Terzić, Ivan

Link to this page

Authority KeyName Variants
ccd1f4eb-8658-4ba6-90ba-92b487a4e3a4
  • Terzić, Ivan (2)
Projects

Author's Bibliography

A novel chitosan gels: Supercritical CO2 drying and impregnation with thymol

Terzić, Ivan; Ivanović, Jasna; Žižović, Irena; Lučić-Škorić, Marija; Milosavljević, Nedeljko; Milašinović, Nikola; Kalagasidis Krušić, Melina

(Wiley, Hoboken, 2018)

TY  - JOUR
AU  - Terzić, Ivan
AU  - Ivanović, Jasna
AU  - Žižović, Irena
AU  - Lučić-Škorić, Marija
AU  - Milosavljević, Nedeljko
AU  - Milašinović, Nikola
AU  - Kalagasidis Krušić, Melina
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3946
AB  - Supercritical carbon dioxide (scCO(2)) technology was used for preparation of functional pH sensitive chitosan-based aerogels characterized with micron size pores and their impregnation with thymol as a natural bioactive substance. Hydrogels based on chitosan, itaconic and methacrylic acids were transformed to alcogels and dried in the air or with scCO(2) to obtain xero- and aerogels, respectively. Applying 10 min of static and 120 min of dynamic scCO(2) drying at 11 MPa and 45 degrees C followed with the decompression at a rate of 1 MPa/min yielded an advantageous aerogel with favorable swelling kinetics and elasticity, compared to the xerogel and aerogels obtained at other decompression rates and drying times. This aerogel was successfully loaded with thymol (up to 4.6 wt.%) using supercritical scCO(2) at 10 MPa and 35 degrees C. In vitro studies of swelling in PBS at 37 degrees C indicated a great potential of the obtained stimuli-responsive chitosan gels for topical administration of thymol known for antimicrobial, antioxidant and anti-inflammatory activities. POLYM. ENG. SCI., 58:2192-2199, 2018.
PB  - Wiley, Hoboken
T2  - Polymer Engineering and Science
T1  - A novel chitosan gels: Supercritical CO2 drying and impregnation with thymol
EP  - 2199
IS  - 12
SP  - 2192
VL  - 58
DO  - 10.1002/pen.24834
ER  - 
@article{
author = "Terzić, Ivan and Ivanović, Jasna and Žižović, Irena and Lučić-Škorić, Marija and Milosavljević, Nedeljko and Milašinović, Nikola and Kalagasidis Krušić, Melina",
year = "2018",
abstract = "Supercritical carbon dioxide (scCO(2)) technology was used for preparation of functional pH sensitive chitosan-based aerogels characterized with micron size pores and their impregnation with thymol as a natural bioactive substance. Hydrogels based on chitosan, itaconic and methacrylic acids were transformed to alcogels and dried in the air or with scCO(2) to obtain xero- and aerogels, respectively. Applying 10 min of static and 120 min of dynamic scCO(2) drying at 11 MPa and 45 degrees C followed with the decompression at a rate of 1 MPa/min yielded an advantageous aerogel with favorable swelling kinetics and elasticity, compared to the xerogel and aerogels obtained at other decompression rates and drying times. This aerogel was successfully loaded with thymol (up to 4.6 wt.%) using supercritical scCO(2) at 10 MPa and 35 degrees C. In vitro studies of swelling in PBS at 37 degrees C indicated a great potential of the obtained stimuli-responsive chitosan gels for topical administration of thymol known for antimicrobial, antioxidant and anti-inflammatory activities. POLYM. ENG. SCI., 58:2192-2199, 2018.",
publisher = "Wiley, Hoboken",
journal = "Polymer Engineering and Science",
title = "A novel chitosan gels: Supercritical CO2 drying and impregnation with thymol",
pages = "2199-2192",
number = "12",
volume = "58",
doi = "10.1002/pen.24834"
}
Terzić, I., Ivanović, J., Žižović, I., Lučić-Škorić, M., Milosavljević, N., Milašinović, N.,& Kalagasidis Krušić, M.. (2018). A novel chitosan gels: Supercritical CO2 drying and impregnation with thymol. in Polymer Engineering and Science
Wiley, Hoboken., 58(12), 2192-2199.
https://doi.org/10.1002/pen.24834
Terzić I, Ivanović J, Žižović I, Lučić-Škorić M, Milosavljević N, Milašinović N, Kalagasidis Krušić M. A novel chitosan gels: Supercritical CO2 drying and impregnation with thymol. in Polymer Engineering and Science. 2018;58(12):2192-2199.
doi:10.1002/pen.24834 .
Terzić, Ivan, Ivanović, Jasna, Žižović, Irena, Lučić-Škorić, Marija, Milosavljević, Nedeljko, Milašinović, Nikola, Kalagasidis Krušić, Melina, "A novel chitosan gels: Supercritical CO2 drying and impregnation with thymol" in Polymer Engineering and Science, 58, no. 12 (2018):2192-2199,
https://doi.org/10.1002/pen.24834 . .
1
20
11
18

Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes

Lučić-Škorić, Marija; Terzić, Ivan; Milosavljević, Nedeljko; Radetić, Maja; Šaponjić, Zoran; Radoičić, Marija B.; Kalagasidis Krušić, Melina

(Pergamon-Elsevier Science Ltd, Oxford, 2016)

TY  - JOUR
AU  - Lučić-Škorić, Marija
AU  - Terzić, Ivan
AU  - Milosavljević, Nedeljko
AU  - Radetić, Maja
AU  - Šaponjić, Zoran
AU  - Radoičić, Marija B.
AU  - Kalagasidis Krušić, Melina
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3342
AB  - The present paper deals with removal and photocatalytic degradation of the textile dyes by TiO2 nanoparticles immobilized onto chitosan-based microparticles. The microparticles composed of chitosan (Ch) and poly(methacrylic acid) (PMA) were fabricated for the first time by inverse suspension polymerization. They were utilized for colloidal TiO2 nanoparticles immobilization, synthetized by acidic hydrolysis of TiCl4. To evaluate the potential application of Ch/PMA/TiO2 microparticles for treatment of textile wastwaters, their photocatalytic activity was examined by degradation assessment of three different groups of anionic azo dyes in aqueous solutions under solar light simulating source. FTIR analysis revealed that Ch and PMA were incorporated in the polymer network. SEM and optical microscopy confirmed their spherical shape. Under illumination, Ch/PMA/TiO2 microparticles completely removed dyes C.I. Acid Orange 7, C.I. Acid Red 18, C.I. Acid Blue 113, C.I. Reactive Black 5, C.I. Direct Blue 78, while removal degree of C.I. Reactive Yellow 17 was 75%. It was found that pH had significant influence on the photocatalytic activity of Ch/PMA/TiO2 microparticles. Increase of solution pH from acidic to alkaline, lead to decrease in photodegradation rate of C.I. Acid Orange 7 during the first hours of illumination. After three illumination cycles, removal degree of C.I. Acid Orange 7 was maintained at remarkably high level (95% at pH 5.60 and 100% at pH 2.00 and 8.00), indicating that microparticles could be reused without significant loss of photocatalytic efficiency.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - European Polymer Journal
T1  - Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes
EP  - 70
SP  - 57
VL  - 82
DO  - 10.1016/j.eurpolymj.2016.06.026
ER  - 
@article{
author = "Lučić-Škorić, Marija and Terzić, Ivan and Milosavljević, Nedeljko and Radetić, Maja and Šaponjić, Zoran and Radoičić, Marija B. and Kalagasidis Krušić, Melina",
year = "2016",
abstract = "The present paper deals with removal and photocatalytic degradation of the textile dyes by TiO2 nanoparticles immobilized onto chitosan-based microparticles. The microparticles composed of chitosan (Ch) and poly(methacrylic acid) (PMA) were fabricated for the first time by inverse suspension polymerization. They were utilized for colloidal TiO2 nanoparticles immobilization, synthetized by acidic hydrolysis of TiCl4. To evaluate the potential application of Ch/PMA/TiO2 microparticles for treatment of textile wastwaters, their photocatalytic activity was examined by degradation assessment of three different groups of anionic azo dyes in aqueous solutions under solar light simulating source. FTIR analysis revealed that Ch and PMA were incorporated in the polymer network. SEM and optical microscopy confirmed their spherical shape. Under illumination, Ch/PMA/TiO2 microparticles completely removed dyes C.I. Acid Orange 7, C.I. Acid Red 18, C.I. Acid Blue 113, C.I. Reactive Black 5, C.I. Direct Blue 78, while removal degree of C.I. Reactive Yellow 17 was 75%. It was found that pH had significant influence on the photocatalytic activity of Ch/PMA/TiO2 microparticles. Increase of solution pH from acidic to alkaline, lead to decrease in photodegradation rate of C.I. Acid Orange 7 during the first hours of illumination. After three illumination cycles, removal degree of C.I. Acid Orange 7 was maintained at remarkably high level (95% at pH 5.60 and 100% at pH 2.00 and 8.00), indicating that microparticles could be reused without significant loss of photocatalytic efficiency.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "European Polymer Journal",
title = "Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes",
pages = "70-57",
volume = "82",
doi = "10.1016/j.eurpolymj.2016.06.026"
}
Lučić-Škorić, M., Terzić, I., Milosavljević, N., Radetić, M., Šaponjić, Z., Radoičić, M. B.,& Kalagasidis Krušić, M.. (2016). Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes. in European Polymer Journal
Pergamon-Elsevier Science Ltd, Oxford., 82, 57-70.
https://doi.org/10.1016/j.eurpolymj.2016.06.026
Lučić-Škorić M, Terzić I, Milosavljević N, Radetić M, Šaponjić Z, Radoičić MB, Kalagasidis Krušić M. Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes. in European Polymer Journal. 2016;82:57-70.
doi:10.1016/j.eurpolymj.2016.06.026 .
Lučić-Škorić, Marija, Terzić, Ivan, Milosavljević, Nedeljko, Radetić, Maja, Šaponjić, Zoran, Radoičić, Marija B., Kalagasidis Krušić, Melina, "Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes" in European Polymer Journal, 82 (2016):57-70,
https://doi.org/10.1016/j.eurpolymj.2016.06.026 . .
35
25
34