Terzic, Anja

Link to this page

Authority KeyName Variants
91478017-d0a9-4042-8295-8c1fe7203386
  • Terzic, Anja (1)
  • Terzic, Anja M. (1)
Projects

Author's Bibliography

Cavitation Properties of Rendering Mortars with Micro Silica Addition

Terzic, Anja; Dojčinović, Marina; Milicic, Ljiljana; Stojanovic, Jovica; Radojevic, Zagorka

(2021)

TY  - JOUR
AU  - Terzic, Anja
AU  - Dojčinović, Marina
AU  - Milicic, Ljiljana
AU  - Stojanovic, Jovica
AU  - Radojevic, Zagorka
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4958
AB  - Micro-silica is a highly efficient mineral additive whose role is reflected in improvements of microstructure packing, strength and durability of non-shaped composite building materials such as concrete and mortar. A comparative study of performances of rendering mortars with different quantities of micro silica was conducted. The experimental program included production of reference mortar based on Portland cement and quartz sand (CM) and three mortars with 5, 10, and 15 % addition of micro silica (SCM-5, SCM-10, and SCM-15). The effect that micro silica addition has on the thermal behavior and mechanical properties of mortars was discussed. Hydration mechanisms and thermally induced reactions were studied at temperatures ranging from ambient to 1100 degrees C by differential thermal analysis. The results were supported by X-ray diffraction analysis. The cementing efficiency of micro silica was assessed by cavitation erosion test. The changes in the morphology of mortar samples prior and upon cavitation testing were monitored by means of the scanning electron microscope imagining. It was found that 5 % of superfine micro silica (SCM-5 mortar) has positive effects on mechanical strengths (15 % increase in compressive strength) due to microstructure densification arising from the successive filling of voids by the micro silica. Addition of micro silica also improved the cavitation erosion resistance in comparison with reference cement mortar (SCM-5 showed cavitation velocity as low as 0.09 mg/min). This qualifies mortars with micro silica addition as building materials which can be safely employed in potential hydro-demolition environment.
T2  - Science of Sintering
T1  - Cavitation Properties of Rendering Mortars with Micro Silica Addition
EP  - 459
IS  - 4
SP  - 445
VL  - 53
DO  - 10.2298/SOS2104445T
ER  - 
@article{
author = "Terzic, Anja and Dojčinović, Marina and Milicic, Ljiljana and Stojanovic, Jovica and Radojevic, Zagorka",
year = "2021",
abstract = "Micro-silica is a highly efficient mineral additive whose role is reflected in improvements of microstructure packing, strength and durability of non-shaped composite building materials such as concrete and mortar. A comparative study of performances of rendering mortars with different quantities of micro silica was conducted. The experimental program included production of reference mortar based on Portland cement and quartz sand (CM) and three mortars with 5, 10, and 15 % addition of micro silica (SCM-5, SCM-10, and SCM-15). The effect that micro silica addition has on the thermal behavior and mechanical properties of mortars was discussed. Hydration mechanisms and thermally induced reactions were studied at temperatures ranging from ambient to 1100 degrees C by differential thermal analysis. The results were supported by X-ray diffraction analysis. The cementing efficiency of micro silica was assessed by cavitation erosion test. The changes in the morphology of mortar samples prior and upon cavitation testing were monitored by means of the scanning electron microscope imagining. It was found that 5 % of superfine micro silica (SCM-5 mortar) has positive effects on mechanical strengths (15 % increase in compressive strength) due to microstructure densification arising from the successive filling of voids by the micro silica. Addition of micro silica also improved the cavitation erosion resistance in comparison with reference cement mortar (SCM-5 showed cavitation velocity as low as 0.09 mg/min). This qualifies mortars with micro silica addition as building materials which can be safely employed in potential hydro-demolition environment.",
journal = "Science of Sintering",
title = "Cavitation Properties of Rendering Mortars with Micro Silica Addition",
pages = "459-445",
number = "4",
volume = "53",
doi = "10.2298/SOS2104445T"
}
Terzic, A., Dojčinović, M., Milicic, L., Stojanovic, J.,& Radojevic, Z.. (2021). Cavitation Properties of Rendering Mortars with Micro Silica Addition. in Science of Sintering, 53(4), 445-459.
https://doi.org/10.2298/SOS2104445T
Terzic A, Dojčinović M, Milicic L, Stojanovic J, Radojevic Z. Cavitation Properties of Rendering Mortars with Micro Silica Addition. in Science of Sintering. 2021;53(4):445-459.
doi:10.2298/SOS2104445T .
Terzic, Anja, Dojčinović, Marina, Milicic, Ljiljana, Stojanovic, Jovica, Radojevic, Zagorka, "Cavitation Properties of Rendering Mortars with Micro Silica Addition" in Science of Sintering, 53, no. 4 (2021):445-459,
https://doi.org/10.2298/SOS2104445T . .
5
5

Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach

Mijatovic, Nevenka N.; Terzic, Anja M.; Pezo, Lato L.; Milicic, Ljiljana R.; Živojinović, Dragana

(2020)

TY  - JOUR
AU  - Mijatovic, Nevenka N.
AU  - Terzic, Anja M.
AU  - Pezo, Lato L.
AU  - Milicic, Ljiljana R.
AU  - Živojinović, Dragana
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4747
AB  - A modification of an analytical procedure for the energy-dispersive X-ray fluorescence (EDXRF) quantification of ten chemical elements (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb and Zn) in the leachates obtained from cement binders was developed. Twenty-nine testing samples were used in the experiment. All samples were based on Portland cement. Fly ash of different origin, zeolite and bentonite were employed as mineral additives in the cement binders. Distilled water was used as the leachate. Validation of the modified EDXRF procedure was conducted in terms of limits of detection and quantification, working range, linearity, selectivity, precision, trueness, and robustness. Traceability of the procedure was established using certified reference materials. Uncertainty of measurement was confirmed via an "in-house" laboratory validation approach. The expanded uncertainties for the ten analysed elements were obtained for the entire working range of the EDXRF method. Robustness of the modified EDXRF procedure was assessed by means of a chemometric in-house approach. The results obtained by the modified X-ray fluorescence method were additionally correlated to those acquired by inductively coupled plasma optical emission spectrometry to confirm that EDXRF could be used as an effective and reliable alternative method for analysis of cement leachates.
T2  - Journal of the Serbian Chemical Society
T1  - Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach
EP  - 1619
IS  - 12
SP  - 1605
VL  - 85
DO  - 10.2298/JSC200501067M
ER  - 
@article{
author = "Mijatovic, Nevenka N. and Terzic, Anja M. and Pezo, Lato L. and Milicic, Ljiljana R. and Živojinović, Dragana",
year = "2020",
abstract = "A modification of an analytical procedure for the energy-dispersive X-ray fluorescence (EDXRF) quantification of ten chemical elements (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb and Zn) in the leachates obtained from cement binders was developed. Twenty-nine testing samples were used in the experiment. All samples were based on Portland cement. Fly ash of different origin, zeolite and bentonite were employed as mineral additives in the cement binders. Distilled water was used as the leachate. Validation of the modified EDXRF procedure was conducted in terms of limits of detection and quantification, working range, linearity, selectivity, precision, trueness, and robustness. Traceability of the procedure was established using certified reference materials. Uncertainty of measurement was confirmed via an "in-house" laboratory validation approach. The expanded uncertainties for the ten analysed elements were obtained for the entire working range of the EDXRF method. Robustness of the modified EDXRF procedure was assessed by means of a chemometric in-house approach. The results obtained by the modified X-ray fluorescence method were additionally correlated to those acquired by inductively coupled plasma optical emission spectrometry to confirm that EDXRF could be used as an effective and reliable alternative method for analysis of cement leachates.",
journal = "Journal of the Serbian Chemical Society",
title = "Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach",
pages = "1619-1605",
number = "12",
volume = "85",
doi = "10.2298/JSC200501067M"
}
Mijatovic, N. N., Terzic, A. M., Pezo, L. L., Milicic, L. R.,& Živojinović, D.. (2020). Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach. in Journal of the Serbian Chemical Society, 85(12), 1605-1619.
https://doi.org/10.2298/JSC200501067M
Mijatovic NN, Terzic AM, Pezo LL, Milicic LR, Živojinović D. Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach. in Journal of the Serbian Chemical Society. 2020;85(12):1605-1619.
doi:10.2298/JSC200501067M .
Mijatovic, Nevenka N., Terzic, Anja M., Pezo, Lato L., Milicic, Ljiljana R., Živojinović, Dragana, "Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates - A chemometric approach" in Journal of the Serbian Chemical Society, 85, no. 12 (2020):1605-1619,
https://doi.org/10.2298/JSC200501067M . .
1
1