Stevanović, Milena

Link to this page

Authority KeyName Variants
orcid::0000-0002-8083-3787
  • Stevanović, Milena (7)
Projects

Author's Bibliography

Hydroxyapatite/poly(vinyl alcohol)/chitosan coating with gentamicin for orthopedic implants

Đošić, Marija; Janković, Ana; Stevanović, Milena; Stojanović, Jovica; Vukašinović-Sekulić, Maja; Kojić, Vesna; Mišković-Stanković, Vesna

(Elsevier Ltd., 2023)

TY  - JOUR
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Stevanović, Milena
AU  - Stojanović, Jovica
AU  - Vukašinović-Sekulić, Maja
AU  - Kojić, Vesna
AU  - Mišković-Stanković, Vesna
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6364
AB  - Electrophoretic deposition (EPD) was employed to fabricate composite coatings aimed for orthopedic implants. Hydroxyapatite (HAP), poly(vinyl alcohol) (PVA) and chitosan (CS) coatings, with or without antibiotic gentamicin (Gent) were deposited in a single-step process from aqueous suspension, using EPD. Polymer/mineral composite coatings were formed with the aim to mimic the natural composition of bone tissue, along with improved coatings antibacterial properties, at the same time serving as a drug carrier, allowing local administration of antibiotic. Structural and morphological characterization of HAP/PVA/CS and HAP/PVA/CS/Gent coatings was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), and scanning electron microscopy (SEM) proving carbonate-substituted HAP. The presence of gentamicin contributed to the bactericidal activity of composite HAP/PVA/CS/Gent coating against Staphylococcus aureus and Escherichia coli. Cytotoxicity studies were performed towards human MRC-5 and mice L929 fibroblast cell lines, and both investigated samples (HAP/PVA/CS and HAP/PVA/CS/Gent) expressed good biocompatibility, without causing toxic effect on tested cells. Biomineralization potential was investigated by measuring the alkaline phosphatase activity, demonstrating high potential of HAP/PVA/CS/Gent to induce the growth of new HAP layer. Therefore, the present investigation proposes the production of composite coatings from non-toxic (aqueous) suspensions, consisting of biocompatible and bioactive components, along with antibiotic gentamicin, improving the antibacterial coatings' properties.
PB  - Elsevier Ltd.
T2  - Materials Chemistry and Physics
T1  - Hydroxyapatite/poly(vinyl alcohol)/chitosan coating with gentamicin for orthopedic implants
SP  - 127766
VL  - 303
DO  - 10.1016/j.matchemphys.2023.127766
ER  - 
@article{
author = "Đošić, Marija and Janković, Ana and Stevanović, Milena and Stojanović, Jovica and Vukašinović-Sekulić, Maja and Kojić, Vesna and Mišković-Stanković, Vesna",
year = "2023",
abstract = "Electrophoretic deposition (EPD) was employed to fabricate composite coatings aimed for orthopedic implants. Hydroxyapatite (HAP), poly(vinyl alcohol) (PVA) and chitosan (CS) coatings, with or without antibiotic gentamicin (Gent) were deposited in a single-step process from aqueous suspension, using EPD. Polymer/mineral composite coatings were formed with the aim to mimic the natural composition of bone tissue, along with improved coatings antibacterial properties, at the same time serving as a drug carrier, allowing local administration of antibiotic. Structural and morphological characterization of HAP/PVA/CS and HAP/PVA/CS/Gent coatings was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), and scanning electron microscopy (SEM) proving carbonate-substituted HAP. The presence of gentamicin contributed to the bactericidal activity of composite HAP/PVA/CS/Gent coating against Staphylococcus aureus and Escherichia coli. Cytotoxicity studies were performed towards human MRC-5 and mice L929 fibroblast cell lines, and both investigated samples (HAP/PVA/CS and HAP/PVA/CS/Gent) expressed good biocompatibility, without causing toxic effect on tested cells. Biomineralization potential was investigated by measuring the alkaline phosphatase activity, demonstrating high potential of HAP/PVA/CS/Gent to induce the growth of new HAP layer. Therefore, the present investigation proposes the production of composite coatings from non-toxic (aqueous) suspensions, consisting of biocompatible and bioactive components, along with antibiotic gentamicin, improving the antibacterial coatings' properties.",
publisher = "Elsevier Ltd.",
journal = "Materials Chemistry and Physics",
title = "Hydroxyapatite/poly(vinyl alcohol)/chitosan coating with gentamicin for orthopedic implants",
pages = "127766",
volume = "303",
doi = "10.1016/j.matchemphys.2023.127766"
}
Đošić, M., Janković, A., Stevanović, M., Stojanović, J., Vukašinović-Sekulić, M., Kojić, V.,& Mišković-Stanković, V.. (2023). Hydroxyapatite/poly(vinyl alcohol)/chitosan coating with gentamicin for orthopedic implants. in Materials Chemistry and Physics
Elsevier Ltd.., 303, 127766.
https://doi.org/10.1016/j.matchemphys.2023.127766
Đošić M, Janković A, Stevanović M, Stojanović J, Vukašinović-Sekulić M, Kojić V, Mišković-Stanković V. Hydroxyapatite/poly(vinyl alcohol)/chitosan coating with gentamicin for orthopedic implants. in Materials Chemistry and Physics. 2023;303:127766.
doi:10.1016/j.matchemphys.2023.127766 .
Đošić, Marija, Janković, Ana, Stevanović, Milena, Stojanović, Jovica, Vukašinović-Sekulić, Maja, Kojić, Vesna, Mišković-Stanković, Vesna, "Hydroxyapatite/poly(vinyl alcohol)/chitosan coating with gentamicin for orthopedic implants" in Materials Chemistry and Physics, 303 (2023):127766,
https://doi.org/10.1016/j.matchemphys.2023.127766 . .
3
4

The chitosan-based bioactive composite coating on titanium

Stevanović, Milena; Đošić, Marija; Janković, Ana; Kojić, Vesna; Stojanović, Jovica; Grujić, Svetlana; Matić-Bujagić, Ivana; Rhee, Kyong Yop; Mišković-Stanković, Vesna

(Elsevier B.V., 2021)

TY  - JOUR
AU  - Stevanović, Milena
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Kojić, Vesna
AU  - Stojanović, Jovica
AU  - Grujić, Svetlana
AU  - Matić-Bujagić, Ivana
AU  - Rhee, Kyong Yop
AU  - Mišković-Stanković, Vesna
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4839
AB  - This paper describes a promising electrophoretic deposition (EPD) approach for developing composite coatings based on chitosan with the additional components of hydroxyapatite, graphene, and gentamicin on titanium substrate. Bioactive properties were investigated in vitro by immersing the coatings in simulated body fluid (SBF) at 37 degrees C. The newly formed biomimetic layer on the top of the deposited chitosan-based coatings on Ti was confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and electrochemical measurements, while coatings' bioactivity was proved by alkaline phosphatase activity assay in MRC-5 and L929 tested cell lines. The biocompatibility towards MRC-5 and L929 cell lines was investigated by dye exclusion test (DET) implying the non-cytotoxic effect of coatings. Gentamicin release studies were monitored during 21-day by high-performance liquid chromatography coupled with mass spectrometry, indicating rapid release of gentamicin (approximate to 40%) in the first 48 h and more than 60% after 14 days.
PB  - Elsevier B.V.
T2  - Journal of Materials Research and Technology
T1  - The chitosan-based bioactive composite coating on titanium
EP  - 4474
SP  - 4461
VL  - 15
DO  - 10.1016/j.jmrt.2021.10.072
ER  - 
@article{
author = "Stevanović, Milena and Đošić, Marija and Janković, Ana and Kojić, Vesna and Stojanović, Jovica and Grujić, Svetlana and Matić-Bujagić, Ivana and Rhee, Kyong Yop and Mišković-Stanković, Vesna",
year = "2021",
abstract = "This paper describes a promising electrophoretic deposition (EPD) approach for developing composite coatings based on chitosan with the additional components of hydroxyapatite, graphene, and gentamicin on titanium substrate. Bioactive properties were investigated in vitro by immersing the coatings in simulated body fluid (SBF) at 37 degrees C. The newly formed biomimetic layer on the top of the deposited chitosan-based coatings on Ti was confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and electrochemical measurements, while coatings' bioactivity was proved by alkaline phosphatase activity assay in MRC-5 and L929 tested cell lines. The biocompatibility towards MRC-5 and L929 cell lines was investigated by dye exclusion test (DET) implying the non-cytotoxic effect of coatings. Gentamicin release studies were monitored during 21-day by high-performance liquid chromatography coupled with mass spectrometry, indicating rapid release of gentamicin (approximate to 40%) in the first 48 h and more than 60% after 14 days.",
publisher = "Elsevier B.V.",
journal = "Journal of Materials Research and Technology",
title = "The chitosan-based bioactive composite coating on titanium",
pages = "4474-4461",
volume = "15",
doi = "10.1016/j.jmrt.2021.10.072"
}
Stevanović, M., Đošić, M., Janković, A., Kojić, V., Stojanović, J., Grujić, S., Matić-Bujagić, I., Rhee, K. Y.,& Mišković-Stanković, V.. (2021). The chitosan-based bioactive composite coating on titanium. in Journal of Materials Research and Technology
Elsevier B.V.., 15, 4461-4474.
https://doi.org/10.1016/j.jmrt.2021.10.072
Stevanović M, Đošić M, Janković A, Kojić V, Stojanović J, Grujić S, Matić-Bujagić I, Rhee KY, Mišković-Stanković V. The chitosan-based bioactive composite coating on titanium. in Journal of Materials Research and Technology. 2021;15:4461-4474.
doi:10.1016/j.jmrt.2021.10.072 .
Stevanović, Milena, Đošić, Marija, Janković, Ana, Kojić, Vesna, Stojanović, Jovica, Grujić, Svetlana, Matić-Bujagić, Ivana, Rhee, Kyong Yop, Mišković-Stanković, Vesna, "The chitosan-based bioactive composite coating on titanium" in Journal of Materials Research and Technology, 15 (2021):4461-4474,
https://doi.org/10.1016/j.jmrt.2021.10.072 . .
9
9

Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering

Stevanović, Milena; Đošić, Marija; Janković, Ana; Kojić, Vesna; Vukašinović-Sekulić, Maja; Stojanović, Jovica; Odović, Jadranka; Crevar-Sakač, Milkica; Kyong Yop, Rhee; Mišković-Stanković, Vesna

(Wiley, Hoboken, 2020)

TY  - JOUR
AU  - Stevanović, Milena
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Kojić, Vesna
AU  - Vukašinović-Sekulić, Maja
AU  - Stojanović, Jovica
AU  - Odović, Jadranka
AU  - Crevar-Sakač, Milkica
AU  - Kyong Yop, Rhee
AU  - Mišković-Stanković, Vesna
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4501
AB  - Electrophoretic deposition process (EPD) was successfully used for obtaining graphene (Gr)-reinforced composite coating based on hydroxyapatite (HAP), chitosan (CS), and antibiotic gentamicin (Gent), from aqueous suspension. The deposition process was performed as a single step process at a constant voltage (5 V, deposition time 12 min) on pure titanium foils. The influence of graphene was examined through detailed physicochemical and biological characterization. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Raman, and X-ray photoelectron analyses confirmed the formation of composite HAP/CS/Gr and HAP/CS/Gr/Gent coatings on Ti. Obtained coatings had porous, uniform, fracture-free surfaces, suggesting strong interfacial interaction between HAP, CS, and Gr. Large specific area of graphene enabled strong bonding with chitosan, acting as nanofiller throughout the polymer matrix. Gentamicin addition strongly improved the antibacterial activity of HAP/CS/Gr/Gent coating that was confirmed by antibacterial activity kinetics in suspension and agar diffusion testing, while results indicated more pronounced antibacterial effect againstStaphylococcus aureus(bactericidal, viable cells number reduction  gt 3 logarithmic units) compared toEscherichia coli(bacteriostatic, lt 3 logarithmic units).MTT assay indicated low cytotoxicity (75% cell viability) against MRC-5 and L929 (70% cell viability) tested cell lines, indicating good biocompatibility of HAP/CS/Gr/Gent coating. Therefore, electrodeposited HAP/CS/Gr/Gent coating on Ti can be considered as a prospective material for bone tissue engineering as a hard tissue implant.
PB  - Wiley, Hoboken
T2  - Journal of Biomedical Materials Research Part A
T1  - Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering
EP  - 2189
IS  - 11
SP  - 2175
VL  - 108
DO  - 10.1002/jbm.a.36974
ER  - 
@article{
author = "Stevanović, Milena and Đošić, Marija and Janković, Ana and Kojić, Vesna and Vukašinović-Sekulić, Maja and Stojanović, Jovica and Odović, Jadranka and Crevar-Sakač, Milkica and Kyong Yop, Rhee and Mišković-Stanković, Vesna",
year = "2020",
abstract = "Electrophoretic deposition process (EPD) was successfully used for obtaining graphene (Gr)-reinforced composite coating based on hydroxyapatite (HAP), chitosan (CS), and antibiotic gentamicin (Gent), from aqueous suspension. The deposition process was performed as a single step process at a constant voltage (5 V, deposition time 12 min) on pure titanium foils. The influence of graphene was examined through detailed physicochemical and biological characterization. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Raman, and X-ray photoelectron analyses confirmed the formation of composite HAP/CS/Gr and HAP/CS/Gr/Gent coatings on Ti. Obtained coatings had porous, uniform, fracture-free surfaces, suggesting strong interfacial interaction between HAP, CS, and Gr. Large specific area of graphene enabled strong bonding with chitosan, acting as nanofiller throughout the polymer matrix. Gentamicin addition strongly improved the antibacterial activity of HAP/CS/Gr/Gent coating that was confirmed by antibacterial activity kinetics in suspension and agar diffusion testing, while results indicated more pronounced antibacterial effect againstStaphylococcus aureus(bactericidal, viable cells number reduction  gt 3 logarithmic units) compared toEscherichia coli(bacteriostatic, lt 3 logarithmic units).MTT assay indicated low cytotoxicity (75% cell viability) against MRC-5 and L929 (70% cell viability) tested cell lines, indicating good biocompatibility of HAP/CS/Gr/Gent coating. Therefore, electrodeposited HAP/CS/Gr/Gent coating on Ti can be considered as a prospective material for bone tissue engineering as a hard tissue implant.",
publisher = "Wiley, Hoboken",
journal = "Journal of Biomedical Materials Research Part A",
title = "Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering",
pages = "2189-2175",
number = "11",
volume = "108",
doi = "10.1002/jbm.a.36974"
}
Stevanović, M., Đošić, M., Janković, A., Kojić, V., Vukašinović-Sekulić, M., Stojanović, J., Odović, J., Crevar-Sakač, M., Kyong Yop, R.,& Mišković-Stanković, V.. (2020). Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. in Journal of Biomedical Materials Research Part A
Wiley, Hoboken., 108(11), 2175-2189.
https://doi.org/10.1002/jbm.a.36974
Stevanović M, Đošić M, Janković A, Kojić V, Vukašinović-Sekulić M, Stojanović J, Odović J, Crevar-Sakač M, Kyong Yop R, Mišković-Stanković V. Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. in Journal of Biomedical Materials Research Part A. 2020;108(11):2175-2189.
doi:10.1002/jbm.a.36974 .
Stevanović, Milena, Đošić, Marija, Janković, Ana, Kojić, Vesna, Vukašinović-Sekulić, Maja, Stojanović, Jovica, Odović, Jadranka, Crevar-Sakač, Milkica, Kyong Yop, Rhee, Mišković-Stanković, Vesna, "Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering" in Journal of Biomedical Materials Research Part A, 108, no. 11 (2020):2175-2189,
https://doi.org/10.1002/jbm.a.36974 . .
43
14
41

Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering

Stevanović, Milena; Đošić, Marija; Janković, Ana; Kojić, Vesna; Vukašinović-Sekulić, Maja; Stojanović, Jovica; Odović, Jadranka; Crevar-Sakač, Milkica; Kyong Yop, Rhee; Mišković-Stanković, Vesna

(Wiley, Hoboken, 2020)

TY  - JOUR
AU  - Stevanović, Milena
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Kojić, Vesna
AU  - Vukašinović-Sekulić, Maja
AU  - Stojanović, Jovica
AU  - Odović, Jadranka
AU  - Crevar-Sakač, Milkica
AU  - Kyong Yop, Rhee
AU  - Mišković-Stanković, Vesna
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4725
AB  - Electrophoretic deposition process (EPD) was successfully used for obtaining graphene (Gr)-reinforced composite coating based on hydroxyapatite (HAP), chitosan (CS), and antibiotic gentamicin (Gent), from aqueous suspension. The deposition process was performed as a single step process at a constant voltage (5 V, deposition time 12 min) on pure titanium foils. The influence of graphene was examined through detailed physicochemical and biological characterization. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Raman, and X-ray photoelectron analyses confirmed the formation of composite HAP/CS/Gr and HAP/CS/Gr/Gent coatings on Ti. Obtained coatings had porous, uniform, fracture-free surfaces, suggesting strong interfacial interaction between HAP, CS, and Gr. Large specific area of graphene enabled strong bonding with chitosan, acting as nanofiller throughout the polymer matrix. Gentamicin addition strongly improved the antibacterial activity of HAP/CS/Gr/Gent coating that was confirmed by antibacterial activity kinetics in suspension and agar diffusion testing, while results indicated more pronounced antibacterial effect againstStaphylococcus aureus(bactericidal, viable cells number reduction  gt 3 logarithmic units) compared toEscherichia coli(bacteriostatic, lt 3 logarithmic units).MTT assay indicated low cytotoxicity (75% cell viability) against MRC-5 and L929 (70% cell viability) tested cell lines, indicating good biocompatibility of HAP/CS/Gr/Gent coating. Therefore, electrodeposited HAP/CS/Gr/Gent coating on Ti can be considered as a prospective material for bone tissue engineering as a hard tissue implant.
PB  - Wiley, Hoboken
T2  - Journal of Biomedical Materials Research Part A
T1  - Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering
EP  - 2189
IS  - 11
SP  - 2175
VL  - 108
DO  - 10.1002/jbm.a.36974
ER  - 
@article{
author = "Stevanović, Milena and Đošić, Marija and Janković, Ana and Kojić, Vesna and Vukašinović-Sekulić, Maja and Stojanović, Jovica and Odović, Jadranka and Crevar-Sakač, Milkica and Kyong Yop, Rhee and Mišković-Stanković, Vesna",
year = "2020",
abstract = "Electrophoretic deposition process (EPD) was successfully used for obtaining graphene (Gr)-reinforced composite coating based on hydroxyapatite (HAP), chitosan (CS), and antibiotic gentamicin (Gent), from aqueous suspension. The deposition process was performed as a single step process at a constant voltage (5 V, deposition time 12 min) on pure titanium foils. The influence of graphene was examined through detailed physicochemical and biological characterization. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Raman, and X-ray photoelectron analyses confirmed the formation of composite HAP/CS/Gr and HAP/CS/Gr/Gent coatings on Ti. Obtained coatings had porous, uniform, fracture-free surfaces, suggesting strong interfacial interaction between HAP, CS, and Gr. Large specific area of graphene enabled strong bonding with chitosan, acting as nanofiller throughout the polymer matrix. Gentamicin addition strongly improved the antibacterial activity of HAP/CS/Gr/Gent coating that was confirmed by antibacterial activity kinetics in suspension and agar diffusion testing, while results indicated more pronounced antibacterial effect againstStaphylococcus aureus(bactericidal, viable cells number reduction  gt 3 logarithmic units) compared toEscherichia coli(bacteriostatic, lt 3 logarithmic units).MTT assay indicated low cytotoxicity (75% cell viability) against MRC-5 and L929 (70% cell viability) tested cell lines, indicating good biocompatibility of HAP/CS/Gr/Gent coating. Therefore, electrodeposited HAP/CS/Gr/Gent coating on Ti can be considered as a prospective material for bone tissue engineering as a hard tissue implant.",
publisher = "Wiley, Hoboken",
journal = "Journal of Biomedical Materials Research Part A",
title = "Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering",
pages = "2189-2175",
number = "11",
volume = "108",
doi = "10.1002/jbm.a.36974"
}
Stevanović, M., Đošić, M., Janković, A., Kojić, V., Vukašinović-Sekulić, M., Stojanović, J., Odović, J., Crevar-Sakač, M., Kyong Yop, R.,& Mišković-Stanković, V.. (2020). Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. in Journal of Biomedical Materials Research Part A
Wiley, Hoboken., 108(11), 2175-2189.
https://doi.org/10.1002/jbm.a.36974
Stevanović M, Đošić M, Janković A, Kojić V, Vukašinović-Sekulić M, Stojanović J, Odović J, Crevar-Sakač M, Kyong Yop R, Mišković-Stanković V. Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. in Journal of Biomedical Materials Research Part A. 2020;108(11):2175-2189.
doi:10.1002/jbm.a.36974 .
Stevanović, Milena, Đošić, Marija, Janković, Ana, Kojić, Vesna, Vukašinović-Sekulić, Maja, Stojanović, Jovica, Odović, Jadranka, Crevar-Sakač, Milkica, Kyong Yop, Rhee, Mišković-Stanković, Vesna, "Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering" in Journal of Biomedical Materials Research Part A, 108, no. 11 (2020):2175-2189,
https://doi.org/10.1002/jbm.a.36974 . .
43
14
44

Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate

Stevanović, Milena; Đošić, Marija; Janković, Ana; Nešović, Katarina; Kojić, Vesna; Stojanović, Jovica; Grujić, Svetlana; Matić-Bujagić, Ivana; Rhee, Kyong Yop; Mišković-Stanković, Vesna

(Amer Chemical Soc, Washington, 2020)

TY  - JOUR
AU  - Stevanović, Milena
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Nešović, Katarina
AU  - Kojić, Vesna
AU  - Stojanović, Jovica
AU  - Grujić, Svetlana
AU  - Matić-Bujagić, Ivana
AU  - Rhee, Kyong Yop
AU  - Mišković-Stanković, Vesna
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4498
AB  - The electrophoretic deposition process (EPD) was utilized to produce bioactive hydroxyapatite/chitosan (HAP/CS) and hydroxyapatite/chitosan/gentamicin (HAP/CS/Gent) coatings on titanium. The bioactivity of newly synthesized composite coatings was investigated in the simulated body fluid (SBF) and examined by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The obtained results revealed carbonate-substituted hydroxyapatite after immersion in SBF, emphasizing the similarity of the biomimetically grown HAP with the naturally occurring apatite in the bone. The formation of biomimetic HAP was confirmed by electrochemical impedance spectroscopy and polarization measurements, through the decrease in corrosion current density and coating capacitance values after 28-day immersion in SBF. The osseointegration ability was further validated by measuring the alkaline phosphatase activity (ALP) indicating the favorable osseopromotive properties of deposited coatings (significant increase in ALP levels for both HAP/CS (3.206 U mL(-1)) and HAP/CS/Gent (4.039 U mL(-1)) coatings, compared to the control (0.900 U mL(-1))). Drug-release kinetics was investigated in deionized water at 37 degrees C by high-performance liquid chromatography coupled with mass spectrometry. Release profiles revealed the beneficial "burst-release effect" (similar to 21% of gentamicin released in the first 48 h) as a potentially promising solution against the biofilm formation in the initial period. When tested against human and mice fibroblast cells (MRC-5 and L929), both composite coatings showed a noncytotoxic effect (viability  gt 85%), providing a promising basis for further medical application trials.
PB  - Amer Chemical Soc, Washington
T2  - ACS Omega
T1  - Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate
EP  - 15445
IS  - 25
SP  - 15433
VL  - 5
DO  - 10.1021/acsomega.0c01583
ER  - 
@article{
author = "Stevanović, Milena and Đošić, Marija and Janković, Ana and Nešović, Katarina and Kojić, Vesna and Stojanović, Jovica and Grujić, Svetlana and Matić-Bujagić, Ivana and Rhee, Kyong Yop and Mišković-Stanković, Vesna",
year = "2020",
abstract = "The electrophoretic deposition process (EPD) was utilized to produce bioactive hydroxyapatite/chitosan (HAP/CS) and hydroxyapatite/chitosan/gentamicin (HAP/CS/Gent) coatings on titanium. The bioactivity of newly synthesized composite coatings was investigated in the simulated body fluid (SBF) and examined by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The obtained results revealed carbonate-substituted hydroxyapatite after immersion in SBF, emphasizing the similarity of the biomimetically grown HAP with the naturally occurring apatite in the bone. The formation of biomimetic HAP was confirmed by electrochemical impedance spectroscopy and polarization measurements, through the decrease in corrosion current density and coating capacitance values after 28-day immersion in SBF. The osseointegration ability was further validated by measuring the alkaline phosphatase activity (ALP) indicating the favorable osseopromotive properties of deposited coatings (significant increase in ALP levels for both HAP/CS (3.206 U mL(-1)) and HAP/CS/Gent (4.039 U mL(-1)) coatings, compared to the control (0.900 U mL(-1))). Drug-release kinetics was investigated in deionized water at 37 degrees C by high-performance liquid chromatography coupled with mass spectrometry. Release profiles revealed the beneficial "burst-release effect" (similar to 21% of gentamicin released in the first 48 h) as a potentially promising solution against the biofilm formation in the initial period. When tested against human and mice fibroblast cells (MRC-5 and L929), both composite coatings showed a noncytotoxic effect (viability  gt 85%), providing a promising basis for further medical application trials.",
publisher = "Amer Chemical Soc, Washington",
journal = "ACS Omega",
title = "Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate",
pages = "15445-15433",
number = "25",
volume = "5",
doi = "10.1021/acsomega.0c01583"
}
Stevanović, M., Đošić, M., Janković, A., Nešović, K., Kojić, V., Stojanović, J., Grujić, S., Matić-Bujagić, I., Rhee, K. Y.,& Mišković-Stanković, V.. (2020). Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate. in ACS Omega
Amer Chemical Soc, Washington., 5(25), 15433-15445.
https://doi.org/10.1021/acsomega.0c01583
Stevanović M, Đošić M, Janković A, Nešović K, Kojić V, Stojanović J, Grujić S, Matić-Bujagić I, Rhee KY, Mišković-Stanković V. Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate. in ACS Omega. 2020;5(25):15433-15445.
doi:10.1021/acsomega.0c01583 .
Stevanović, Milena, Đošić, Marija, Janković, Ana, Nešović, Katarina, Kojić, Vesna, Stojanović, Jovica, Grujić, Svetlana, Matić-Bujagić, Ivana, Rhee, Kyong Yop, Mišković-Stanković, Vesna, "Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate" in ACS Omega, 5, no. 25 (2020):15433-15445,
https://doi.org/10.1021/acsomega.0c01583 . .
30
9
29

Electrophoretically deposited hydroxyapatite-based composite coatings loaded with silver and gentamicin as antibacterial agents

Stevanović, Milena; Đošić, Marija; Janković, Ana; Rhee, Kyong Yop; Mišković-Stanković, Vesna

(Srpsko hemijsko društvo, Beograd, 2019)

TY  - JOUR
AU  - Stevanović, Milena
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Rhee, Kyong Yop
AU  - Mišković-Stanković, Vesna
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4101
AB  - Increasing need for improved, compatible bone tissue implants led to the intensive research of novel biomaterials, especially hydroxyapatite (HAP)-based composite materials on titanium and titanium alloy surfaces. Owing to its excellent biocompatibility and osteoinductivity properties, hydroxyapatite is often used as part of composite biomaterials aimed for orthopedic implant applications. In order to overcome persistent problems of bacterial infection, various antimicrobial agents and materials and their incorporation in such medical devices were investigated. This paper represents a comprehensive review of single-step electrodeposition on titanium of hydroxyapatite/chitosan/graphene composite coatings loaded with silver and antibiotic gentamicin as antibacterial agents. The improvement of mechanical and adhesive properties of deposited composite coatings was achieved by graphene and chitosan addition, while desirable antibacterial properties were introduced by including antibiotic gentamicin and silver. The biocompatibility of electrodeposited HAP and HAP-based composite coatings was evaluated by MTT testing, indicating a non-cytotoxic effect and high potential for future medical use as orthopedic implant coating.
PB  - Srpsko hemijsko društvo, Beograd
T2  - Journal of the Serbian Chemical Society
T1  - Electrophoretically deposited hydroxyapatite-based composite coatings loaded with silver and gentamicin as antibacterial agents
EP  - 1304
IS  - 11
SP  - 1287
VL  - 84
DO  - 10.2298/JSC190821092S
ER  - 
@article{
author = "Stevanović, Milena and Đošić, Marija and Janković, Ana and Rhee, Kyong Yop and Mišković-Stanković, Vesna",
year = "2019",
abstract = "Increasing need for improved, compatible bone tissue implants led to the intensive research of novel biomaterials, especially hydroxyapatite (HAP)-based composite materials on titanium and titanium alloy surfaces. Owing to its excellent biocompatibility and osteoinductivity properties, hydroxyapatite is often used as part of composite biomaterials aimed for orthopedic implant applications. In order to overcome persistent problems of bacterial infection, various antimicrobial agents and materials and their incorporation in such medical devices were investigated. This paper represents a comprehensive review of single-step electrodeposition on titanium of hydroxyapatite/chitosan/graphene composite coatings loaded with silver and antibiotic gentamicin as antibacterial agents. The improvement of mechanical and adhesive properties of deposited composite coatings was achieved by graphene and chitosan addition, while desirable antibacterial properties were introduced by including antibiotic gentamicin and silver. The biocompatibility of electrodeposited HAP and HAP-based composite coatings was evaluated by MTT testing, indicating a non-cytotoxic effect and high potential for future medical use as orthopedic implant coating.",
publisher = "Srpsko hemijsko društvo, Beograd",
journal = "Journal of the Serbian Chemical Society",
title = "Electrophoretically deposited hydroxyapatite-based composite coatings loaded with silver and gentamicin as antibacterial agents",
pages = "1304-1287",
number = "11",
volume = "84",
doi = "10.2298/JSC190821092S"
}
Stevanović, M., Đošić, M., Janković, A., Rhee, K. Y.,& Mišković-Stanković, V.. (2019). Electrophoretically deposited hydroxyapatite-based composite coatings loaded with silver and gentamicin as antibacterial agents. in Journal of the Serbian Chemical Society
Srpsko hemijsko društvo, Beograd., 84(11), 1287-1304.
https://doi.org/10.2298/JSC190821092S
Stevanović M, Đošić M, Janković A, Rhee KY, Mišković-Stanković V. Electrophoretically deposited hydroxyapatite-based composite coatings loaded with silver and gentamicin as antibacterial agents. in Journal of the Serbian Chemical Society. 2019;84(11):1287-1304.
doi:10.2298/JSC190821092S .
Stevanović, Milena, Đošić, Marija, Janković, Ana, Rhee, Kyong Yop, Mišković-Stanković, Vesna, "Electrophoretically deposited hydroxyapatite-based composite coatings loaded with silver and gentamicin as antibacterial agents" in Journal of the Serbian Chemical Society, 84, no. 11 (2019):1287-1304,
https://doi.org/10.2298/JSC190821092S . .
7
4
8

Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium

Stevanović, Milena; Đošić, Marija; Janković, Ana; Kojić, Vesna; Vukašinović-Sekulić, Maja; Stojanović, Jovica; Odović, Jadranka; Crevar-Sakač, Milkica; Rhee, Kyong Yop; Mišković-Stanković, Vesna

(Amer Chemical Soc, Washington, 2018)

TY  - JOUR
AU  - Stevanović, Milena
AU  - Đošić, Marija
AU  - Janković, Ana
AU  - Kojić, Vesna
AU  - Vukašinović-Sekulić, Maja
AU  - Stojanović, Jovica
AU  - Odović, Jadranka
AU  - Crevar-Sakač, Milkica
AU  - Rhee, Kyong Yop
AU  - Mišković-Stanković, Vesna
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3899
AB  - Composite coating of antibiotic gentamicin (Gent), natural polymer chitosan (CS), and hydroxyapatite (HAP) was successfully assessed by applying the electrophoretic deposition (EPD) technique. EPD was performed under optimized deposition conditions (5 V, 12 min) on pure titanium plates, to obtain HAP/CS and HAP/CS/Gent composite coatings in a single step from three-component aqueous suspension, with favorable antibacterial properties. Composite coatings were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis, confirming the formation of composite HAP/CS and HAP/CS/Gent coatings on the titanium surface, which is due to intermolecular hydrogen bonds. Employing the XRD technique, HAP was detected by obtaining the characteristic diffraction maximums. Good antibacterial activity of the composite coating loaded with antibiotic (HAP/CS/Gent) was confirmed against Staphylococcus aureus and Escherichia coli, pointing to the high potential for bioapplication. Introduction of gentamicin in HAP/CS/Gent coating caused very mild cytotoxicity in the tested cell lines MRC-5 and L929. MTT testing was used to evaluate cell viability, and HAP/CS was classified as noncytotoxic.
PB  - Amer Chemical Soc, Washington
T2  - ACS Biomaterials Science & Engineering
T1  - Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium
EP  - 4007
IS  - 12
SP  - 3994
VL  - 4
DO  - 10.1021/acsbiomaterials.8b00859
ER  - 
@article{
author = "Stevanović, Milena and Đošić, Marija and Janković, Ana and Kojić, Vesna and Vukašinović-Sekulić, Maja and Stojanović, Jovica and Odović, Jadranka and Crevar-Sakač, Milkica and Rhee, Kyong Yop and Mišković-Stanković, Vesna",
year = "2018",
abstract = "Composite coating of antibiotic gentamicin (Gent), natural polymer chitosan (CS), and hydroxyapatite (HAP) was successfully assessed by applying the electrophoretic deposition (EPD) technique. EPD was performed under optimized deposition conditions (5 V, 12 min) on pure titanium plates, to obtain HAP/CS and HAP/CS/Gent composite coatings in a single step from three-component aqueous suspension, with favorable antibacterial properties. Composite coatings were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis, confirming the formation of composite HAP/CS and HAP/CS/Gent coatings on the titanium surface, which is due to intermolecular hydrogen bonds. Employing the XRD technique, HAP was detected by obtaining the characteristic diffraction maximums. Good antibacterial activity of the composite coating loaded with antibiotic (HAP/CS/Gent) was confirmed against Staphylococcus aureus and Escherichia coli, pointing to the high potential for bioapplication. Introduction of gentamicin in HAP/CS/Gent coating caused very mild cytotoxicity in the tested cell lines MRC-5 and L929. MTT testing was used to evaluate cell viability, and HAP/CS was classified as noncytotoxic.",
publisher = "Amer Chemical Soc, Washington",
journal = "ACS Biomaterials Science & Engineering",
title = "Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium",
pages = "4007-3994",
number = "12",
volume = "4",
doi = "10.1021/acsbiomaterials.8b00859"
}
Stevanović, M., Đošić, M., Janković, A., Kojić, V., Vukašinović-Sekulić, M., Stojanović, J., Odović, J., Crevar-Sakač, M., Rhee, K. Y.,& Mišković-Stanković, V.. (2018). Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium. in ACS Biomaterials Science & Engineering
Amer Chemical Soc, Washington., 4(12), 3994-4007.
https://doi.org/10.1021/acsbiomaterials.8b00859
Stevanović M, Đošić M, Janković A, Kojić V, Vukašinović-Sekulić M, Stojanović J, Odović J, Crevar-Sakač M, Rhee KY, Mišković-Stanković V. Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium. in ACS Biomaterials Science & Engineering. 2018;4(12):3994-4007.
doi:10.1021/acsbiomaterials.8b00859 .
Stevanović, Milena, Đošić, Marija, Janković, Ana, Kojić, Vesna, Vukašinović-Sekulić, Maja, Stojanović, Jovica, Odović, Jadranka, Crevar-Sakač, Milkica, Rhee, Kyong Yop, Mišković-Stanković, Vesna, "Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium" in ACS Biomaterials Science & Engineering, 4, no. 12 (2018):3994-4007,
https://doi.org/10.1021/acsbiomaterials.8b00859 . .
59
34
65