA) hydrogels, which was confirmed by FTIR and UV-Vis spectroscopy. Swelling studies, conducted in the physiological pH range of 2.20-8.00 and in temperature range of 30-50 A degrees C, demonstrated that loaded transition metal complexes in P(HEA/IA) hydrogels did not annul pH and temperature sensitivity of the hydrogels. In vitro antiproliferative activity of Mn(II) and Zn(II) complexes with Oxaprozin against human cervical (HeLa) and melanoma cancer (Fem X) cell lines was tested. Results of in vitro release study investigated at different pH conditions confirmed P(HEA/IA) hydrogels as a highly effective pH-triggered drug delivery system for hydrophobic antiproliferative agents. These performances indicate that P(HEA/IA) hydrogels loaded with transition metal complexes can be further studied as a promising candidate for anticancer therapy, as well as for targeted treatment of intestine/colon cancers.",
publisher = "Springer, New York",
journal = "Journal of Materials Science",
title = "Evaluation of poly(hydroxyethyl acrylate/itaconic acid) hydrogels for controlled delivery of transition metal complexes with Oxaprozin as potential antiproliferative agents",
pages = "6219-6208",
number = "18",
volume = "50",
doi = "10.1007/s10853-015-9179-6"
}
Babić, M., Božić, B., Božić, B., Filipović, J. M., Ušćumlić, G.,& Tomić, S.. (2015). Evaluation of poly(hydroxyethyl acrylate/itaconic acid) hydrogels for controlled delivery of transition metal complexes with Oxaprozin as potential antiproliferative agents. in Journal of Materials Science
Springer, New York., 50(18), 6208-6219.
https://doi.org/10.1007/s10853-015-9179-6
Babić M, Božić B, Božić B, Filipović JM, Ušćumlić G, Tomić S. Evaluation of poly(hydroxyethyl acrylate/itaconic acid) hydrogels for controlled delivery of transition metal complexes with Oxaprozin as potential antiproliferative agents. in Journal of Materials Science. 2015;50(18):6208-6219.
doi:10.1007/s10853-015-9179-6 .
Babić, Marija, Božić, Bojan, Božić, Biljana, Filipović, Jovanka M., Ušćumlić, Gordana, Tomić, Simonida, "Evaluation of poly(hydroxyethyl acrylate/itaconic acid) hydrogels for controlled delivery of transition metal complexes with Oxaprozin as potential antiproliferative agents" in Journal of Materials Science, 50, no. 18 (2015):6208-6219,
https://doi.org/10.1007/s10853-015-9179-6 . .
11
11
14

Design of novel multifunctional Oxaprozin delivery system based on dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels

Babić, Marija; Božić, Bojan; Antić, Katarina; Jovašević-Vuković, Jovana J.; Perišić, Marija D.; Filipović, Jovanka M.; Tomić, Simonida

(Elsevier Science Bv, Amsterdam, 2015)

TY  - JOUR
AU  - Babić, Marija
AU  - Božić, Bojan
AU  - Antić, Katarina
AU  - Jovašević-Vuković, Jovana J.
AU  - Perišić, Marija D.
AU  - Filipović, Jovanka M.
AU  - Tomić, Simonida
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2970
AB  - Series of novel dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels were designed as multifunctional drug delivery system which can provide several advantages including drug protection, self-regulated oscillatory release and targeted delivery to a single entity. The hydrogels were synthesized by the free-radical crosslinking copolymerization and evaluated as carriers for hydrophobic drug, Oxaprozin, with specific controlled release properties. Structural, morphological, thermal, surface charge, swelling and antimicrobial properties of the hydrogels were investigated for unloaded and Oxaprozin-loaded samples. Swelling studies demonstrated pH- and temperature-sensitivity of drug-free and drug-loaded P(HPA/IA) hydrogels. The results of swelling and oscillatory swelling, and swelling behavior of drug-free, and drug-loaded hydrogels in simulated gastrointestinal conditions, and in vitro Oxaprozin release studies confirmed these hydrogels as a highly effective colon-specific drug delivery system with excellent performance of long-term controlled release. These unique properties make the P(HPA/IA) hydrogels highly attractive materials for developing multifunctional drug delivery systems.
PB  - Elsevier Science Bv, Amsterdam
T2  - Materials Letters
T1  - Design of novel multifunctional Oxaprozin delivery system based on dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels
EP  - 68
SP  - 64
VL  - 147
DO  - 10.1016/j.matlet.2015.02.035
ER  - 
@article{
author = "Babić, Marija and Božić, Bojan and Antić, Katarina and Jovašević-Vuković, Jovana J. and Perišić, Marija D. and Filipović, Jovanka M. and Tomić, Simonida",
year = "2015",
abstract = "Series of novel dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels were designed as multifunctional drug delivery system which can provide several advantages including drug protection, self-regulated oscillatory release and targeted delivery to a single entity. The hydrogels were synthesized by the free-radical crosslinking copolymerization and evaluated as carriers for hydrophobic drug, Oxaprozin, with specific controlled release properties. Structural, morphological, thermal, surface charge, swelling and antimicrobial properties of the hydrogels were investigated for unloaded and Oxaprozin-loaded samples. Swelling studies demonstrated pH- and temperature-sensitivity of drug-free and drug-loaded P(HPA/IA) hydrogels. The results of swelling and oscillatory swelling, and swelling behavior of drug-free, and drug-loaded hydrogels in simulated gastrointestinal conditions, and in vitro Oxaprozin release studies confirmed these hydrogels as a highly effective colon-specific drug delivery system with excellent performance of long-term controlled release. These unique properties make the P(HPA/IA) hydrogels highly attractive materials for developing multifunctional drug delivery systems.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Materials Letters",
title = "Design of novel multifunctional Oxaprozin delivery system based on dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels",
pages = "68-64",
volume = "147",
doi = "10.1016/j.matlet.2015.02.035"
}
Babić, M., Božić, B., Antić, K., Jovašević-Vuković, J. J., Perišić, M. D., Filipović, J. M.,& Tomić, S.. (2015). Design of novel multifunctional Oxaprozin delivery system based on dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels. in Materials Letters
Elsevier Science Bv, Amsterdam., 147, 64-68.
https://doi.org/10.1016/j.matlet.2015.02.035
Babić M, Božić B, Antić K, Jovašević-Vuković JJ, Perišić MD, Filipović JM, Tomić S. Design of novel multifunctional Oxaprozin delivery system based on dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels. in Materials Letters. 2015;147:64-68.
doi:10.1016/j.matlet.2015.02.035 .
Babić, Marija, Božić, Bojan, Antić, Katarina, Jovašević-Vuković, Jovana J., Perišić, Marija D., Filipović, Jovanka M., Tomić, Simonida, "Design of novel multifunctional Oxaprozin delivery system based on dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels" in Materials Letters, 147 (2015):64-68,
https://doi.org/10.1016/j.matlet.2015.02.035 . .
6
6
7

Oxaprozin/poly(2-hydroxyethyl acrylate/itaconic acid) hydrogels: morphological, thermal, swelling, drug release and antibacterial properties

Babić, Marija; Antić, Katarina; Jovašević-Vuković, Jovana J.; Božić, Bojan; Davidović, Slađana; Filipović, Jovanka M.; Tomić, Simonida

(Springer, New York, 2015)

TY  - JOUR
AU  - Babić, Marija
AU  - Antić, Katarina
AU  - Jovašević-Vuković, Jovana J.
AU  - Božić, Bojan
AU  - Davidović, Slađana
AU  - Filipović, Jovanka M.
AU  - Tomić, Simonida
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3023
AB  - In this study, a series of novel stimuli-sensitive hydrogels based on 2-hydroxyethyl acrylate and itaconic acid monomers were designed for the controlled release of hydrophobic drug, Oxaprozin. All samples were synthesized by the free-radical crosslinking copolymerization and characterized for structural, morphological, thermal, surface charge, swelling and antibacterial properties. In order to investigate the influence of the drug on hydrogel properties the same characterization was conducted for all Oxaprozin-loaded samples. The chemical composition of hydrogels was studied using Fourier transform infrared spectroscopy, while their morphology and thermal properties were examined by scanning electron microscopy and differential scanning calorimetry. Swelling studies, conducted in the physiological pH range from 2.20 to 8.00 and in the temperature range from 25 to 50 degrees C, showed that the loaded drug does not modify the pH and temperature sensitivity of the hydrogels, but reduces their swelling capacity. The in vitro drug release study conducted at pH 2.20 and 7.40 showed that all hydrogels can be tailored as colon specific drug delivery systems, and the drug release rate can be effectively controlled by IA content. In addition, the antibacterial activity of the hydrogels was determined against Escherichia coli and Staphylococcus aureus, by the zone of inhibition test. Results of our study indicate that these "smart" hydrogels, with specific morphology, surface charge, swelling capacity, drug loading efficiency and release behavior, could be designed to obtain an enhanced and site-specific controlled drug release system by simply adjusting their composition.
PB  - Springer, New York
T2  - Journal of Materials Science
T1  - Oxaprozin/poly(2-hydroxyethyl acrylate/itaconic acid) hydrogels: morphological, thermal, swelling, drug release and antibacterial properties
EP  - 922
IS  - 2
SP  - 906
VL  - 50
DO  - 10.1007/s10853-014-8651-z
ER  - 
@article{
author = "Babić, Marija and Antić, Katarina and Jovašević-Vuković, Jovana J. and Božić, Bojan and Davidović, Slađana and Filipović, Jovanka M. and Tomić, Simonida",
year = "2015",
abstract = "In this study, a series of novel stimuli-sensitive hydrogels based on 2-hydroxyethyl acrylate and itaconic acid monomers were designed for the controlled release of hydrophobic drug, Oxaprozin. All samples were synthesized by the free-radical crosslinking copolymerization and characterized for structural, morphological, thermal, surface charge, swelling and antibacterial properties. In order to investigate the influence of the drug on hydrogel properties the same characterization was conducted for all Oxaprozin-loaded samples. The chemical composition of hydrogels was studied using Fourier transform infrared spectroscopy, while their morphology and thermal properties were examined by scanning electron microscopy and differential scanning calorimetry. Swelling studies, conducted in the physiological pH range from 2.20 to 8.00 and in the temperature range from 25 to 50 degrees C, showed that the loaded drug does not modify the pH and temperature sensitivity of the hydrogels, but reduces their swelling capacity. The in vitro drug release study conducted at pH 2.20 and 7.40 showed that all hydrogels can be tailored as colon specific drug delivery systems, and the drug release rate can be effectively controlled by IA content. In addition, the antibacterial activity of the hydrogels was determined against Escherichia coli and Staphylococcus aureus, by the zone of inhibition test. Results of our study indicate that these "smart" hydrogels, with specific morphology, surface charge, swelling capacity, drug loading efficiency and release behavior, could be designed to obtain an enhanced and site-specific controlled drug release system by simply adjusting their composition.",
publisher = "Springer, New York",
journal = "Journal of Materials Science",
title = "Oxaprozin/poly(2-hydroxyethyl acrylate/itaconic acid) hydrogels: morphological, thermal, swelling, drug release and antibacterial properties",
pages = "922-906",
number = "2",
volume = "50",
doi = "10.1007/s10853-014-8651-z"
}
Babić, M., Antić, K., Jovašević-Vuković, J. J., Božić, B., Davidović, S., Filipović, J. M.,& Tomić, S.. (2015). Oxaprozin/poly(2-hydroxyethyl acrylate/itaconic acid) hydrogels: morphological, thermal, swelling, drug release and antibacterial properties. in Journal of Materials Science
Springer, New York., 50(2), 906-922.
https://doi.org/10.1007/s10853-014-8651-z
Babić M, Antić K, Jovašević-Vuković JJ, Božić B, Davidović S, Filipović JM, Tomić S. Oxaprozin/poly(2-hydroxyethyl acrylate/itaconic acid) hydrogels: morphological, thermal, swelling, drug release and antibacterial properties. in Journal of Materials Science. 2015;50(2):906-922.
doi:10.1007/s10853-014-8651-z .
Babić, Marija, Antić, Katarina, Jovašević-Vuković, Jovana J., Božić, Bojan, Davidović, Slađana, Filipović, Jovanka M., Tomić, Simonida, "Oxaprozin/poly(2-hydroxyethyl acrylate/itaconic acid) hydrogels: morphological, thermal, swelling, drug release and antibacterial properties" in Journal of Materials Science, 50, no. 2 (2015):906-922,
https://doi.org/10.1007/s10853-014-8651-z . .
33
26
37

Preparation and characterization of novel P(HEA/IA) hydrogels for Cd2+ ion removal from aqueous solution

Antić, Katarina; Babić, Marija; Jovašević-Vuković, Jovana J.; Vasiljević-Radović, Dana; Onjia, Antonije; Filipović, Jovanka M.; Tomić, Simonida

(Elsevier Science Bv, Amsterdam, 2015)

TY  - JOUR
AU  - Antić, Katarina
AU  - Babić, Marija
AU  - Jovašević-Vuković, Jovana J.
AU  - Vasiljević-Radović, Dana
AU  - Onjia, Antonije
AU  - Filipović, Jovanka M.
AU  - Tomić, Simonida
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3027
AB  - Series of novel hydrogels based on 2-hydroxyethyl acrylate (HEA) and itaconic acid (IA), P(HEA/IA) copolymers, were prepared by free radical cross-linking copolymerization and investigated as potential adsorbents for Cd2+ removal from aqueous solution. The hydrogels before and after Cd2+ adsorption were characterized using FTIR, temperature sensitive. In order to evaluate adsorption behavior of samples various factors affecting the Cd2+ uptake behavior, such as: contact time, temperature, pH, ionic strength, adsorbent weight, competitive ions and initial concentration of the metal ions were investigated. Five adsorption isotherms and two kinetic models were studied. The adsorption behavior can be very well described by the pseudo-second order kinetic model and Langmuir isotherm. Multicomponent adsorption studies revealed that adsorption of cadmium depends on the type of metal ions present in the system. Desorption studies showed that hydrogel can be reused three times with only 15% loss of adsorption capacity. All results indicate that the sample with the highest IA content is the most promising adsorbent for Cd2+ removal.
PB  - Elsevier Science Bv, Amsterdam
T2  - Applied Surface Science
T1  - Preparation and characterization of novel P(HEA/IA) hydrogels for Cd2+ ion removal from aqueous solution
EP  - 189
SP  - 178
VL  - 338
DO  - 10.1016/j.apsusc.2015.02.133
ER  - 
@article{
author = "Antić, Katarina and Babić, Marija and Jovašević-Vuković, Jovana J. and Vasiljević-Radović, Dana and Onjia, Antonije and Filipović, Jovanka M. and Tomić, Simonida",
year = "2015",
abstract = "Series of novel hydrogels based on 2-hydroxyethyl acrylate (HEA) and itaconic acid (IA), P(HEA/IA) copolymers, were prepared by free radical cross-linking copolymerization and investigated as potential adsorbents for Cd2+ removal from aqueous solution. The hydrogels before and after Cd2+ adsorption were characterized using FTIR, temperature sensitive. In order to evaluate adsorption behavior of samples various factors affecting the Cd2+ uptake behavior, such as: contact time, temperature, pH, ionic strength, adsorbent weight, competitive ions and initial concentration of the metal ions were investigated. Five adsorption isotherms and two kinetic models were studied. The adsorption behavior can be very well described by the pseudo-second order kinetic model and Langmuir isotherm. Multicomponent adsorption studies revealed that adsorption of cadmium depends on the type of metal ions present in the system. Desorption studies showed that hydrogel can be reused three times with only 15% loss of adsorption capacity. All results indicate that the sample with the highest IA content is the most promising adsorbent for Cd2+ removal.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Applied Surface Science",
title = "Preparation and characterization of novel P(HEA/IA) hydrogels for Cd2+ ion removal from aqueous solution",
pages = "189-178",
volume = "338",
doi = "10.1016/j.apsusc.2015.02.133"
}
Antić, K., Babić, M., Jovašević-Vuković, J. J., Vasiljević-Radović, D., Onjia, A., Filipović, J. M.,& Tomić, S.. (2015). Preparation and characterization of novel P(HEA/IA) hydrogels for Cd2+ ion removal from aqueous solution. in Applied Surface Science
Elsevier Science Bv, Amsterdam., 338, 178-189.
https://doi.org/10.1016/j.apsusc.2015.02.133
Antić K, Babić M, Jovašević-Vuković JJ, Vasiljević-Radović D, Onjia A, Filipović JM, Tomić S. Preparation and characterization of novel P(HEA/IA) hydrogels for Cd2+ ion removal from aqueous solution. in Applied Surface Science. 2015;338:178-189.
doi:10.1016/j.apsusc.2015.02.133 .
Antić, Katarina, Babić, Marija, Jovašević-Vuković, Jovana J., Vasiljević-Radović, Dana, Onjia, Antonije, Filipović, Jovanka M., Tomić, Simonida, "Preparation and characterization of novel P(HEA/IA) hydrogels for Cd2+ ion removal from aqueous solution" in Applied Surface Science, 338 (2015):178-189,
https://doi.org/10.1016/j.apsusc.2015.02.133 . .
20
13
20

A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application

Vuković, Jovana; Babić, Marija; Antić, Katarina; Miljković, Miona; Perić-Grujić, Aleksandra; Filipović, Jovanka M.; Tomić, Simonida

(Elsevier Science Sa, Lausanne, 2015)

TY  - JOUR
AU  - Vuković, Jovana
AU  - Babić, Marija
AU  - Antić, Katarina
AU  - Miljković, Miona
AU  - Perić-Grujić, Aleksandra
AU  - Filipović, Jovanka M.
AU  - Tomić, Simonida
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3139
AB  - In this study, three series of hydrogels based on 2-hydroxyethyl acrylate and itaconic acid, unloaded, with incorporated copper(II) ions and reduced copper, were successfully prepared, characterized and evaluated as novel wound healing materials. Fourier transform infrared spectroscopy (FTIR) confirmed the expected structure of obtained hydrogels. Scanning electron microscopy (SEM) revealed porous morphology of unloaded hydrogels, and the morphological modifications in case of loaded hydrogels. Thermal characteristics were examined by differential scanning calorimetry (DSC) and the glass transition temperatures were observed in range of 12-50 degrees C. Swelling study was conducted in wide range of pHs at 37 degrees C, confirming pH sensitive behaviour for all three series of hydrogels. The in vitro copper release was investigated and the experimental data were analysed using several models in order to elucidate the transport mechanism. The antimicrobial assay revealed excellent antimicrobial activity, over 99% against Escherichia coli, Staphylococcus aureus and Candida albicans, as well as good correlation with the copper release experiments. In accordance with potential application, water vapour transmission rate, oxygen penetration, dispersion characteristics, fluid retention were observed and the suitability of the hydrogels for wound healing application was discussed.
PB  - Elsevier Science Sa, Lausanne
T2  - Materials Chemistry and Physics
T1  - A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application
EP  - 62
SP  - 51
VL  - 164
DO  - 10.1016/j.matchemphys.2015.08.022
ER  - 
@article{
author = "Vuković, Jovana and Babić, Marija and Antić, Katarina and Miljković, Miona and Perić-Grujić, Aleksandra and Filipović, Jovanka M. and Tomić, Simonida",
year = "2015",
abstract = "In this study, three series of hydrogels based on 2-hydroxyethyl acrylate and itaconic acid, unloaded, with incorporated copper(II) ions and reduced copper, were successfully prepared, characterized and evaluated as novel wound healing materials. Fourier transform infrared spectroscopy (FTIR) confirmed the expected structure of obtained hydrogels. Scanning electron microscopy (SEM) revealed porous morphology of unloaded hydrogels, and the morphological modifications in case of loaded hydrogels. Thermal characteristics were examined by differential scanning calorimetry (DSC) and the glass transition temperatures were observed in range of 12-50 degrees C. Swelling study was conducted in wide range of pHs at 37 degrees C, confirming pH sensitive behaviour for all three series of hydrogels. The in vitro copper release was investigated and the experimental data were analysed using several models in order to elucidate the transport mechanism. The antimicrobial assay revealed excellent antimicrobial activity, over 99% against Escherichia coli, Staphylococcus aureus and Candida albicans, as well as good correlation with the copper release experiments. In accordance with potential application, water vapour transmission rate, oxygen penetration, dispersion characteristics, fluid retention were observed and the suitability of the hydrogels for wound healing application was discussed.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Materials Chemistry and Physics",
title = "A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application",
pages = "62-51",
volume = "164",
doi = "10.1016/j.matchemphys.2015.08.022"
}
Vuković, J., Babić, M., Antić, K., Miljković, M., Perić-Grujić, A., Filipović, J. M.,& Tomić, S.. (2015). A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application. in Materials Chemistry and Physics
Elsevier Science Sa, Lausanne., 164, 51-62.
https://doi.org/10.1016/j.matchemphys.2015.08.022
Vuković J, Babić M, Antić K, Miljković M, Perić-Grujić A, Filipović JM, Tomić S. A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application. in Materials Chemistry and Physics. 2015;164:51-62.
doi:10.1016/j.matchemphys.2015.08.022 .
Vuković, Jovana, Babić, Marija, Antić, Katarina, Miljković, Miona, Perić-Grujić, Aleksandra, Filipović, Jovanka M., Tomić, Simonida, "A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application" in Materials Chemistry and Physics, 164 (2015):51-62,
https://doi.org/10.1016/j.matchemphys.2015.08.022 . .
11
7
12