Ćirić-Marjanović, Gordana N.

Link to this page

Authority KeyName Variants
orcid::0000-0002-1050-7003
  • Ćirić-Marjanović, Gordana N. (2)
Projects

Author's Bibliography

Spherical assemblies of titania nanotubes generated through aerosol processing

Jovanović, Dragana J.; Dugandžić, Ivan M.; Ćirić-Marjanović, Gordana N.; Radetić, Tamara; Ahrenkiel, Scott Phillip; Milosević, Olivera B.; Nedeljković, Jovan; Šaponjić, Zoran; Mančić, Lidija

(Elsevier Sci Ltd, Oxford, 2015)

TY  - JOUR
AU  - Jovanović, Dragana J.
AU  - Dugandžić, Ivan M.
AU  - Ćirić-Marjanović, Gordana N.
AU  - Radetić, Tamara
AU  - Ahrenkiel, Scott Phillip
AU  - Milosević, Olivera B.
AU  - Nedeljković, Jovan
AU  - Šaponjić, Zoran
AU  - Mančić, Lidija
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3052
AB  - We report on the possibility to build hierarchically organized three-dimensional (3D) titania spherical particles having high surface-to-volume-ratio, by aerosol processing of nanotubular building blocks. Morphology and crystal structure of titania based spherical assemblies, obtained in the temperature range from 150 to 650 degrees C, were characterized by means of scanning and transmission electron microscopy, x-ray powder diffraction and Raman spectroscopy. Initial shape of 1D building units, nanotubes, was well preserved in the spherical assemblies processed at 150 and 450 degrees C. Processing at 650 degrees C resulted in a collapse of the nanotubular building blocks and formation of the assemblies of irregularly shaped TiO2 nanoparticles. Structural analysis revealed several phase transitions in titania spherical assemblies in course with the temperature increase indicating possibility of in-situ phase composition adjustment during aerosol processing.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Spherical assemblies of titania nanotubes generated through aerosol processing
EP  - 14759
IS  - 10
SP  - 14754
VL  - 41
DO  - 10.1016/j.ceramint.2015.07.205
ER  - 
@article{
author = "Jovanović, Dragana J. and Dugandžić, Ivan M. and Ćirić-Marjanović, Gordana N. and Radetić, Tamara and Ahrenkiel, Scott Phillip and Milosević, Olivera B. and Nedeljković, Jovan and Šaponjić, Zoran and Mančić, Lidija",
year = "2015",
abstract = "We report on the possibility to build hierarchically organized three-dimensional (3D) titania spherical particles having high surface-to-volume-ratio, by aerosol processing of nanotubular building blocks. Morphology and crystal structure of titania based spherical assemblies, obtained in the temperature range from 150 to 650 degrees C, were characterized by means of scanning and transmission electron microscopy, x-ray powder diffraction and Raman spectroscopy. Initial shape of 1D building units, nanotubes, was well preserved in the spherical assemblies processed at 150 and 450 degrees C. Processing at 650 degrees C resulted in a collapse of the nanotubular building blocks and formation of the assemblies of irregularly shaped TiO2 nanoparticles. Structural analysis revealed several phase transitions in titania spherical assemblies in course with the temperature increase indicating possibility of in-situ phase composition adjustment during aerosol processing.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Spherical assemblies of titania nanotubes generated through aerosol processing",
pages = "14759-14754",
number = "10",
volume = "41",
doi = "10.1016/j.ceramint.2015.07.205"
}
Jovanović, D. J., Dugandžić, I. M., Ćirić-Marjanović, G. N., Radetić, T., Ahrenkiel, S. P., Milosević, O. B., Nedeljković, J., Šaponjić, Z.,& Mančić, L.. (2015). Spherical assemblies of titania nanotubes generated through aerosol processing. in Ceramics International
Elsevier Sci Ltd, Oxford., 41(10), 14754-14759.
https://doi.org/10.1016/j.ceramint.2015.07.205
Jovanović DJ, Dugandžić IM, Ćirić-Marjanović GN, Radetić T, Ahrenkiel SP, Milosević OB, Nedeljković J, Šaponjić Z, Mančić L. Spherical assemblies of titania nanotubes generated through aerosol processing. in Ceramics International. 2015;41(10):14754-14759.
doi:10.1016/j.ceramint.2015.07.205 .
Jovanović, Dragana J., Dugandžić, Ivan M., Ćirić-Marjanović, Gordana N., Radetić, Tamara, Ahrenkiel, Scott Phillip, Milosević, Olivera B., Nedeljković, Jovan, Šaponjić, Zoran, Mančić, Lidija, "Spherical assemblies of titania nanotubes generated through aerosol processing" in Ceramics International, 41, no. 10 (2015):14754-14759,
https://doi.org/10.1016/j.ceramint.2015.07.205 . .
1
3
2
3

Influence of TiO2 nanoparticles on formation mechanism of PANI/TiO2 nanocomposite coating on PET fabric and its structural and electrical properties

Radoičić, Marija B.; Milošević, Milica V.; Miličević, Dejan S.; Suljovrujić, Edin H.; Ćirić-Marjanović, Gordana N.; Radetić, Maja; Šaponjić, Zoran

(Elsevier Science Sa, Lausanne, 2015)

TY  - JOUR
AU  - Radoičić, Marija B.
AU  - Milošević, Milica V.
AU  - Miličević, Dejan S.
AU  - Suljovrujić, Edin H.
AU  - Ćirić-Marjanović, Gordana N.
AU  - Radetić, Maja
AU  - Šaponjić, Zoran
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3131
AB  - Polyester fibers gained significant share from all other man-made fibers, but despite numerous advantages a characteristic static electricity generation is still seeking innovative solutions. In order to improve electrical properties of poly(ethyleneterephthalate) (PET) fabric, coating consisting of polyaniline/TiO2 (PANI/TiO2) nanocomposite was deposited on its surface. Coating was synthesized in acidic medium by the chemical oxidative polymerization of aniline with ammonium peroxydisulfate CAPS) in the presence of colloidal TiO2 nanoparticles (d similar to 4.5 nm) and PET fabric. The morphology, molecular structure and dielectric properties of PANI/TiO2 nanocomposites were studied by scanning electron microscopy (SEM), Raman and dielectric spectroscopies. SEM analysis revealed the formation of non-uniform PANI coating on the reference PET sample. In contrast, uniform PANI/TiO2 coating on the surface of PET fabric was generated when TiO2 nanoparticles were engaged. The existence of conductive emeraldine salt form of PANI and phenazine units was confirmed by Raman spectroscopy. Formation mechanisms of PANI and PANI/TiO2 coatings on PET fabrics were proposed. The presence of TiO2 nanoparticles significantly affected the dielectric properties (permittivity and loss tangent) and AC conductivity of PANI/TiO2 coated PET fabrics. PET fabrics coated by PANI/TiO2 nanocomposite showed up to two orders of magnitude higher conductivity in the measured frequency region compared to PANI coated PET fabric.
PB  - Elsevier Science Sa, Lausanne
T2  - Surface & Coatings Technology
T1  - Influence of TiO2 nanoparticles on formation mechanism of PANI/TiO2 nanocomposite coating on PET fabric and its structural and electrical properties
EP  - 47
SP  - 38
VL  - 278
DO  - 10.1016/j.surfcoat.2015.07.070
ER  - 
@article{
author = "Radoičić, Marija B. and Milošević, Milica V. and Miličević, Dejan S. and Suljovrujić, Edin H. and Ćirić-Marjanović, Gordana N. and Radetić, Maja and Šaponjić, Zoran",
year = "2015",
abstract = "Polyester fibers gained significant share from all other man-made fibers, but despite numerous advantages a characteristic static electricity generation is still seeking innovative solutions. In order to improve electrical properties of poly(ethyleneterephthalate) (PET) fabric, coating consisting of polyaniline/TiO2 (PANI/TiO2) nanocomposite was deposited on its surface. Coating was synthesized in acidic medium by the chemical oxidative polymerization of aniline with ammonium peroxydisulfate CAPS) in the presence of colloidal TiO2 nanoparticles (d similar to 4.5 nm) and PET fabric. The morphology, molecular structure and dielectric properties of PANI/TiO2 nanocomposites were studied by scanning electron microscopy (SEM), Raman and dielectric spectroscopies. SEM analysis revealed the formation of non-uniform PANI coating on the reference PET sample. In contrast, uniform PANI/TiO2 coating on the surface of PET fabric was generated when TiO2 nanoparticles were engaged. The existence of conductive emeraldine salt form of PANI and phenazine units was confirmed by Raman spectroscopy. Formation mechanisms of PANI and PANI/TiO2 coatings on PET fabrics were proposed. The presence of TiO2 nanoparticles significantly affected the dielectric properties (permittivity and loss tangent) and AC conductivity of PANI/TiO2 coated PET fabrics. PET fabrics coated by PANI/TiO2 nanocomposite showed up to two orders of magnitude higher conductivity in the measured frequency region compared to PANI coated PET fabric.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Surface & Coatings Technology",
title = "Influence of TiO2 nanoparticles on formation mechanism of PANI/TiO2 nanocomposite coating on PET fabric and its structural and electrical properties",
pages = "47-38",
volume = "278",
doi = "10.1016/j.surfcoat.2015.07.070"
}
Radoičić, M. B., Milošević, M. V., Miličević, D. S., Suljovrujić, E. H., Ćirić-Marjanović, G. N., Radetić, M.,& Šaponjić, Z.. (2015). Influence of TiO2 nanoparticles on formation mechanism of PANI/TiO2 nanocomposite coating on PET fabric and its structural and electrical properties. in Surface & Coatings Technology
Elsevier Science Sa, Lausanne., 278, 38-47.
https://doi.org/10.1016/j.surfcoat.2015.07.070
Radoičić MB, Milošević MV, Miličević DS, Suljovrujić EH, Ćirić-Marjanović GN, Radetić M, Šaponjić Z. Influence of TiO2 nanoparticles on formation mechanism of PANI/TiO2 nanocomposite coating on PET fabric and its structural and electrical properties. in Surface & Coatings Technology. 2015;278:38-47.
doi:10.1016/j.surfcoat.2015.07.070 .
Radoičić, Marija B., Milošević, Milica V., Miličević, Dejan S., Suljovrujić, Edin H., Ćirić-Marjanović, Gordana N., Radetić, Maja, Šaponjić, Zoran, "Influence of TiO2 nanoparticles on formation mechanism of PANI/TiO2 nanocomposite coating on PET fabric and its structural and electrical properties" in Surface & Coatings Technology, 278 (2015):38-47,
https://doi.org/10.1016/j.surfcoat.2015.07.070 . .
3
34
29
34