Lahti, Johanna

Link to this page

Authority KeyName Variants
0af6f5ac-4ae2-4a86-bb84-51d406adc1c5
  • Lahti, Johanna (1)
Projects
No records found.

Author's Bibliography

Achieving a Superhydrophobic, Moisture, Oil and Gas Barrier Film Using a Regenerated Cellulose–Calcium Carbonate Composite Derived from Paper Components or Waste

Imani, Monireh; Dimić-Mišić, Katarina; Kostić, Mirjana; Barać, Nemanja; Janaćković, Đorđe; Uskoković, Petar; Ivanovska, Aleksandra; Lahti, Johanna; Barcelo, Ernest; Gane, Patrick

(MDPI, 2022)

TY  - JOUR
AU  - Imani, Monireh
AU  - Dimić-Mišić, Katarina
AU  - Kostić, Mirjana
AU  - Barać, Nemanja
AU  - Janaćković, Đorđe
AU  - Uskoković, Petar
AU  - Ivanovska, Aleksandra
AU  - Lahti, Johanna
AU  - Barcelo, Ernest
AU  - Gane, Patrick
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5220
AB  - It has been a persistent challenge to develop eco-friendly packaging cellulose film providing the required multiple barrier properties whilst simultaneously contributing to a circular economy. Typically, a cellulosic film made from nanocellulose materials presents severe limitations, such as poor water/moisture resistance and lacking water vapour barrier properties, related primarily to the hydrophilic and hygroscopic nature of cellulose. In this work, alkyl ketene dimer (AKD) and starch, both eco-friendly, non-toxic, cost-effective materials, were used to achieve barrier properties of novel cellulose–calcium carbonate composite films regenerated from paper components, including paper waste, using ionic liquid as solvent. AKD and starch were applied first into the ionic cellulose solution dope mix, and secondly, AKD alone was coated from hot aqueous suspension onto the film surface using a substrate surface precooling technique. The interactions between the AKD and cellulose film were characterised by Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) showing the formation of a ketone ester structure between AKD and the hydroxyl groups of cellulose. The presence of calcium carbonate particles in the composite was seen to enhance the cellulose crystallinity. The initial high-water vapour and oxygen transmission rates of the untreated base films could be decreased significantly from 2.00 to 0.14 g m−2 d−1, and 3.85 × 102 to 0.45 × 102 cm3 m−2 d−1, respectively. In addition, by applying subsequent heat treatment to the AKD coating, the water contact angle was markedly increased to reach levels of superhydrophobicity (>150°, and roll-off angle < 5°). The resistance to water absorption, grease-permeation, and tensile strength properties were ultimately improved by 41.52%, 95.33%, and 127.33%, respectively, compared with those of an untreated pure cellulose film. The resulting regenerated cellulose–calcium carbonate composite-based film and coating formulation can be considered to provide a future bio-based circular economy barrier film, for example, for the packaging, construction and agriculture industries, to complement or replace oil-based plastics.
PB  - MDPI
T2  - Sustainability
T1  - Achieving a Superhydrophobic, Moisture, Oil and Gas Barrier Film Using a Regenerated Cellulose–Calcium Carbonate Composite Derived from Paper Components or Waste
IS  - 16
SP  - 10425
VL  - 14
DO  - 10.3390/su141610425
ER  - 
@article{
author = "Imani, Monireh and Dimić-Mišić, Katarina and Kostić, Mirjana and Barać, Nemanja and Janaćković, Đorđe and Uskoković, Petar and Ivanovska, Aleksandra and Lahti, Johanna and Barcelo, Ernest and Gane, Patrick",
year = "2022",
abstract = "It has been a persistent challenge to develop eco-friendly packaging cellulose film providing the required multiple barrier properties whilst simultaneously contributing to a circular economy. Typically, a cellulosic film made from nanocellulose materials presents severe limitations, such as poor water/moisture resistance and lacking water vapour barrier properties, related primarily to the hydrophilic and hygroscopic nature of cellulose. In this work, alkyl ketene dimer (AKD) and starch, both eco-friendly, non-toxic, cost-effective materials, were used to achieve barrier properties of novel cellulose–calcium carbonate composite films regenerated from paper components, including paper waste, using ionic liquid as solvent. AKD and starch were applied first into the ionic cellulose solution dope mix, and secondly, AKD alone was coated from hot aqueous suspension onto the film surface using a substrate surface precooling technique. The interactions between the AKD and cellulose film were characterised by Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) showing the formation of a ketone ester structure between AKD and the hydroxyl groups of cellulose. The presence of calcium carbonate particles in the composite was seen to enhance the cellulose crystallinity. The initial high-water vapour and oxygen transmission rates of the untreated base films could be decreased significantly from 2.00 to 0.14 g m−2 d−1, and 3.85 × 102 to 0.45 × 102 cm3 m−2 d−1, respectively. In addition, by applying subsequent heat treatment to the AKD coating, the water contact angle was markedly increased to reach levels of superhydrophobicity (>150°, and roll-off angle < 5°). The resistance to water absorption, grease-permeation, and tensile strength properties were ultimately improved by 41.52%, 95.33%, and 127.33%, respectively, compared with those of an untreated pure cellulose film. The resulting regenerated cellulose–calcium carbonate composite-based film and coating formulation can be considered to provide a future bio-based circular economy barrier film, for example, for the packaging, construction and agriculture industries, to complement or replace oil-based plastics.",
publisher = "MDPI",
journal = "Sustainability",
title = "Achieving a Superhydrophobic, Moisture, Oil and Gas Barrier Film Using a Regenerated Cellulose–Calcium Carbonate Composite Derived from Paper Components or Waste",
number = "16",
pages = "10425",
volume = "14",
doi = "10.3390/su141610425"
}
Imani, M., Dimić-Mišić, K., Kostić, M., Barać, N., Janaćković, Đ., Uskoković, P., Ivanovska, A., Lahti, J., Barcelo, E.,& Gane, P.. (2022). Achieving a Superhydrophobic, Moisture, Oil and Gas Barrier Film Using a Regenerated Cellulose–Calcium Carbonate Composite Derived from Paper Components or Waste. in Sustainability
MDPI., 14(16), 10425.
https://doi.org/10.3390/su141610425
Imani M, Dimić-Mišić K, Kostić M, Barać N, Janaćković Đ, Uskoković P, Ivanovska A, Lahti J, Barcelo E, Gane P. Achieving a Superhydrophobic, Moisture, Oil and Gas Barrier Film Using a Regenerated Cellulose–Calcium Carbonate Composite Derived from Paper Components or Waste. in Sustainability. 2022;14(16):10425.
doi:10.3390/su141610425 .
Imani, Monireh, Dimić-Mišić, Katarina, Kostić, Mirjana, Barać, Nemanja, Janaćković, Đorđe, Uskoković, Petar, Ivanovska, Aleksandra, Lahti, Johanna, Barcelo, Ernest, Gane, Patrick, "Achieving a Superhydrophobic, Moisture, Oil and Gas Barrier Film Using a Regenerated Cellulose–Calcium Carbonate Composite Derived from Paper Components or Waste" in Sustainability, 14, no. 16 (2022):10425,
https://doi.org/10.3390/su141610425 . .
1
3
4