Kapidžić, Ana

Link to this page

Authority KeyName Variants
orcid::0000-0002-6683-4724
  • Kapidžić, Ana (2)

Author's Bibliography

Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal

Rusmirović, Jelena; Obradović, Nina; Perendija, Jovana; Umićević, Ana; Kapidžić, Ana; Vlahović, Branislav; Pavlović, Vera P.; Marinković, Aleksandar; Pavlović, Vladimir B.

(Springer Heidelberg, Heidelberg, 2019)

TY  - JOUR
AU  - Rusmirović, Jelena
AU  - Obradović, Nina
AU  - Perendija, Jovana
AU  - Umićević, Ana
AU  - Kapidžić, Ana
AU  - Vlahović, Branislav
AU  - Pavlović, Vera P.
AU  - Marinković, Aleksandar
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4223
AB  - Iron oxide, in the form of magnetite (MG)-functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL--APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mossbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456mgg(-1) for WL--APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382mgg(-1) for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL--APS/MG, e.g., 1.17-13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL--APS.
PB  - Springer Heidelberg, Heidelberg
T2  - Environmental Science and Pollution Research
T1  - Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal
EP  - 12398
IS  - 12
SP  - 12379
VL  - 26
DO  - 10.1007/s11356-019-04625-0
ER  - 
@article{
author = "Rusmirović, Jelena and Obradović, Nina and Perendija, Jovana and Umićević, Ana and Kapidžić, Ana and Vlahović, Branislav and Pavlović, Vera P. and Marinković, Aleksandar and Pavlović, Vladimir B.",
year = "2019",
abstract = "Iron oxide, in the form of magnetite (MG)-functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL--APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mossbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456mgg(-1) for WL--APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382mgg(-1) for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL--APS/MG, e.g., 1.17-13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL--APS.",
publisher = "Springer Heidelberg, Heidelberg",
journal = "Environmental Science and Pollution Research",
title = "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal",
pages = "12398-12379",
number = "12",
volume = "26",
doi = "10.1007/s11356-019-04625-0"
}
Rusmirović, J., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V. P., Marinković, A.,& Pavlović, V. B.. (2019). Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research
Springer Heidelberg, Heidelberg., 26(12), 12379-12398.
https://doi.org/10.1007/s11356-019-04625-0
Rusmirović J, Obradović N, Perendija J, Umićević A, Kapidžić A, Vlahović B, Pavlović VP, Marinković A, Pavlović VB. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research. 2019;26(12):12379-12398.
doi:10.1007/s11356-019-04625-0 .
Rusmirović, Jelena, Obradović, Nina, Perendija, Jovana, Umićević, Ana, Kapidžić, Ana, Vlahović, Branislav, Pavlović, Vera P., Marinković, Aleksandar, Pavlović, Vladimir B., "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal" in Environmental Science and Pollution Research, 26, no. 12 (2019):12379-12398,
https://doi.org/10.1007/s11356-019-04625-0 . .
1
11
6
13

Efficient multistep arsenate removal onto magnetite modified fly ash

Karanac, Milica; Đolić, Maja; Veličković, Zlate; Kapidžić, Ana; Ivanovski, Valentin N.; Mitrić, Miodrag; Marinković, Aleksandar

(Academic Press Ltd- Elsevier Science Ltd, London, 2018)

TY  - JOUR
AU  - Karanac, Milica
AU  - Đolić, Maja
AU  - Veličković, Zlate
AU  - Kapidžić, Ana
AU  - Ivanovski, Valentin N.
AU  - Mitrić, Miodrag
AU  - Marinković, Aleksandar
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3877
AB  - The modification of the fly ash (FA) by magnetite (M) was performed to obtain FAM adsorbent with improved adsorption efficiency for arsenate removal from water. The novel low cost adsorbents are characterized by liquid nitrogen porosimetry (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), Mossbauer spectroscopy (MB) and Fourier transform infrared (FTIR) spectroscopy. The optimal conditions and key factors influencing the adsorbent synthesis are assessed using the response surface method (RSM). The adsorption experiment was carried out in a batch system by varying the contact time, temperature, pH, and mass of the adsorbent. The adsorption capacity of the FAM adsorbent for As(V), calculated by Langmuir model, was 19.14 mg g(-1). The thermodynamic parameters showed spontaneity of adsorption with low endothermic character. The kinetic data followed the pseudo-second-order kinetic model (PSO), and Weber-Morris model indicated intra-particle diffusion as rate limiting step. Alternative to low desorption capability of the FAM was found by five consecutive adsorption/magnetite precipitation processes which gave exhausted layered adsorbent with 65.78 mg g(-1) capacity. This research also has shed light on the mechanism of As(V)-ion adsorption, presenting a promising solution for the valorization of a widely abundant industrial waste.
PB  - Academic Press Ltd- Elsevier Science Ltd, London
T2  - Journal of Environmental Management
T1  - Efficient multistep arsenate removal onto magnetite modified fly ash
EP  - 276
SP  - 263
VL  - 224
DO  - 10.1016/j.jenvman.2018.07.051
ER  - 
@article{
author = "Karanac, Milica and Đolić, Maja and Veličković, Zlate and Kapidžić, Ana and Ivanovski, Valentin N. and Mitrić, Miodrag and Marinković, Aleksandar",
year = "2018",
abstract = "The modification of the fly ash (FA) by magnetite (M) was performed to obtain FAM adsorbent with improved adsorption efficiency for arsenate removal from water. The novel low cost adsorbents are characterized by liquid nitrogen porosimetry (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), Mossbauer spectroscopy (MB) and Fourier transform infrared (FTIR) spectroscopy. The optimal conditions and key factors influencing the adsorbent synthesis are assessed using the response surface method (RSM). The adsorption experiment was carried out in a batch system by varying the contact time, temperature, pH, and mass of the adsorbent. The adsorption capacity of the FAM adsorbent for As(V), calculated by Langmuir model, was 19.14 mg g(-1). The thermodynamic parameters showed spontaneity of adsorption with low endothermic character. The kinetic data followed the pseudo-second-order kinetic model (PSO), and Weber-Morris model indicated intra-particle diffusion as rate limiting step. Alternative to low desorption capability of the FAM was found by five consecutive adsorption/magnetite precipitation processes which gave exhausted layered adsorbent with 65.78 mg g(-1) capacity. This research also has shed light on the mechanism of As(V)-ion adsorption, presenting a promising solution for the valorization of a widely abundant industrial waste.",
publisher = "Academic Press Ltd- Elsevier Science Ltd, London",
journal = "Journal of Environmental Management",
title = "Efficient multistep arsenate removal onto magnetite modified fly ash",
pages = "276-263",
volume = "224",
doi = "10.1016/j.jenvman.2018.07.051"
}
Karanac, M., Đolić, M., Veličković, Z., Kapidžić, A., Ivanovski, V. N., Mitrić, M.,& Marinković, A.. (2018). Efficient multistep arsenate removal onto magnetite modified fly ash. in Journal of Environmental Management
Academic Press Ltd- Elsevier Science Ltd, London., 224, 263-276.
https://doi.org/10.1016/j.jenvman.2018.07.051
Karanac M, Đolić M, Veličković Z, Kapidžić A, Ivanovski VN, Mitrić M, Marinković A. Efficient multistep arsenate removal onto magnetite modified fly ash. in Journal of Environmental Management. 2018;224:263-276.
doi:10.1016/j.jenvman.2018.07.051 .
Karanac, Milica, Đolić, Maja, Veličković, Zlate, Kapidžić, Ana, Ivanovski, Valentin N., Mitrić, Miodrag, Marinković, Aleksandar, "Efficient multistep arsenate removal onto magnetite modified fly ash" in Journal of Environmental Management, 224 (2018):263-276,
https://doi.org/10.1016/j.jenvman.2018.07.051 . .
1
33
15
31