Yop Rhee, Kyong

Link to this page

Authority KeyName Variants
b7cd7af0-4058-4f54-b91a-d96d5ea53ee2
  • Yop Rhee, Kyong (1)
Projects
No records found.

Author's Bibliography

Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications

Mišković-Stanković, Vesna; Nešović, Katarina; Janković, Ana; Radetić, Tamara; Perić-Grujić, Aleksandra; Vukašinović-Sekulić, Maja; Kojić, Vesna; Yop Rhee, Kyong

(International Association of Physical Chemists, 2019)

TY  - CONF
AU  - Mišković-Stanković, Vesna
AU  - Nešović, Katarina
AU  - Janković, Ana
AU  - Radetić, Tamara
AU  - Perić-Grujić, Aleksandra
AU  - Vukašinović-Sekulić, Maja
AU  - Kojić, Vesna
AU  - Yop Rhee, Kyong
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7245
AB  - In recent times, polymer-based hydrogel materials have presented themselves as excellent candidates for
new-generation wound dressings with improved properties, such as high sorption ability, good mechanical
properties and low adhesiveness [1]. Additionally, cross linked hydrogel matrices serve as excellent carriers
for controlled release of antibacterial agents, such as silver nanoparticles (Ag/NPs), which are preferred over
conventional antibiotics due to multi-phase mechanism of action and low susceptibility to induce bacterial
resistance [2]. In this work, we aim to produce novel silver/poly(vinyl alcohol)/chitosan (Ag/PVA/CHI)
hydrogels for wound dressing applications. The electrochemical route for AgNPs synthesis provided facile
and green method for the reduction of Ag+
ions inside the hydrogel matrices, without the need to use toxic
chemical reducing agents [3]. The effect of chitosan content on the synthesis yield, antibacterial properties,
swelling and release kinetics was investigated. The formation of AgNPs was confirmed using UV-visible
spectroscopy through the appearance of plasmon resonant peaks at around 400 nm (Figure 1a), whereas
transmission electron microscopy (TEM) proved the incorporation of both single and polycrystalline spherical
AgNPs with diameters of 5-10 nm (Figure 1b). The swelling and silver release kinetics were investigated in
modified phosphate buffer solutions (pH 7.4) at 37 °C to mimic physiological conditions. The obtained
swelling isotherms and release profiles were fitted with different models to obtain kinetic and diffusion
parameters (Figure 1c). The antibacterial activity was evaluated against Staphylococcus aureus TL and
Escherichia coli ATCC 25922 bacterial strains using an in-suspension test, and non-toxicity of both silvercontaining and silver-free hydrogels was proved by MTT cytotoxicity test. The obtained results confirmed
strong potential of Ag/PVA/CHI hydrogels for biomedical applications.
PB  - International Association of Physical Chemists
C3  - Book of abstracts / 7th Regional Symposium on Electrochemistry – South East Europe & 8th Kurt Schwabe Symposium, Split, Croatia, May 27-30, 2019
T1  - Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications
SP  - 121
UR  - https://hdl.handle.net/21.15107/rcub_technorep_7245
ER  - 
@conference{
author = "Mišković-Stanković, Vesna and Nešović, Katarina and Janković, Ana and Radetić, Tamara and Perić-Grujić, Aleksandra and Vukašinović-Sekulić, Maja and Kojić, Vesna and Yop Rhee, Kyong",
year = "2019",
abstract = "In recent times, polymer-based hydrogel materials have presented themselves as excellent candidates for
new-generation wound dressings with improved properties, such as high sorption ability, good mechanical
properties and low adhesiveness [1]. Additionally, cross linked hydrogel matrices serve as excellent carriers
for controlled release of antibacterial agents, such as silver nanoparticles (Ag/NPs), which are preferred over
conventional antibiotics due to multi-phase mechanism of action and low susceptibility to induce bacterial
resistance [2]. In this work, we aim to produce novel silver/poly(vinyl alcohol)/chitosan (Ag/PVA/CHI)
hydrogels for wound dressing applications. The electrochemical route for AgNPs synthesis provided facile
and green method for the reduction of Ag+
ions inside the hydrogel matrices, without the need to use toxic
chemical reducing agents [3]. The effect of chitosan content on the synthesis yield, antibacterial properties,
swelling and release kinetics was investigated. The formation of AgNPs was confirmed using UV-visible
spectroscopy through the appearance of plasmon resonant peaks at around 400 nm (Figure 1a), whereas
transmission electron microscopy (TEM) proved the incorporation of both single and polycrystalline spherical
AgNPs with diameters of 5-10 nm (Figure 1b). The swelling and silver release kinetics were investigated in
modified phosphate buffer solutions (pH 7.4) at 37 °C to mimic physiological conditions. The obtained
swelling isotherms and release profiles were fitted with different models to obtain kinetic and diffusion
parameters (Figure 1c). The antibacterial activity was evaluated against Staphylococcus aureus TL and
Escherichia coli ATCC 25922 bacterial strains using an in-suspension test, and non-toxicity of both silvercontaining and silver-free hydrogels was proved by MTT cytotoxicity test. The obtained results confirmed
strong potential of Ag/PVA/CHI hydrogels for biomedical applications.",
publisher = "International Association of Physical Chemists",
journal = "Book of abstracts / 7th Regional Symposium on Electrochemistry – South East Europe & 8th Kurt Schwabe Symposium, Split, Croatia, May 27-30, 2019",
title = "Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications",
pages = "121",
url = "https://hdl.handle.net/21.15107/rcub_technorep_7245"
}
Mišković-Stanković, V., Nešović, K., Janković, A., Radetić, T., Perić-Grujić, A., Vukašinović-Sekulić, M., Kojić, V.,& Yop Rhee, K.. (2019). Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. in Book of abstracts / 7th Regional Symposium on Electrochemistry – South East Europe & 8th Kurt Schwabe Symposium, Split, Croatia, May 27-30, 2019
International Association of Physical Chemists., 121.
https://hdl.handle.net/21.15107/rcub_technorep_7245
Mišković-Stanković V, Nešović K, Janković A, Radetić T, Perić-Grujić A, Vukašinović-Sekulić M, Kojić V, Yop Rhee K. Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. in Book of abstracts / 7th Regional Symposium on Electrochemistry – South East Europe & 8th Kurt Schwabe Symposium, Split, Croatia, May 27-30, 2019. 2019;:121.
https://hdl.handle.net/21.15107/rcub_technorep_7245 .
Mišković-Stanković, Vesna, Nešović, Katarina, Janković, Ana, Radetić, Tamara, Perić-Grujić, Aleksandra, Vukašinović-Sekulić, Maja, Kojić, Vesna, Yop Rhee, Kyong, "Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications" in Book of abstracts / 7th Regional Symposium on Electrochemistry – South East Europe & 8th Kurt Schwabe Symposium, Split, Croatia, May 27-30, 2019 (2019):121,
https://hdl.handle.net/21.15107/rcub_technorep_7245 .