Vujčić, Ivica

Link to this page

Authority KeyName Variants
orcid::0000-0003-2379-9022
  • Vujčić, Ivica (10)

Author's Bibliography

Irradiated fig pomace pyrochar as a promising and sustainable sterilized sorbent for water pollutant removal

Katnić, Đurica B.; Porobić, Slavica J.; Vujčić, Ivica; Kojić, Marija M.; Lazarević-Pašti, Tamara; Milanković, Vedran; Marinović-Cincović, Milena; Živojinović, Dragana Z.

(Elsevier Ltd, 2024)

TY  - JOUR
AU  - Katnić, Đurica B.
AU  - Porobić, Slavica J.
AU  - Vujčić, Ivica
AU  - Kojić, Marija M.
AU  - Lazarević-Pašti, Tamara
AU  - Milanković, Vedran
AU  - Marinović-Cincović, Milena
AU  - Živojinović, Dragana Z.
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6633
AB  - Irradiated fig pomace pyrochar (IrrPyrFP) is noteworthy as a novel sterilized low-cost sorbent of BTEX, pesticides, and Pb2+ ions. It was produced by applying pyrolysis treatment followed by gamma irradiation modification in order to obtain a highly efficient and sterile sorbent. The characterization of fig pomace before and after pyrolysis, as well as before and after irradiation of the obtained pyrochar, was done using SEM, FTIR, and elemental analysis, while its sorption ability was tested through the removal of examined pollutants by batch sorption experiments. The obtained results suggest that IrrPyrFP could play a significant role in the control of environmental pollutants, as indicated by the maximum adsorption capacities: 42 mg g−1 for BTEX, 0.625 mg g−1 for malathion, 0.495 mg g−1 for chlorpyrifos and 255 mg g−1 for Pb2+. A kinetic study showed that the removal process by IrrPyrFP mainly follows pseudo 2nd kinetics order, while the sorption equilibriums were estimated using the Langmuir and Freundlich model. Overall, the findings of this work suggest that pyrolysis and activation by irradiation of waste biomass is a promising way to produce sterile efficient sorbents for waste-water treatment based on green chemistry. Additionally, the demonstrated application of fig pomace promotes the potential of using this biomass for continual and economical waste management in the rising fig industry.
PB  - Elsevier Ltd
T2  - Radiation Physics and Chemistry
T1  - Irradiated fig pomace pyrochar as a promising and sustainable sterilized sorbent for water pollutant removal
SP  - 111277
VL  - 214
DO  - 10.1016/j.radphyschem.2023.111277
ER  - 
@article{
author = "Katnić, Đurica B. and Porobić, Slavica J. and Vujčić, Ivica and Kojić, Marija M. and Lazarević-Pašti, Tamara and Milanković, Vedran and Marinović-Cincović, Milena and Živojinović, Dragana Z.",
year = "2024",
abstract = "Irradiated fig pomace pyrochar (IrrPyrFP) is noteworthy as a novel sterilized low-cost sorbent of BTEX, pesticides, and Pb2+ ions. It was produced by applying pyrolysis treatment followed by gamma irradiation modification in order to obtain a highly efficient and sterile sorbent. The characterization of fig pomace before and after pyrolysis, as well as before and after irradiation of the obtained pyrochar, was done using SEM, FTIR, and elemental analysis, while its sorption ability was tested through the removal of examined pollutants by batch sorption experiments. The obtained results suggest that IrrPyrFP could play a significant role in the control of environmental pollutants, as indicated by the maximum adsorption capacities: 42 mg g−1 for BTEX, 0.625 mg g−1 for malathion, 0.495 mg g−1 for chlorpyrifos and 255 mg g−1 for Pb2+. A kinetic study showed that the removal process by IrrPyrFP mainly follows pseudo 2nd kinetics order, while the sorption equilibriums were estimated using the Langmuir and Freundlich model. Overall, the findings of this work suggest that pyrolysis and activation by irradiation of waste biomass is a promising way to produce sterile efficient sorbents for waste-water treatment based on green chemistry. Additionally, the demonstrated application of fig pomace promotes the potential of using this biomass for continual and economical waste management in the rising fig industry.",
publisher = "Elsevier Ltd",
journal = "Radiation Physics and Chemistry",
title = "Irradiated fig pomace pyrochar as a promising and sustainable sterilized sorbent for water pollutant removal",
pages = "111277",
volume = "214",
doi = "10.1016/j.radphyschem.2023.111277"
}
Katnić, Đ. B., Porobić, S. J., Vujčić, I., Kojić, M. M., Lazarević-Pašti, T., Milanković, V., Marinović-Cincović, M.,& Živojinović, D. Z.. (2024). Irradiated fig pomace pyrochar as a promising and sustainable sterilized sorbent for water pollutant removal. in Radiation Physics and Chemistry
Elsevier Ltd., 214, 111277.
https://doi.org/10.1016/j.radphyschem.2023.111277
Katnić ĐB, Porobić SJ, Vujčić I, Kojić MM, Lazarević-Pašti T, Milanković V, Marinović-Cincović M, Živojinović DZ. Irradiated fig pomace pyrochar as a promising and sustainable sterilized sorbent for water pollutant removal. in Radiation Physics and Chemistry. 2024;214:111277.
doi:10.1016/j.radphyschem.2023.111277 .
Katnić, Đurica B., Porobić, Slavica J., Vujčić, Ivica, Kojić, Marija M., Lazarević-Pašti, Tamara, Milanković, Vedran, Marinović-Cincović, Milena, Živojinović, Dragana Z., "Irradiated fig pomace pyrochar as a promising and sustainable sterilized sorbent for water pollutant removal" in Radiation Physics and Chemistry, 214 (2024):111277,
https://doi.org/10.1016/j.radphyschem.2023.111277 . .
2
2

The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing

Mališić, Vanja; Gajić, Vuk; Porobić, Slavica; Patarić, Aleksandra; Putić, Slaviša; Vujčić, Ivica

(Elsevier Ltd, 2023)

TY  - JOUR
AU  - Mališić, Vanja
AU  - Gajić, Vuk
AU  - Porobić, Slavica
AU  - Patarić, Aleksandra
AU  - Putić, Slaviša
AU  - Vujčić, Ivica
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5958
AB  - Polymethyl methacrylate (PMMA) is a polymer material widely used in dental applications due to its excellent biocompatibility, stable physicochemical properties, easy manipulation, and low cost. The combination of biocompatible polymers and ceramics has great potential for the development of materials in the dental industry with improved mechanical properties. The addition of Al2O3 nanoparticles to PMMA can significantly improve its compressive and flexural strengths and wear resistance. Since this material is used in dental applications, it requires a high degree of product sterility. This can easily be achieved with gamma radiation treatment. Gamma radiation not only ensures the sterility of the product but can also affects changes in numerous material properties. The aim of this paper is to determine the influence of different doses of gamma radiation on the microbiological purity and changes in the mechanical and thermal properties of the PMMA/Al2O3 composite as well as the microstructural and color changes. It was found that the dose of radiation of 25 kGy is sufficient for complete sterilization of the product. This radiation dose improves the mechanical properties of the material and thermal stability. On the other hand, the dose of 25 kGy does not affect the morphology of the exposed sample and has small effect on the color change.
PB  - Elsevier Ltd
T2  - Radiation Physics and Chemistry
T1  - The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing
SP  - 110846
VL  - 207
DO  - 10.1016/j.radphyschem.2023.110846
ER  - 
@article{
author = "Mališić, Vanja and Gajić, Vuk and Porobić, Slavica and Patarić, Aleksandra and Putić, Slaviša and Vujčić, Ivica",
year = "2023",
abstract = "Polymethyl methacrylate (PMMA) is a polymer material widely used in dental applications due to its excellent biocompatibility, stable physicochemical properties, easy manipulation, and low cost. The combination of biocompatible polymers and ceramics has great potential for the development of materials in the dental industry with improved mechanical properties. The addition of Al2O3 nanoparticles to PMMA can significantly improve its compressive and flexural strengths and wear resistance. Since this material is used in dental applications, it requires a high degree of product sterility. This can easily be achieved with gamma radiation treatment. Gamma radiation not only ensures the sterility of the product but can also affects changes in numerous material properties. The aim of this paper is to determine the influence of different doses of gamma radiation on the microbiological purity and changes in the mechanical and thermal properties of the PMMA/Al2O3 composite as well as the microstructural and color changes. It was found that the dose of radiation of 25 kGy is sufficient for complete sterilization of the product. This radiation dose improves the mechanical properties of the material and thermal stability. On the other hand, the dose of 25 kGy does not affect the morphology of the exposed sample and has small effect on the color change.",
publisher = "Elsevier Ltd",
journal = "Radiation Physics and Chemistry",
title = "The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing",
pages = "110846",
volume = "207",
doi = "10.1016/j.radphyschem.2023.110846"
}
Mališić, V., Gajić, V., Porobić, S., Patarić, A., Putić, S.,& Vujčić, I.. (2023). The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing. in Radiation Physics and Chemistry
Elsevier Ltd., 207, 110846.
https://doi.org/10.1016/j.radphyschem.2023.110846
Mališić V, Gajić V, Porobić S, Patarić A, Putić S, Vujčić I. The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing. in Radiation Physics and Chemistry. 2023;207:110846.
doi:10.1016/j.radphyschem.2023.110846 .
Mališić, Vanja, Gajić, Vuk, Porobić, Slavica, Patarić, Aleksandra, Putić, Slaviša, Vujčić, Ivica, "The effect of gamma irradiation on the synthesis, microbiological sterility, and improvement of properties of PMMA-Al2O3 composite used in dental prosthesis manufacturing" in Radiation Physics and Chemistry, 207 (2023):110846,
https://doi.org/10.1016/j.radphyschem.2023.110846 . .
5
4

Sensory properties of new films based on poly(vinyl-alcohol) and pyridone azo dyes

Nikolić, Nataša; Porobić, Slavica; Tadić, Julijana; Vujčić, Ivica; Kojić, Marija; Lađarević, Jelena; Mijin, Dušan

(Niš : RAD Centre, 2023)

TY  - CONF
AU  - Nikolić, Nataša
AU  - Porobić, Slavica
AU  - Tadić, Julijana
AU  - Vujčić, Ivica
AU  - Kojić, Marija
AU  - Lađarević, Jelena
AU  - Mijin, Dušan
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6753
AB  - Polymeric materials are widely used in the chemical and optical industries, the packaging materials industry, and biomedicine. New technologies and the search for innovative and sustainable solutions have contributed to the development of polymer sensors and smart materials. Poly(vinyl-alcohol) (PVA) is a thermoplastic polymer soluble in water. It belongs to the group of non-toxic and completely biodegradable polymers, with excellent thermal and mechanical properties. Polymer-colored films have great potential as sensor systems, primarily due to their visual color change, which makes them easy to use. Azo dyes, which are used for coloring polymer films, represent the most important class of synthetic dyes, and their exceptional properties are reflected in high extinction coefficients, as well as excellent fastness to light and wet processing. Traditionally, azo dyes are used in the food and cosmetic industries, and are also used as pH indicators.
In this work, in addition to the synthesis of azo pyridone dyes, polymeric films were also synthesized. The first series of films were synthesized based on PVA and newly synthesized azo dyes, and the sensory properties of the new films were tested. The second series of films were synthesized in order to test the films as dosimeters for γ-radiation, and for this reason, TTC was added to their synthesis. The dye used in the experiments were characterized by ATR-FTIR, NMR and UV-Vis spectra. The chemical structure of the synthesized films was analyzed by ATR-FTIR spectroscopy. The sensory properties of the film were tested in solutions of different pH values, while the possibility for application in dosimetry was tested at different doses of γ-radiation at the 60Co source. Changes in the color of the films were monitored spectrophotometrically by recording reflection spectra.
PB  - Niš : RAD Centre
C3  - Book of Abstracts / Eleventh International Conference on Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology (RAD 2023 Conference), June 19-25, Herceg Novi, Montenegro
T1  - Sensory properties of new films based on poly(vinyl-alcohol) and pyridone azo dyes
SP  - 180
DO  - 10.21175/rad.abstr.book.2023.32.10
ER  - 
@conference{
author = "Nikolić, Nataša and Porobić, Slavica and Tadić, Julijana and Vujčić, Ivica and Kojić, Marija and Lađarević, Jelena and Mijin, Dušan",
year = "2023",
abstract = "Polymeric materials are widely used in the chemical and optical industries, the packaging materials industry, and biomedicine. New technologies and the search for innovative and sustainable solutions have contributed to the development of polymer sensors and smart materials. Poly(vinyl-alcohol) (PVA) is a thermoplastic polymer soluble in water. It belongs to the group of non-toxic and completely biodegradable polymers, with excellent thermal and mechanical properties. Polymer-colored films have great potential as sensor systems, primarily due to their visual color change, which makes them easy to use. Azo dyes, which are used for coloring polymer films, represent the most important class of synthetic dyes, and their exceptional properties are reflected in high extinction coefficients, as well as excellent fastness to light and wet processing. Traditionally, azo dyes are used in the food and cosmetic industries, and are also used as pH indicators.
In this work, in addition to the synthesis of azo pyridone dyes, polymeric films were also synthesized. The first series of films were synthesized based on PVA and newly synthesized azo dyes, and the sensory properties of the new films were tested. The second series of films were synthesized in order to test the films as dosimeters for γ-radiation, and for this reason, TTC was added to their synthesis. The dye used in the experiments were characterized by ATR-FTIR, NMR and UV-Vis spectra. The chemical structure of the synthesized films was analyzed by ATR-FTIR spectroscopy. The sensory properties of the film were tested in solutions of different pH values, while the possibility for application in dosimetry was tested at different doses of γ-radiation at the 60Co source. Changes in the color of the films were monitored spectrophotometrically by recording reflection spectra.",
publisher = "Niš : RAD Centre",
journal = "Book of Abstracts / Eleventh International Conference on Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology (RAD 2023 Conference), June 19-25, Herceg Novi, Montenegro",
title = "Sensory properties of new films based on poly(vinyl-alcohol) and pyridone azo dyes",
pages = "180",
doi = "10.21175/rad.abstr.book.2023.32.10"
}
Nikolić, N., Porobić, S., Tadić, J., Vujčić, I., Kojić, M., Lađarević, J.,& Mijin, D.. (2023). Sensory properties of new films based on poly(vinyl-alcohol) and pyridone azo dyes. in Book of Abstracts / Eleventh International Conference on Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology (RAD 2023 Conference), June 19-25, Herceg Novi, Montenegro
Niš : RAD Centre., 180.
https://doi.org/10.21175/rad.abstr.book.2023.32.10
Nikolić N, Porobić S, Tadić J, Vujčić I, Kojić M, Lađarević J, Mijin D. Sensory properties of new films based on poly(vinyl-alcohol) and pyridone azo dyes. in Book of Abstracts / Eleventh International Conference on Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology (RAD 2023 Conference), June 19-25, Herceg Novi, Montenegro. 2023;:180.
doi:10.21175/rad.abstr.book.2023.32.10 .
Nikolić, Nataša, Porobić, Slavica, Tadić, Julijana, Vujčić, Ivica, Kojić, Marija, Lađarević, Jelena, Mijin, Dušan, "Sensory properties of new films based on poly(vinyl-alcohol) and pyridone azo dyes" in Book of Abstracts / Eleventh International Conference on Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology (RAD 2023 Conference), June 19-25, Herceg Novi, Montenegro (2023):180,
https://doi.org/10.21175/rad.abstr.book.2023.32.10 . .

Possibility of using ionizing radiation treated sludge from drinking water treatment plant as fertilizer in agriculture: Effects of aging

Ranković, Bojan; Gajić, Vuk; Mašić, Slobodan; Pavićević, Vladimir; Vujčić, Ivica

(Elsevier Ltd., 2023)

TY  - JOUR
AU  - Ranković, Bojan
AU  - Gajić, Vuk
AU  - Mašić, Slobodan
AU  - Pavićević, Vladimir
AU  - Vujčić, Ivica
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5277
AB  - Using ionizing radiation in treating waste sludge from a drinking water treatment plant is a well-known technique. Sludge treated with ionizing radiation can be used as fertilizer in agriculture. In this paper, the effects of aging on the physicochemical characteristics, the content of microorganisms, molds, acrylamide, heavy metal concentration, and total nutrient content in waste sludge treated with e-beam and gamma irradiation were investigated. The possibility of using treated sludge as a fertilizer in agriculture was evaluated. It has been shown that the content of acrylamide in treated sludge after 15 months of storage does not exceed the limits for sludge to be used as fertilizer. If the sludge is stored in closed bags in a dark place, aging does not increase total microorganisms and molds. The research also showed that the sludge's physicochemical characteristics treated in this way do not decrease under the influence of aging. Finally, it has been shown that aging does not change the concentration of heavy metals and total nutrients in sludge treated by ionizing irradiation.
PB  - Elsevier Ltd.
T2  - Applied Radiation and Isotopes
T1  - Possibility of using ionizing radiation treated sludge from drinking water treatment plant as fertilizer in agriculture: Effects of aging
SP  - 110602
VL  - 192
DO  - 10.1016/j.apradiso.2022.110602
ER  - 
@article{
author = "Ranković, Bojan and Gajić, Vuk and Mašić, Slobodan and Pavićević, Vladimir and Vujčić, Ivica",
year = "2023",
abstract = "Using ionizing radiation in treating waste sludge from a drinking water treatment plant is a well-known technique. Sludge treated with ionizing radiation can be used as fertilizer in agriculture. In this paper, the effects of aging on the physicochemical characteristics, the content of microorganisms, molds, acrylamide, heavy metal concentration, and total nutrient content in waste sludge treated with e-beam and gamma irradiation were investigated. The possibility of using treated sludge as a fertilizer in agriculture was evaluated. It has been shown that the content of acrylamide in treated sludge after 15 months of storage does not exceed the limits for sludge to be used as fertilizer. If the sludge is stored in closed bags in a dark place, aging does not increase total microorganisms and molds. The research also showed that the sludge's physicochemical characteristics treated in this way do not decrease under the influence of aging. Finally, it has been shown that aging does not change the concentration of heavy metals and total nutrients in sludge treated by ionizing irradiation.",
publisher = "Elsevier Ltd.",
journal = "Applied Radiation and Isotopes",
title = "Possibility of using ionizing radiation treated sludge from drinking water treatment plant as fertilizer in agriculture: Effects of aging",
pages = "110602",
volume = "192",
doi = "10.1016/j.apradiso.2022.110602"
}
Ranković, B., Gajić, V., Mašić, S., Pavićević, V.,& Vujčić, I.. (2023). Possibility of using ionizing radiation treated sludge from drinking water treatment plant as fertilizer in agriculture: Effects of aging. in Applied Radiation and Isotopes
Elsevier Ltd.., 192, 110602.
https://doi.org/10.1016/j.apradiso.2022.110602
Ranković B, Gajić V, Mašić S, Pavićević V, Vujčić I. Possibility of using ionizing radiation treated sludge from drinking water treatment plant as fertilizer in agriculture: Effects of aging. in Applied Radiation and Isotopes. 2023;192:110602.
doi:10.1016/j.apradiso.2022.110602 .
Ranković, Bojan, Gajić, Vuk, Mašić, Slobodan, Pavićević, Vladimir, Vujčić, Ivica, "Possibility of using ionizing radiation treated sludge from drinking water treatment plant as fertilizer in agriculture: Effects of aging" in Applied Radiation and Isotopes, 192 (2023):110602,
https://doi.org/10.1016/j.apradiso.2022.110602 . .
2
1

Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass

Katnić, Đurica; Marinović-Cincović, Milena; Porobić, Slavica J.; Vujčić, Ivica; Šaponjić, Aleksandra; Sikirić, Biljana; Živojinović, Dragana

(Elsevier Ltd, 2022)

TY  - JOUR
AU  - Katnić, Đurica
AU  - Marinović-Cincović, Milena
AU  - Porobić, Slavica J.
AU  - Vujčić, Ivica
AU  - Šaponjić, Aleksandra
AU  - Sikirić, Biljana
AU  - Živojinović, Dragana
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5107
AB  - Redirecting waste biomass back into the economy can reduce their burden on the environment. The use of waste biomass for the production of fuels, value-added materials or natural fillers has significant economic and environmental benefits. Physico-chemical characterization of waste biomass (plum pomace and fig pomace) was done by proximate, elemental, biochemical analysis, FTIR and SEM analysis. The calorific value of both biomasses can be compared with the calorific value of lignite, which rises their potential use as a solid biofuel. The combustion behavior of biomass was investigated by thermal analysis techniques. Based on thermal degradation experiments performed at four heating rates a kinetic analysis of the biomass decomposition process was accomplished. The kinetic study was done using Kissinger method, Ozawa method, Flynn-Wall-Ozawa (FWO) method, Starink method, and Kissinger-Akahira-Sunose (KAS) method. The value of activation energy obtained by different kinetic methods was ∼210 kJ/mol for plum pomace and ∼162 kJ/mol for fig pomace. Estimated activation energy values were used to calculate thermodynamic parameters. In addition to the fact that the obtained results can serve as a useful reference for the design of pyrolysis reactors, this research has ecological significance because it solves the problem of solid waste disposal.
PB  - Elsevier Ltd
T2  - Journal of Cleaner Production
T1  - Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass
SP  - 131637
VL  - 352
DO  - 10.1016/j.jclepro.2022.131637
ER  - 
@article{
author = "Katnić, Đurica and Marinović-Cincović, Milena and Porobić, Slavica J. and Vujčić, Ivica and Šaponjić, Aleksandra and Sikirić, Biljana and Živojinović, Dragana",
year = "2022",
abstract = "Redirecting waste biomass back into the economy can reduce their burden on the environment. The use of waste biomass for the production of fuels, value-added materials or natural fillers has significant economic and environmental benefits. Physico-chemical characterization of waste biomass (plum pomace and fig pomace) was done by proximate, elemental, biochemical analysis, FTIR and SEM analysis. The calorific value of both biomasses can be compared with the calorific value of lignite, which rises their potential use as a solid biofuel. The combustion behavior of biomass was investigated by thermal analysis techniques. Based on thermal degradation experiments performed at four heating rates a kinetic analysis of the biomass decomposition process was accomplished. The kinetic study was done using Kissinger method, Ozawa method, Flynn-Wall-Ozawa (FWO) method, Starink method, and Kissinger-Akahira-Sunose (KAS) method. The value of activation energy obtained by different kinetic methods was ∼210 kJ/mol for plum pomace and ∼162 kJ/mol for fig pomace. Estimated activation energy values were used to calculate thermodynamic parameters. In addition to the fact that the obtained results can serve as a useful reference for the design of pyrolysis reactors, this research has ecological significance because it solves the problem of solid waste disposal.",
publisher = "Elsevier Ltd",
journal = "Journal of Cleaner Production",
title = "Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass",
pages = "131637",
volume = "352",
doi = "10.1016/j.jclepro.2022.131637"
}
Katnić, Đ., Marinović-Cincović, M., Porobić, S. J., Vujčić, I., Šaponjić, A., Sikirić, B.,& Živojinović, D.. (2022). Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass. in Journal of Cleaner Production
Elsevier Ltd., 352, 131637.
https://doi.org/10.1016/j.jclepro.2022.131637
Katnić Đ, Marinović-Cincović M, Porobić SJ, Vujčić I, Šaponjić A, Sikirić B, Živojinović D. Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass. in Journal of Cleaner Production. 2022;352:131637.
doi:10.1016/j.jclepro.2022.131637 .
Katnić, Đurica, Marinović-Cincović, Milena, Porobić, Slavica J., Vujčić, Ivica, Šaponjić, Aleksandra, Sikirić, Biljana, Živojinović, Dragana, "Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass" in Journal of Cleaner Production, 352 (2022):131637,
https://doi.org/10.1016/j.jclepro.2022.131637 . .
12
10

Utilization of gamma and e-beam irradiation in the treatment of waste sludge from a drinking water treatment plant

Ranković, Bojan; Sagatova, Andrea; Vujčić, Ivica; Masić, Slobodan; Veljović, Đorđe; Pavićević, Vladimir; Kamberović, Željko

(Pergamon-Elsevier Science Ltd, Oxford, 2020)

TY  - JOUR
AU  - Ranković, Bojan
AU  - Sagatova, Andrea
AU  - Vujčić, Ivica
AU  - Masić, Slobodan
AU  - Veljović, Đorđe
AU  - Pavićević, Vladimir
AU  - Kamberović, Željko
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4445
AB  - An increasing production of drinking water and a significant amount of waste in the form of treated sludge can lead to a serious environmental problem. The high organic content in the sludge, together with the high summer temperatures, results in the enhanced activity of sludge microorganisms, causing severe can cause serious biological pollution. Also, there is a danger due to the potential presence of polyacrylamide, which is very harmful to human health and the environment. In this paper, the influence of different types of ionizing radiation (gamma and e-beam) on microorganisms inactivation in waste sludge from drinking water treatment plants was investigated. The content of heavy metals and polyacrylamide before and after irradiation was determined. It was concluded that the content of heavy metals in the waste sludge obtained from the drinking water treatment plant is significantly lower than the limit values. The concentration of acrylamide, both before and after irradiation, was limit value for sludge to be used as fertilizer. It was found that the dose of 25 kGy inactivates all pathogens in all samples collected directly after coagulation, flocculation, and sedimentation and that the dose of 10 kGy is sufficient to inactivate all pathogens from dewatered samples previously treated with lime. In both cases, the number of microorganisms decreases sharply with increasing radiation dose.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Radiation Physics and Chemistry
T1  - Utilization of gamma and e-beam irradiation in the treatment of waste sludge from a drinking water treatment plant
VL  - 177
DO  - 10.1016/j.radphyschem.2020.109174
ER  - 
@article{
author = "Ranković, Bojan and Sagatova, Andrea and Vujčić, Ivica and Masić, Slobodan and Veljović, Đorđe and Pavićević, Vladimir and Kamberović, Željko",
year = "2020",
abstract = "An increasing production of drinking water and a significant amount of waste in the form of treated sludge can lead to a serious environmental problem. The high organic content in the sludge, together with the high summer temperatures, results in the enhanced activity of sludge microorganisms, causing severe can cause serious biological pollution. Also, there is a danger due to the potential presence of polyacrylamide, which is very harmful to human health and the environment. In this paper, the influence of different types of ionizing radiation (gamma and e-beam) on microorganisms inactivation in waste sludge from drinking water treatment plants was investigated. The content of heavy metals and polyacrylamide before and after irradiation was determined. It was concluded that the content of heavy metals in the waste sludge obtained from the drinking water treatment plant is significantly lower than the limit values. The concentration of acrylamide, both before and after irradiation, was limit value for sludge to be used as fertilizer. It was found that the dose of 25 kGy inactivates all pathogens in all samples collected directly after coagulation, flocculation, and sedimentation and that the dose of 10 kGy is sufficient to inactivate all pathogens from dewatered samples previously treated with lime. In both cases, the number of microorganisms decreases sharply with increasing radiation dose.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Radiation Physics and Chemistry",
title = "Utilization of gamma and e-beam irradiation in the treatment of waste sludge from a drinking water treatment plant",
volume = "177",
doi = "10.1016/j.radphyschem.2020.109174"
}
Ranković, B., Sagatova, A., Vujčić, I., Masić, S., Veljović, Đ., Pavićević, V.,& Kamberović, Ž.. (2020). Utilization of gamma and e-beam irradiation in the treatment of waste sludge from a drinking water treatment plant. in Radiation Physics and Chemistry
Pergamon-Elsevier Science Ltd, Oxford., 177.
https://doi.org/10.1016/j.radphyschem.2020.109174
Ranković B, Sagatova A, Vujčić I, Masić S, Veljović Đ, Pavićević V, Kamberović Ž. Utilization of gamma and e-beam irradiation in the treatment of waste sludge from a drinking water treatment plant. in Radiation Physics and Chemistry. 2020;177.
doi:10.1016/j.radphyschem.2020.109174 .
Ranković, Bojan, Sagatova, Andrea, Vujčić, Ivica, Masić, Slobodan, Veljović, Đorđe, Pavićević, Vladimir, Kamberović, Željko, "Utilization of gamma and e-beam irradiation in the treatment of waste sludge from a drinking water treatment plant" in Radiation Physics and Chemistry, 177 (2020),
https://doi.org/10.1016/j.radphyschem.2020.109174 . .
14
2
14

Preparation of beechwood/polymer composites using the method of lyophilization and gamma irradiation

Vujčić, Ivica; Mašić, Slobodan; Obradović, Nataša; Dramićanin, Miroslav

(Pergamon-Elsevier Science Ltd, Oxford, 2020)

TY  - JOUR
AU  - Vujčić, Ivica
AU  - Mašić, Slobodan
AU  - Obradović, Nataša
AU  - Dramićanin, Miroslav
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4352
AB  - Wooden cultural heritage serves as a very important source of information for historians and researchers. Also, it imposes an obligation on the science to keep this legacy for future generations in a proper condition. Among other techniques of conservation of wooden cultural heritage, a very suitable method is impregnation of the wood with the polymer, whereby the wood/polymer composites are formed. This paper describes the method of preparing the wood/polymer composites based on beechwood, using five different monomer systems. The method of lyophilization and subsequent polymerization by gamma radiation was used. After lyophilization and immersing in the monomer solutions, the wood samples were dried and irradiated with a dose of 25 kGy and different gamma irradiation dose rates. The weight of the samples before and after this procedure was measured. Also, changes in the mechanical properties of wood (compression test) before and after treatment were examined. We also examined the effect of radiation dose rate on polymerization. Based on the weight differences, dose rates and materials characterization we determined which of the monomer solution and dose rate are the most suitable for making beechwood/polymer composites.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Radiation Physics and Chemistry
T1  - Preparation of beechwood/polymer composites using the method of lyophilization and gamma irradiation
VL  - 166
DO  - 10.1016/j.radphyschem.2019.108505
ER  - 
@article{
author = "Vujčić, Ivica and Mašić, Slobodan and Obradović, Nataša and Dramićanin, Miroslav",
year = "2020",
abstract = "Wooden cultural heritage serves as a very important source of information for historians and researchers. Also, it imposes an obligation on the science to keep this legacy for future generations in a proper condition. Among other techniques of conservation of wooden cultural heritage, a very suitable method is impregnation of the wood with the polymer, whereby the wood/polymer composites are formed. This paper describes the method of preparing the wood/polymer composites based on beechwood, using five different monomer systems. The method of lyophilization and subsequent polymerization by gamma radiation was used. After lyophilization and immersing in the monomer solutions, the wood samples were dried and irradiated with a dose of 25 kGy and different gamma irradiation dose rates. The weight of the samples before and after this procedure was measured. Also, changes in the mechanical properties of wood (compression test) before and after treatment were examined. We also examined the effect of radiation dose rate on polymerization. Based on the weight differences, dose rates and materials characterization we determined which of the monomer solution and dose rate are the most suitable for making beechwood/polymer composites.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Radiation Physics and Chemistry",
title = "Preparation of beechwood/polymer composites using the method of lyophilization and gamma irradiation",
volume = "166",
doi = "10.1016/j.radphyschem.2019.108505"
}
Vujčić, I., Mašić, S., Obradović, N.,& Dramićanin, M.. (2020). Preparation of beechwood/polymer composites using the method of lyophilization and gamma irradiation. in Radiation Physics and Chemistry
Pergamon-Elsevier Science Ltd, Oxford., 166.
https://doi.org/10.1016/j.radphyschem.2019.108505
Vujčić I, Mašić S, Obradović N, Dramićanin M. Preparation of beechwood/polymer composites using the method of lyophilization and gamma irradiation. in Radiation Physics and Chemistry. 2020;166.
doi:10.1016/j.radphyschem.2019.108505 .
Vujčić, Ivica, Mašić, Slobodan, Obradović, Nataša, Dramićanin, Miroslav, "Preparation of beechwood/polymer composites using the method of lyophilization and gamma irradiation" in Radiation Physics and Chemistry, 166 (2020),
https://doi.org/10.1016/j.radphyschem.2019.108505 . .
1
1
2

Dose mapping of products with different density irradiated in 60co irradiation facility of the Vinca institute, Serbia

Ranković, Bojan; Nikolić, Nikolina R.; Mašić, Slobodan; Vujčić, Ivica

(2020)

TY  - JOUR
AU  - Ranković, Bojan
AU  - Nikolić, Nikolina R.
AU  - Mašić, Slobodan
AU  - Vujčić, Ivica
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5888
AB  - The distribution of the absorbed dose within the irradiated product is a complex function of the product density and homogeneity, the position and shape of the radiation source, as well as the design of the irradiator. In this paper, detailed mapping of absorbed radiation doses in products of different density: gauze, plastic, and soil, is performed. Positions of minimum and maximum absorbed radiation dose were determined, and the homogeneity of irradiation of products was calculated using the ethanol-monochlorobenzene oscillotitrator dosimetry system. © 2020, Vinca Inst Nuclear Sci. All rights reserved.
T2  - Nuclear Technology and Radiation Protection
T1  - Dose mapping of products with different density irradiated in 60co irradiation facility of the Vinca institute, Serbia
EP  - 63
IS  - 1
SP  - 56
VL  - 35
DO  - 10.2298/NTRP2001056R
ER  - 
@article{
author = "Ranković, Bojan and Nikolić, Nikolina R. and Mašić, Slobodan and Vujčić, Ivica",
year = "2020",
abstract = "The distribution of the absorbed dose within the irradiated product is a complex function of the product density and homogeneity, the position and shape of the radiation source, as well as the design of the irradiator. In this paper, detailed mapping of absorbed radiation doses in products of different density: gauze, plastic, and soil, is performed. Positions of minimum and maximum absorbed radiation dose were determined, and the homogeneity of irradiation of products was calculated using the ethanol-monochlorobenzene oscillotitrator dosimetry system. © 2020, Vinca Inst Nuclear Sci. All rights reserved.",
journal = "Nuclear Technology and Radiation Protection",
title = "Dose mapping of products with different density irradiated in 60co irradiation facility of the Vinca institute, Serbia",
pages = "63-56",
number = "1",
volume = "35",
doi = "10.2298/NTRP2001056R"
}
Ranković, B., Nikolić, N. R., Mašić, S.,& Vujčić, I.. (2020). Dose mapping of products with different density irradiated in 60co irradiation facility of the Vinca institute, Serbia. in Nuclear Technology and Radiation Protection, 35(1), 56-63.
https://doi.org/10.2298/NTRP2001056R
Ranković B, Nikolić NR, Mašić S, Vujčić I. Dose mapping of products with different density irradiated in 60co irradiation facility of the Vinca institute, Serbia. in Nuclear Technology and Radiation Protection. 2020;35(1):56-63.
doi:10.2298/NTRP2001056R .
Ranković, Bojan, Nikolić, Nikolina R., Mašić, Slobodan, Vujčić, Ivica, "Dose mapping of products with different density irradiated in 60co irradiation facility of the Vinca institute, Serbia" in Nuclear Technology and Radiation Protection, 35, no. 1 (2020):56-63,
https://doi.org/10.2298/NTRP2001056R . .
1
1

Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties

Janićijević, Željko; Vujčić, Ivica; Veljović, Đorđe; Vujisić, Miloš; Radovanović, Filip

(Pergamon-Elsevier Science Ltd, Oxford, 2020)

TY  - JOUR
AU  - Janićijević, Željko
AU  - Vujčić, Ivica
AU  - Veljović, Đorđe
AU  - Vujisić, Miloš
AU  - Radovanović, Filip
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4342
AB  - Composite hydrogels capable of controlled drug delivery via ion exchange are an interesting group of materials for the construction of implantable drug reservoirs for electrically charged drugs. In this study, we synthesized composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) (PLGA-PAA) hydrogels by sequential application of UV or gamma irradiation and traditional phase inversion. Physicochemical properties of the composite PLGAPAA hydrogels were investigated using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). We examined the ion exchange capacity (IEC) and swelling behavior of these materials to determine their potential as drug reservoirs. Composite PLGA-PAA hydrogel synthesized using UV irradiation (UV-PLGA-PAA) exhibited a porous microstructure with submicron-sized hydrogel-rich aggregates and homogeneous chemical composition. Swelling behavior and IEC of this material were highly reproducible. Composite PLGA-PAA hydrogels synthesized using gamma irradiation (G-PLGA-PAAs) had a less uniform microstructure with larger pores and micron-sized hydrogel-rich aggregates while exhibiting rather inhomogeneous chemical composition. These materials showed superior swelling properties, but a more variable IEC, compared to the material fabricated using UV irradiation. Results of DSC analysis showed a dose-dependent decrease in glass transition temperature for G-PLGA-PAAs indicating the effects of PLGA chain scission. Our findings indicate that gamma irradiation is a possible alternative to UV irradiation in the synthesis of composite PLGA-PAA hydrogels which can modify or control important material properties. However, the synthesis protocol using gamma irradiation should be further optimized to improve the IEC reproducibility. In our future research, we will investigate the in vitro release of charged drugs from synthesized composite PLGA-PAA hydrogels under physiological conditions.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Radiation Physics and Chemistry
T1  - Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties
VL  - 166
DO  - 10.1016/j.radphyschem.2019.108466
ER  - 
@article{
author = "Janićijević, Željko and Vujčić, Ivica and Veljović, Đorđe and Vujisić, Miloš and Radovanović, Filip",
year = "2020",
abstract = "Composite hydrogels capable of controlled drug delivery via ion exchange are an interesting group of materials for the construction of implantable drug reservoirs for electrically charged drugs. In this study, we synthesized composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) (PLGA-PAA) hydrogels by sequential application of UV or gamma irradiation and traditional phase inversion. Physicochemical properties of the composite PLGAPAA hydrogels were investigated using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). We examined the ion exchange capacity (IEC) and swelling behavior of these materials to determine their potential as drug reservoirs. Composite PLGA-PAA hydrogel synthesized using UV irradiation (UV-PLGA-PAA) exhibited a porous microstructure with submicron-sized hydrogel-rich aggregates and homogeneous chemical composition. Swelling behavior and IEC of this material were highly reproducible. Composite PLGA-PAA hydrogels synthesized using gamma irradiation (G-PLGA-PAAs) had a less uniform microstructure with larger pores and micron-sized hydrogel-rich aggregates while exhibiting rather inhomogeneous chemical composition. These materials showed superior swelling properties, but a more variable IEC, compared to the material fabricated using UV irradiation. Results of DSC analysis showed a dose-dependent decrease in glass transition temperature for G-PLGA-PAAs indicating the effects of PLGA chain scission. Our findings indicate that gamma irradiation is a possible alternative to UV irradiation in the synthesis of composite PLGA-PAA hydrogels which can modify or control important material properties. However, the synthesis protocol using gamma irradiation should be further optimized to improve the IEC reproducibility. In our future research, we will investigate the in vitro release of charged drugs from synthesized composite PLGA-PAA hydrogels under physiological conditions.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Radiation Physics and Chemistry",
title = "Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties",
volume = "166",
doi = "10.1016/j.radphyschem.2019.108466"
}
Janićijević, Ž., Vujčić, I., Veljović, Đ., Vujisić, M.,& Radovanović, F.. (2020). Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties. in Radiation Physics and Chemistry
Pergamon-Elsevier Science Ltd, Oxford., 166.
https://doi.org/10.1016/j.radphyschem.2019.108466
Janićijević Ž, Vujčić I, Veljović Đ, Vujisić M, Radovanović F. Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties. in Radiation Physics and Chemistry. 2020;166.
doi:10.1016/j.radphyschem.2019.108466 .
Janićijević, Željko, Vujčić, Ivica, Veljović, Đorđe, Vujisić, Miloš, Radovanović, Filip, "Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties" in Radiation Physics and Chemistry, 166 (2020),
https://doi.org/10.1016/j.radphyschem.2019.108466 . .
2
1
3

Gamma-radiation effects on luminescence properties of Eu3+ activated LaPO4 phosphor

Vujčić, Ivica; Gavrilović, Tamara V.; Sekulić, Milica; Mašić, Slobodan; Putić, Slaviša; Papan, Jelena; Dramićanin, Miroslav

(Elsevier Science Bv, Amsterdam, 2018)

TY  - JOUR
AU  - Vujčić, Ivica
AU  - Gavrilović, Tamara V.
AU  - Sekulić, Milica
AU  - Mašić, Slobodan
AU  - Putić, Slaviša
AU  - Papan, Jelena
AU  - Dramićanin, Miroslav
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4039
AB  - Eu3+ activated LaPO4 phosphors were prepared by a high-temperature solid-state method and irradiated to different high-doses gamma-radiation in the 0-4 MGy range. No effects of high-doses of high-energy radiation on phosphor's morphology and structure were observed, as documented by electron microscopy and X-ray diffraction measurements. On the other hand, photoluminescence measurements showed that emission properties of phosphor were affected by gamma-radiation; changes in radiative properties being prominent for absorbed radiation doses up to 250 kGy after which no additional changes are observed. Judd-Ofelt analysis of emission spectra is performed to thoroughly investigate radiative properties of phosphors. Analysis showed that radiative transition probability of Eu3+ emission decreases while non-radiative probability increases upon gamma-irradiation. Quantum efficiency of emission is decreased from about 46% to 35% when Eu3+ doped LaPO4 powders are exposed to gamma-radiation of 250 kGy dose, showing no additional decrease for higher gamma-radiation doses.
PB  - Elsevier Science Bv, Amsterdam
T2  - Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Ato
T1  - Gamma-radiation effects on luminescence properties of Eu3+ activated LaPO4 phosphor
EP  - 90
SP  - 85
VL  - 422
DO  - 10.1016/j.nimb.2018.03.002
ER  - 
@article{
author = "Vujčić, Ivica and Gavrilović, Tamara V. and Sekulić, Milica and Mašić, Slobodan and Putić, Slaviša and Papan, Jelena and Dramićanin, Miroslav",
year = "2018",
abstract = "Eu3+ activated LaPO4 phosphors were prepared by a high-temperature solid-state method and irradiated to different high-doses gamma-radiation in the 0-4 MGy range. No effects of high-doses of high-energy radiation on phosphor's morphology and structure were observed, as documented by electron microscopy and X-ray diffraction measurements. On the other hand, photoluminescence measurements showed that emission properties of phosphor were affected by gamma-radiation; changes in radiative properties being prominent for absorbed radiation doses up to 250 kGy after which no additional changes are observed. Judd-Ofelt analysis of emission spectra is performed to thoroughly investigate radiative properties of phosphors. Analysis showed that radiative transition probability of Eu3+ emission decreases while non-radiative probability increases upon gamma-irradiation. Quantum efficiency of emission is decreased from about 46% to 35% when Eu3+ doped LaPO4 powders are exposed to gamma-radiation of 250 kGy dose, showing no additional decrease for higher gamma-radiation doses.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Ato",
title = "Gamma-radiation effects on luminescence properties of Eu3+ activated LaPO4 phosphor",
pages = "90-85",
volume = "422",
doi = "10.1016/j.nimb.2018.03.002"
}
Vujčić, I., Gavrilović, T. V., Sekulić, M., Mašić, S., Putić, S., Papan, J.,& Dramićanin, M.. (2018). Gamma-radiation effects on luminescence properties of Eu3+ activated LaPO4 phosphor. in Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Ato
Elsevier Science Bv, Amsterdam., 422, 85-90.
https://doi.org/10.1016/j.nimb.2018.03.002
Vujčić I, Gavrilović TV, Sekulić M, Mašić S, Putić S, Papan J, Dramićanin M. Gamma-radiation effects on luminescence properties of Eu3+ activated LaPO4 phosphor. in Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Ato. 2018;422:85-90.
doi:10.1016/j.nimb.2018.03.002 .
Vujčić, Ivica, Gavrilović, Tamara V., Sekulić, Milica, Mašić, Slobodan, Putić, Slaviša, Papan, Jelena, Dramićanin, Miroslav, "Gamma-radiation effects on luminescence properties of Eu3+ activated LaPO4 phosphor" in Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Ato, 422 (2018):85-90,
https://doi.org/10.1016/j.nimb.2018.03.002 . .
4
1
3