Đokić, Lidija

Link to this page

Authority KeyName Variants
c552d0fc-cfd8-471b-8a66-2dd69f31a8bb
  • Đokić, Lidija (3)
Projects

Author's Bibliography

Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers

Ponjavić, Marijana; Nikolić, Marija S.; Jevtić, Sanja; Jeremić, Sanja; Đokić, Lidija; Đonlagić, Jasna

(Serbian Chemical Society, 2022)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija S.
AU  - Jevtić, Sanja
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Đonlagić, Jasna
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5233
AB  - The present study reports the potential application of star-shaped poly(ε-caprolactones) with different number of arms as new drug delivery matrix. Linear and star-shaped PCL ibuprofen loaded microspheres were prepared using oil-in-water (o/w) solvent evaporation technique and characterized with FTIR, DSC, XRD and SEM analysis. High yield, encapsulation efficiency and drug loadings were obtained for all microspheres. FTIR analysis revealed the existence of interactions between polymer matrix and drug, while the DSC analysis suggested that drug was encapsulated in an amorphous form. SEM analysis confirmed that regular, spherical in shape star-shaped microspheres, with diameter between 80 and 90 μm, were obtained, while quite larger microspheres, 110 μm, were prepared from linear PCL. The advantage of using star-shaped PCL microspheres instead of linear PCL was seen from drug release profiles which demonstrated higher amount of drug released from star-shaped polymer matrix as a consequence of their branched, flexible structure. Microspheres prepared from the polymers with the most branched structure showed the highest amount of the released drug after 24 h. Finally, cytotoxicity tests, performed using normal human fibroblasts (MRC5), indicated the absence of cytotoxicity at lower concentrations of microspheres proving the great potential of star-shaped PCL systems in comparison to linear ones.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers
T1  - РАЗГРАНАТИ ПОЛИ(ε-КАПРОЛАКТОНИ) СА ДОБРО ОДРЕЂЕНОМ АРХИТЕКТУРОМ КАО ПОТЕНЦИЈАЛНИ НОСАЧИ ЛЕКОВА
EP  - 1090
IS  - 9
SP  - 1075
VL  - 87
DO  - 10.2298/JSC220202032P
ER  - 
@article{
author = "Ponjavić, Marijana and Nikolić, Marija S. and Jevtić, Sanja and Jeremić, Sanja and Đokić, Lidija and Đonlagić, Jasna",
year = "2022",
abstract = "The present study reports the potential application of star-shaped poly(ε-caprolactones) with different number of arms as new drug delivery matrix. Linear and star-shaped PCL ibuprofen loaded microspheres were prepared using oil-in-water (o/w) solvent evaporation technique and characterized with FTIR, DSC, XRD and SEM analysis. High yield, encapsulation efficiency and drug loadings were obtained for all microspheres. FTIR analysis revealed the existence of interactions between polymer matrix and drug, while the DSC analysis suggested that drug was encapsulated in an amorphous form. SEM analysis confirmed that regular, spherical in shape star-shaped microspheres, with diameter between 80 and 90 μm, were obtained, while quite larger microspheres, 110 μm, were prepared from linear PCL. The advantage of using star-shaped PCL microspheres instead of linear PCL was seen from drug release profiles which demonstrated higher amount of drug released from star-shaped polymer matrix as a consequence of their branched, flexible structure. Microspheres prepared from the polymers with the most branched structure showed the highest amount of the released drug after 24 h. Finally, cytotoxicity tests, performed using normal human fibroblasts (MRC5), indicated the absence of cytotoxicity at lower concentrations of microspheres proving the great potential of star-shaped PCL systems in comparison to linear ones.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers, РАЗГРАНАТИ ПОЛИ(ε-КАПРОЛАКТОНИ) СА ДОБРО ОДРЕЂЕНОМ АРХИТЕКТУРОМ КАО ПОТЕНЦИЈАЛНИ НОСАЧИ ЛЕКОВА",
pages = "1090-1075",
number = "9",
volume = "87",
doi = "10.2298/JSC220202032P"
}
Ponjavić, M., Nikolić, M. S., Jevtić, S., Jeremić, S., Đokić, L.,& Đonlagić, J.. (2022). Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 87(9), 1075-1090.
https://doi.org/10.2298/JSC220202032P
Ponjavić M, Nikolić MS, Jevtić S, Jeremić S, Đokić L, Đonlagić J. Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers. in Journal of the Serbian Chemical Society. 2022;87(9):1075-1090.
doi:10.2298/JSC220202032P .
Ponjavić, Marijana, Nikolić, Marija S., Jevtić, Sanja, Jeremić, Sanja, Đokić, Lidija, Đonlagić, Jasna, "Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers" in Journal of the Serbian Chemical Society, 87, no. 9 (2022):1075-1090,
https://doi.org/10.2298/JSC220202032P . .

Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties

Tomić, Simonida; Babić, Marija; Vuković, Jovana; Đokić, Lidija; Pavić, Aleksandar; Nikodinović-Runić, Jasmina

(Springer, Dordrecht, 2020)

TY  - JOUR
AU  - Tomić, Simonida
AU  - Babić, Marija
AU  - Vuković, Jovana
AU  - Đokić, Lidija
AU  - Pavić, Aleksandar
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4379
AB  - We have studied the effect of compositions and methods of preparation on the physico-chemical and biocompatible behavior of the hydrogel matrices. Hydrogel matrices are synthesized by free radical polymerization of 2-hydroxyethyl methacrylate net and with gelatin. Highly porous hydrogel structures were obtained by porogenation, and by cryogenic treatment followed by freeze-drying. All samples were characterized for structural, morphological, absorption, degradation and in vitro (healthy human fibroblast cell line) and in vivo (zebrafishDanio rerio) biocompatible properties. The obtained results show that cryo samples, especially with gelatin show better, favorable absorption, morphological and biocompatible properties in comparison with PHEMA samples, which makes these materials highly attractive for biomedical uses.
PB  - Springer, Dordrecht
T2  - Journal of Polymer Research
T1  - Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties
IS  - 10
SP  - 305
VL  - 27
DO  - 10.1007/s10965-020-02219-w
ER  - 
@article{
author = "Tomić, Simonida and Babić, Marija and Vuković, Jovana and Đokić, Lidija and Pavić, Aleksandar and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "We have studied the effect of compositions and methods of preparation on the physico-chemical and biocompatible behavior of the hydrogel matrices. Hydrogel matrices are synthesized by free radical polymerization of 2-hydroxyethyl methacrylate net and with gelatin. Highly porous hydrogel structures were obtained by porogenation, and by cryogenic treatment followed by freeze-drying. All samples were characterized for structural, morphological, absorption, degradation and in vitro (healthy human fibroblast cell line) and in vivo (zebrafishDanio rerio) biocompatible properties. The obtained results show that cryo samples, especially with gelatin show better, favorable absorption, morphological and biocompatible properties in comparison with PHEMA samples, which makes these materials highly attractive for biomedical uses.",
publisher = "Springer, Dordrecht",
journal = "Journal of Polymer Research",
title = "Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties",
number = "10",
pages = "305",
volume = "27",
doi = "10.1007/s10965-020-02219-w"
}
Tomić, S., Babić, M., Vuković, J., Đokić, L., Pavić, A.,& Nikodinović-Runić, J.. (2020). Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties. in Journal of Polymer Research
Springer, Dordrecht., 27(10), 305.
https://doi.org/10.1007/s10965-020-02219-w
Tomić S, Babić M, Vuković J, Đokić L, Pavić A, Nikodinović-Runić J. Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties. in Journal of Polymer Research. 2020;27(10):305.
doi:10.1007/s10965-020-02219-w .
Tomić, Simonida, Babić, Marija, Vuković, Jovana, Đokić, Lidija, Pavić, Aleksandar, Nikodinović-Runić, Jasmina, "Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties" in Journal of Polymer Research, 27, no. 10 (2020):305,
https://doi.org/10.1007/s10965-020-02219-w . .
2
2

Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil

Mandić, Mina; Spasić, Jelena; Ponjavić, Marijana; Nikolić, Marija; Ćosović, Vladan; O'Connor, Kevin E; Nikodinović-Runić, Jasmina; Đokić, Lidija; Jeremić, Sanja

(Elsevier Ltd, 2019)

TY  - JOUR
AU  - Mandić, Mina
AU  - Spasić, Jelena
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija
AU  - Ćosović, Vladan
AU  - O'Connor, Kevin E
AU  - Nikodinović-Runić, Jasmina
AU  - Đokić, Lidija
AU  - Jeremić, Sanja
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5040
AB  - Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.
PB  - Elsevier Ltd
T2  - Polymer Degradation and Stability
T1  - Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil
EP  - 168
SP  - 160
VL  - 162
DO  - 10.1016/j.polymdegradstab.2019.02.012
ER  - 
@article{
author = "Mandić, Mina and Spasić, Jelena and Ponjavić, Marijana and Nikolić, Marija and Ćosović, Vladan and O'Connor, Kevin E and Nikodinović-Runić, Jasmina and Đokić, Lidija and Jeremić, Sanja",
year = "2019",
abstract = "Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.",
publisher = "Elsevier Ltd",
journal = "Polymer Degradation and Stability",
title = "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil",
pages = "168-160",
volume = "162",
doi = "10.1016/j.polymdegradstab.2019.02.012"
}
Mandić, M., Spasić, J., Ponjavić, M., Nikolić, M., Ćosović, V., O'Connor, K. E., Nikodinović-Runić, J., Đokić, L.,& Jeremić, S.. (2019). Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability
Elsevier Ltd., 162, 160-168.
https://doi.org/10.1016/j.polymdegradstab.2019.02.012
Mandić M, Spasić J, Ponjavić M, Nikolić M, Ćosović V, O'Connor KE, Nikodinović-Runić J, Đokić L, Jeremić S. Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability. 2019;162:160-168.
doi:10.1016/j.polymdegradstab.2019.02.012 .
Mandić, Mina, Spasić, Jelena, Ponjavić, Marijana, Nikolić, Marija, Ćosović, Vladan, O'Connor, Kevin E, Nikodinović-Runić, Jasmina, Đokić, Lidija, Jeremić, Sanja, "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil" in Polymer Degradation and Stability, 162 (2019):160-168,
https://doi.org/10.1016/j.polymdegradstab.2019.02.012 . .
21
6
20