Mihajlović, Marija L.

Link to this page

Authority KeyName Variants
43140546-a6bd-4121-b671-1bb37344a919
  • Mihajlović, Marija L. (3)
  • Mihajlović, Marija (2)
Projects

Author's Bibliography

Calcium-pyro-hydrochar derived from the spent mushroom substrate as a functional sorbent of Pb2+ and Cd2+ from aqueous solutions

Kojić, Marija; Mihajlović, Marija; Marinović-Cincović, Milena; Petrović, Jelena; Katnić, Đurica; Krstić, Aleksandar; Butulija, Svetlana; Onjia, Antonije

(SAGE Publications Ltd, 2022)

TY  - JOUR
AU  - Kojić, Marija
AU  - Mihajlović, Marija
AU  - Marinović-Cincović, Milena
AU  - Petrović, Jelena
AU  - Katnić, Đurica
AU  - Krstić, Aleksandar
AU  - Butulija, Svetlana
AU  - Onjia, Antonije
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5142
AB  - A calcium-pyro-hydrochar (Ca-PHC) can be distinguished as a novel sorbent of Pb2+ and Cd2+ from an aqueous solution. It was obtained using hydrothermal treatment of the spent mushroom substrate (SMS), followed by a CaCl2·5H2O activation and pyrolysis. The characterisation of chars before and after modifications was done by scanning electron microscope (SEM), Brunauer–Emmett–Teller (BET) and Fourier transform infrared (FTIR). Batch experiments were performed to examine Ca-PHC’s sorption properties and binding mechanisms to selected metal ions. The maximum sorption capacities of Ca-PHC for Pb2+ and Cd2+ were 297 mg g−1, and 131 mg g−1, respectively. The obtained results demonstrated that the sorption of Pb2+ and Cd2+ by Ca-PHC follows a pseudo-second kinetic model and Freundlich isotherm. The binding of the selected metals onto Ca-PHC was enabled by the ion-exchange mechanism, surface complexation, mineral precipitation and cation–π interaction. Thermodynamic parameters indicate that metal ions binding by Ca-PHC are spontaneous and endothermic. Due to the high adsorption capacities, the obtained Ca-PHC has good potential for application in industrial wastewater treatment. In addition, the demonstrated use of SMS highlights another possibility of applying this specific biomass relevant to sustainable and economical waste management in the growing mushroom industry.
PB  - SAGE Publications Ltd
T2  - Waste Management and Research
T1  - Calcium-pyro-hydrochar derived from the spent mushroom substrate as a functional sorbent of Pb2+ and Cd2+ from aqueous solutions
DO  - 10.1177/0734242X221093951
ER  - 
@article{
author = "Kojić, Marija and Mihajlović, Marija and Marinović-Cincović, Milena and Petrović, Jelena and Katnić, Đurica and Krstić, Aleksandar and Butulija, Svetlana and Onjia, Antonije",
year = "2022",
abstract = "A calcium-pyro-hydrochar (Ca-PHC) can be distinguished as a novel sorbent of Pb2+ and Cd2+ from an aqueous solution. It was obtained using hydrothermal treatment of the spent mushroom substrate (SMS), followed by a CaCl2·5H2O activation and pyrolysis. The characterisation of chars before and after modifications was done by scanning electron microscope (SEM), Brunauer–Emmett–Teller (BET) and Fourier transform infrared (FTIR). Batch experiments were performed to examine Ca-PHC’s sorption properties and binding mechanisms to selected metal ions. The maximum sorption capacities of Ca-PHC for Pb2+ and Cd2+ were 297 mg g−1, and 131 mg g−1, respectively. The obtained results demonstrated that the sorption of Pb2+ and Cd2+ by Ca-PHC follows a pseudo-second kinetic model and Freundlich isotherm. The binding of the selected metals onto Ca-PHC was enabled by the ion-exchange mechanism, surface complexation, mineral precipitation and cation–π interaction. Thermodynamic parameters indicate that metal ions binding by Ca-PHC are spontaneous and endothermic. Due to the high adsorption capacities, the obtained Ca-PHC has good potential for application in industrial wastewater treatment. In addition, the demonstrated use of SMS highlights another possibility of applying this specific biomass relevant to sustainable and economical waste management in the growing mushroom industry.",
publisher = "SAGE Publications Ltd",
journal = "Waste Management and Research",
title = "Calcium-pyro-hydrochar derived from the spent mushroom substrate as a functional sorbent of Pb2+ and Cd2+ from aqueous solutions",
doi = "10.1177/0734242X221093951"
}
Kojić, M., Mihajlović, M., Marinović-Cincović, M., Petrović, J., Katnić, Đ., Krstić, A., Butulija, S.,& Onjia, A.. (2022). Calcium-pyro-hydrochar derived from the spent mushroom substrate as a functional sorbent of Pb2+ and Cd2+ from aqueous solutions. in Waste Management and Research
SAGE Publications Ltd..
https://doi.org/10.1177/0734242X221093951
Kojić M, Mihajlović M, Marinović-Cincović M, Petrović J, Katnić Đ, Krstić A, Butulija S, Onjia A. Calcium-pyro-hydrochar derived from the spent mushroom substrate as a functional sorbent of Pb2+ and Cd2+ from aqueous solutions. in Waste Management and Research. 2022;.
doi:10.1177/0734242X221093951 .
Kojić, Marija, Mihajlović, Marija, Marinović-Cincović, Milena, Petrović, Jelena, Katnić, Đurica, Krstić, Aleksandar, Butulija, Svetlana, Onjia, Antonije, "Calcium-pyro-hydrochar derived from the spent mushroom substrate as a functional sorbent of Pb2+ and Cd2+ from aqueous solutions" in Waste Management and Research (2022),
https://doi.org/10.1177/0734242X221093951 . .
6
6

Mechanism of adsorption of Cu2+ and Zn2+ on the corn silk (Zea mays L.)

Petrović, Marija; Šoštarić, Tatjana; Stojanović, Mirjana; Petrović, Jelena; Mihajlović, Marija; Ćosović, Aleksandar; Stanković, Slavka

(Elsevier, Amsterdam, 2017)

TY  - JOUR
AU  - Petrović, Marija
AU  - Šoštarić, Tatjana
AU  - Stojanović, Mirjana
AU  - Petrović, Jelena
AU  - Mihajlović, Marija
AU  - Ćosović, Aleksandar
AU  - Stanković, Slavka
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3670
AB  - In this study the novel biosorbent - raw corn silk (CS) was investigated for Cu2+ and Zn2+ removal from aqueous solutions. The physical and chemical properties of CS were determined by SEM - EDX and ATR - FTIR techniques. The SEM micrographs revealed that surface morphology of CS is suitable for metal adsorption, while FTIR analysis confirmed presence of various active groups (O-H, C-O, C-O C, C=C and amide II) which could interact with metal ions. The adsorption experiments were performed in batch system. Experimental data were fitted by pseudo - first order and pseudo - second order kinetic models as well as Langmuir and Freundlich isotherm models. Biosorption of the both metals follow pseudo second order kinetic model. The best fitting adsorption model is Langmuir model and the maximum biosorption capacities (q(max)) for Cu2+ and Zn2+ at 313 K and pH 5.0 were 15.35 mg g(-1) and 13.98 mg g(-1), respectively. The thermodynamic parameters such as Gibbs free energy change (Delta G), enthalpy change (Delta H) and entropy change (Delta S) were studied at different metal concentration and three temperatures. According to thermodynamic study, the biosorption process for both metals is feasible, endothermic and spontaneous. According to thermodynamic study, the biosorption process for both metals is feasible, endothermic and spontaneous. Ion - exchange is the dominant mechanism in adsorption of Cu2+ and Zn2+ on the CS with a certain degree of complexation. Desorption study was performed in three adsorption/desorption cycles with diluted nitric acid. Results show that after metal adsorption CS can be efficiently recovered and reused for new adsorption process. Obtained results indicated that corn silk could be used as efficient novel biosorbent for Cu2+ and Zn2+ removal from water samples.
PB  - Elsevier, Amsterdam
T2  - Ecological Engineering
T1  - Mechanism of adsorption of Cu2+ and Zn2+ on the corn silk (Zea mays L.)
EP  - 90
SP  - 83
VL  - 99
DO  - 10.1016/j.ecoleng.2016.11.057
ER  - 
@article{
author = "Petrović, Marija and Šoštarić, Tatjana and Stojanović, Mirjana and Petrović, Jelena and Mihajlović, Marija and Ćosović, Aleksandar and Stanković, Slavka",
year = "2017",
abstract = "In this study the novel biosorbent - raw corn silk (CS) was investigated for Cu2+ and Zn2+ removal from aqueous solutions. The physical and chemical properties of CS were determined by SEM - EDX and ATR - FTIR techniques. The SEM micrographs revealed that surface morphology of CS is suitable for metal adsorption, while FTIR analysis confirmed presence of various active groups (O-H, C-O, C-O C, C=C and amide II) which could interact with metal ions. The adsorption experiments were performed in batch system. Experimental data were fitted by pseudo - first order and pseudo - second order kinetic models as well as Langmuir and Freundlich isotherm models. Biosorption of the both metals follow pseudo second order kinetic model. The best fitting adsorption model is Langmuir model and the maximum biosorption capacities (q(max)) for Cu2+ and Zn2+ at 313 K and pH 5.0 were 15.35 mg g(-1) and 13.98 mg g(-1), respectively. The thermodynamic parameters such as Gibbs free energy change (Delta G), enthalpy change (Delta H) and entropy change (Delta S) were studied at different metal concentration and three temperatures. According to thermodynamic study, the biosorption process for both metals is feasible, endothermic and spontaneous. According to thermodynamic study, the biosorption process for both metals is feasible, endothermic and spontaneous. Ion - exchange is the dominant mechanism in adsorption of Cu2+ and Zn2+ on the CS with a certain degree of complexation. Desorption study was performed in three adsorption/desorption cycles with diluted nitric acid. Results show that after metal adsorption CS can be efficiently recovered and reused for new adsorption process. Obtained results indicated that corn silk could be used as efficient novel biosorbent for Cu2+ and Zn2+ removal from water samples.",
publisher = "Elsevier, Amsterdam",
journal = "Ecological Engineering",
title = "Mechanism of adsorption of Cu2+ and Zn2+ on the corn silk (Zea mays L.)",
pages = "90-83",
volume = "99",
doi = "10.1016/j.ecoleng.2016.11.057"
}
Petrović, M., Šoštarić, T., Stojanović, M., Petrović, J., Mihajlović, M., Ćosović, A.,& Stanković, S.. (2017). Mechanism of adsorption of Cu2+ and Zn2+ on the corn silk (Zea mays L.). in Ecological Engineering
Elsevier, Amsterdam., 99, 83-90.
https://doi.org/10.1016/j.ecoleng.2016.11.057
Petrović M, Šoštarić T, Stojanović M, Petrović J, Mihajlović M, Ćosović A, Stanković S. Mechanism of adsorption of Cu2+ and Zn2+ on the corn silk (Zea mays L.). in Ecological Engineering. 2017;99:83-90.
doi:10.1016/j.ecoleng.2016.11.057 .
Petrović, Marija, Šoštarić, Tatjana, Stojanović, Mirjana, Petrović, Jelena, Mihajlović, Marija, Ćosović, Aleksandar, Stanković, Slavka, "Mechanism of adsorption of Cu2+ and Zn2+ on the corn silk (Zea mays L.)" in Ecological Engineering, 99 (2017):83-90,
https://doi.org/10.1016/j.ecoleng.2016.11.057 . .
68
47
82

Compost of Aquatic Weed Myriophyllum spicatum as Low-Cost Biosorbent for Selected Heavy Metal Ions

Milojković, Jelena V.; Stojanović, Mirjana D.; Mihajlović, Marija L.; Lopičić, Zorica; Petrović, Marija S.; Šoštarić, Tatjana; Ristić, Mirjana

(Springer International Publishing Ag, Cham, 2014)

TY  - JOUR
AU  - Milojković, Jelena V.
AU  - Stojanović, Mirjana D.
AU  - Mihajlović, Marija L.
AU  - Lopičić, Zorica
AU  - Petrović, Marija S.
AU  - Šoštarić, Tatjana
AU  - Ristić, Mirjana
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2861
AB  - Aquatic weed Myriophyllum spicatum L. is one of the most invasive water plants known. In many countries, it is usually harvested and landfilled, where aerobic and anaerobic decomposition takes place. In this research, the kinetic, equilibrium, and desorption studies of biosorption of Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) ions onto compost of M. spicatum were investigated in batch experiments. Biosorbent was characterized by scaning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). SEM analysis showed that ion exchange between divalent cations Ca(II) and selected metals takes place. The results of FTIR exposed that carbonyl, carboxyl, hydroxyl, and phenyl groups are main binding sites for those heavy metal ions. The rate of adsorption of the five heavy metals was fast, which achieved equilibrium in 40 min, and followed the pseudo-second-order model well. Langmuir, Freundlich, and Sips equilibrium adsorption models were studied, and Sips isotherm gave the best fit for experimental data. Desorption by 0.1 M HNO3 did not fully recover the metals sorbed onto the compost, indicating that reusing this material as biosorbent is not possible. Furthermore, the use of spent biosorbent as a soil fertilizer is proposed.
PB  - Springer International Publishing Ag, Cham
T2  - Water Air and Soil Pollution
T1  - Compost of Aquatic Weed Myriophyllum spicatum as Low-Cost Biosorbent for Selected Heavy Metal Ions
IS  - 4
VL  - 225
DO  - 10.1007/s11270-014-1927-8
ER  - 
@article{
author = "Milojković, Jelena V. and Stojanović, Mirjana D. and Mihajlović, Marija L. and Lopičić, Zorica and Petrović, Marija S. and Šoštarić, Tatjana and Ristić, Mirjana",
year = "2014",
abstract = "Aquatic weed Myriophyllum spicatum L. is one of the most invasive water plants known. In many countries, it is usually harvested and landfilled, where aerobic and anaerobic decomposition takes place. In this research, the kinetic, equilibrium, and desorption studies of biosorption of Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) ions onto compost of M. spicatum were investigated in batch experiments. Biosorbent was characterized by scaning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). SEM analysis showed that ion exchange between divalent cations Ca(II) and selected metals takes place. The results of FTIR exposed that carbonyl, carboxyl, hydroxyl, and phenyl groups are main binding sites for those heavy metal ions. The rate of adsorption of the five heavy metals was fast, which achieved equilibrium in 40 min, and followed the pseudo-second-order model well. Langmuir, Freundlich, and Sips equilibrium adsorption models were studied, and Sips isotherm gave the best fit for experimental data. Desorption by 0.1 M HNO3 did not fully recover the metals sorbed onto the compost, indicating that reusing this material as biosorbent is not possible. Furthermore, the use of spent biosorbent as a soil fertilizer is proposed.",
publisher = "Springer International Publishing Ag, Cham",
journal = "Water Air and Soil Pollution",
title = "Compost of Aquatic Weed Myriophyllum spicatum as Low-Cost Biosorbent for Selected Heavy Metal Ions",
number = "4",
volume = "225",
doi = "10.1007/s11270-014-1927-8"
}
Milojković, J. V., Stojanović, M. D., Mihajlović, M. L., Lopičić, Z., Petrović, M. S., Šoštarić, T.,& Ristić, M.. (2014). Compost of Aquatic Weed Myriophyllum spicatum as Low-Cost Biosorbent for Selected Heavy Metal Ions. in Water Air and Soil Pollution
Springer International Publishing Ag, Cham., 225(4).
https://doi.org/10.1007/s11270-014-1927-8
Milojković JV, Stojanović MD, Mihajlović ML, Lopičić Z, Petrović MS, Šoštarić T, Ristić M. Compost of Aquatic Weed Myriophyllum spicatum as Low-Cost Biosorbent for Selected Heavy Metal Ions. in Water Air and Soil Pollution. 2014;225(4).
doi:10.1007/s11270-014-1927-8 .
Milojković, Jelena V., Stojanović, Mirjana D., Mihajlović, Marija L., Lopičić, Zorica, Petrović, Marija S., Šoštarić, Tatjana, Ristić, Mirjana, "Compost of Aquatic Weed Myriophyllum spicatum as Low-Cost Biosorbent for Selected Heavy Metal Ions" in Water Air and Soil Pollution, 225, no. 4 (2014),
https://doi.org/10.1007/s11270-014-1927-8 . .
15
8
15

Pb(II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study

Milojković, Jelena V.; Mihajlović, Marija L.; Stojanović, Mirjana D.; Lopičić, Zorica; Petrović, Marija S.; Šoštarić, Tatjana; Ristić, Mirjana

(Wiley, Hoboken, 2014)

TY  - JOUR
AU  - Milojković, Jelena V.
AU  - Mihajlović, Marija L.
AU  - Stojanović, Mirjana D.
AU  - Lopičić, Zorica
AU  - Petrović, Marija S.
AU  - Šoštarić, Tatjana
AU  - Ristić, Mirjana
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2847
AB  - BACKGROUND Lead is one of the frequent contaminants of industrial wastewater. Since it has been shown that aquatic plants can be used for the removal of heavy metals, herein Pb(II) biosorption by Myriophyllum spicatum and its compost were investigated. Effects of pH, ionic strength and contact time were analyzed using a batch experiment. Biomasses were characterized chemically and by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction techniques. RESULTS The adsorption process of both biosorbents followed a pseudo-second-order kinetic model. Compost exhibits better Pb(II) removal from solution (71%) compared with the plant (61%). Lead binding capacities for M. spicatum and its compost were 0.234 mmol g(-1) and 0.287 mmol g(-1) at pH 5.0, respectively. Lead binding takes place mainly through an ion exchange mechanism, but chemisorption via identified functional groups cannot be neglected. The Langmuir, Freundlich and Sips adsorption models for compost were applied. The Sips isotherm model gave the best fit with the equilibrium experimental data. The sorption process by compost was endothermic and spontaneous. CONCLUSION Aquatic weed compost as a low cost biosorbent with high biosorption capacity can potentially be used for the removal of lead from wastewaters.
PB  - Wiley, Hoboken
T2  - Journal of Chemical Technology and Biotechnology
T1  - Pb(II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study
EP  - 670
IS  - 5
SP  - 662
VL  - 89
DO  - 10.1002/jctb.4184
ER  - 
@article{
author = "Milojković, Jelena V. and Mihajlović, Marija L. and Stojanović, Mirjana D. and Lopičić, Zorica and Petrović, Marija S. and Šoštarić, Tatjana and Ristić, Mirjana",
year = "2014",
abstract = "BACKGROUND Lead is one of the frequent contaminants of industrial wastewater. Since it has been shown that aquatic plants can be used for the removal of heavy metals, herein Pb(II) biosorption by Myriophyllum spicatum and its compost were investigated. Effects of pH, ionic strength and contact time were analyzed using a batch experiment. Biomasses were characterized chemically and by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction techniques. RESULTS The adsorption process of both biosorbents followed a pseudo-second-order kinetic model. Compost exhibits better Pb(II) removal from solution (71%) compared with the plant (61%). Lead binding capacities for M. spicatum and its compost were 0.234 mmol g(-1) and 0.287 mmol g(-1) at pH 5.0, respectively. Lead binding takes place mainly through an ion exchange mechanism, but chemisorption via identified functional groups cannot be neglected. The Langmuir, Freundlich and Sips adsorption models for compost were applied. The Sips isotherm model gave the best fit with the equilibrium experimental data. The sorption process by compost was endothermic and spontaneous. CONCLUSION Aquatic weed compost as a low cost biosorbent with high biosorption capacity can potentially be used for the removal of lead from wastewaters.",
publisher = "Wiley, Hoboken",
journal = "Journal of Chemical Technology and Biotechnology",
title = "Pb(II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study",
pages = "670-662",
number = "5",
volume = "89",
doi = "10.1002/jctb.4184"
}
Milojković, J. V., Mihajlović, M. L., Stojanović, M. D., Lopičić, Z., Petrović, M. S., Šoštarić, T.,& Ristić, M.. (2014). Pb(II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study. in Journal of Chemical Technology and Biotechnology
Wiley, Hoboken., 89(5), 662-670.
https://doi.org/10.1002/jctb.4184
Milojković JV, Mihajlović ML, Stojanović MD, Lopičić Z, Petrović MS, Šoštarić T, Ristić M. Pb(II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study. in Journal of Chemical Technology and Biotechnology. 2014;89(5):662-670.
doi:10.1002/jctb.4184 .
Milojković, Jelena V., Mihajlović, Marija L., Stojanović, Mirjana D., Lopičić, Zorica, Petrović, Marija S., Šoštarić, Tatjana, Ristić, Mirjana, "Pb(II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study" in Journal of Chemical Technology and Biotechnology, 89, no. 5 (2014):662-670,
https://doi.org/10.1002/jctb.4184 . .
34
33
39

Efficient phytoremediation of uranium mine tailings by tobacco

Stojanović, Mirjana D.; Mihajlović, Marija L.; Milojković, Jelena V.; Lopičić, Zorica R.; Adamović, Milan; Stanković, Slavka

(Springer-Verlag, 2012)

TY  - JOUR
AU  - Stojanović, Mirjana D.
AU  - Mihajlović, Marija L.
AU  - Milojković, Jelena V.
AU  - Lopičić, Zorica R.
AU  - Adamović, Milan
AU  - Stanković, Slavka
PY  - 2012
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5684
AB  - This investigation shows that tobacco plant roots and leaves accumulate 60 times more uranium than previously reported. Phytoremediation is a convenient technique to clean up polluted soils using herbaceous plants and trees. Increasing research aims to identify novel plant species that accumulate toxic metals. Tobacco plant (Nicotiana tabacum L.) is a promising cultivar for phytoremediation because tobacco is fast growing and easily propagated. Here, we study phytoremediation of uranium by two tobacco varieties Virginia and Burley, bred in natural conditions. Plants were grown on uranium mine tailings with an average uranium content of 15. 3 mg kg -1. Each shoot sample was cross-sectioned into five uniform groups of leaves and stem segments. Results show a substantial variance in uranium uptake according to the section elderliness and origin of the plant parts. The highest concentrations of uranium values recorded in leaves of Burleys and Virginias nearest root shoot sections were 4. 18 and 3. 50 mg kg -1, respectively. These values are 60 times higher rates than those previously published for leaves of cultivars grown under similar conditions. Taking into account the level of soil contamination, the content of accumulated uranium demonstrates uranium hyperaccumulatory properties of tobacco plant and its potential utilization in phytoremediation of uranium-contaminated mediums.
PB  - Springer-Verlag
T2  - Environmental Chemistry Letters
T1  - Efficient phytoremediation of uranium mine tailings by tobacco
EP  - 381
IS  - 4
SP  - 377
VL  - 10
DO  - 10.1007/s10311-012-0362-6
ER  - 
@article{
author = "Stojanović, Mirjana D. and Mihajlović, Marija L. and Milojković, Jelena V. and Lopičić, Zorica R. and Adamović, Milan and Stanković, Slavka",
year = "2012",
abstract = "This investigation shows that tobacco plant roots and leaves accumulate 60 times more uranium than previously reported. Phytoremediation is a convenient technique to clean up polluted soils using herbaceous plants and trees. Increasing research aims to identify novel plant species that accumulate toxic metals. Tobacco plant (Nicotiana tabacum L.) is a promising cultivar for phytoremediation because tobacco is fast growing and easily propagated. Here, we study phytoremediation of uranium by two tobacco varieties Virginia and Burley, bred in natural conditions. Plants were grown on uranium mine tailings with an average uranium content of 15. 3 mg kg -1. Each shoot sample was cross-sectioned into five uniform groups of leaves and stem segments. Results show a substantial variance in uranium uptake according to the section elderliness and origin of the plant parts. The highest concentrations of uranium values recorded in leaves of Burleys and Virginias nearest root shoot sections were 4. 18 and 3. 50 mg kg -1, respectively. These values are 60 times higher rates than those previously published for leaves of cultivars grown under similar conditions. Taking into account the level of soil contamination, the content of accumulated uranium demonstrates uranium hyperaccumulatory properties of tobacco plant and its potential utilization in phytoremediation of uranium-contaminated mediums.",
publisher = "Springer-Verlag",
journal = "Environmental Chemistry Letters",
title = "Efficient phytoremediation of uranium mine tailings by tobacco",
pages = "381-377",
number = "4",
volume = "10",
doi = "10.1007/s10311-012-0362-6"
}
Stojanović, M. D., Mihajlović, M. L., Milojković, J. V., Lopičić, Z. R., Adamović, M.,& Stanković, S.. (2012). Efficient phytoremediation of uranium mine tailings by tobacco. in Environmental Chemistry Letters
Springer-Verlag., 10(4), 377-381.
https://doi.org/10.1007/s10311-012-0362-6
Stojanović MD, Mihajlović ML, Milojković JV, Lopičić ZR, Adamović M, Stanković S. Efficient phytoremediation of uranium mine tailings by tobacco. in Environmental Chemistry Letters. 2012;10(4):377-381.
doi:10.1007/s10311-012-0362-6 .
Stojanović, Mirjana D., Mihajlović, Marija L., Milojković, Jelena V., Lopičić, Zorica R., Adamović, Milan, Stanković, Slavka, "Efficient phytoremediation of uranium mine tailings by tobacco" in Environmental Chemistry Letters, 10, no. 4 (2012):377-381,
https://doi.org/10.1007/s10311-012-0362-6 . .
31
10
28