Kolašinac, Stefan

Link to this page

Authority KeyName Variants
3346aab6-5e1e-4836-a312-e4bd7c8d699c
  • Kolašinac, Stefan (4)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200007 (University of Belgrade, Institute for Biological Research 'Siniša Stanković') Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200105 (University of Belgrade, Faculty of Mechanical Engineering) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200222 (Institute for Food Technology, Novi Sad)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200287 (Innovation Center of the Faculty of Technology and Metallurgy) FUNPRO - Functional products based on goat's milk proteins and bioactive compounds extracted from grape pomace and edible mushrooms
R-SPECT - Novel Raman chemometrics-based approach in food quality assessment: Carotenoids as model nutrients for application to functional products

Author's Bibliography

Goat milk powders enriched with grape pomace seed extract: Physical and techno-functional properties

Milinčić, Danijel D.; Kostić, Aleksandar Ž.; Kolašinac, Stefan; Rac, Vladislav; Banjac, Nebojša; Lađarević, Jelena; Lević, Steva; Pavlović, Vladimir B.; Stanojević, Slađana P.; Nedović, Viktor A.; Pešić, Mirjana B.

(Elsevier B.V., 2024)

TY  - JOUR
AU  - Milinčić, Danijel D.
AU  - Kostić, Aleksandar Ž.
AU  - Kolašinac, Stefan
AU  - Rac, Vladislav
AU  - Banjac, Nebojša
AU  - Lađarević, Jelena
AU  - Lević, Steva
AU  - Pavlović, Vladimir B.
AU  - Stanojević, Slađana P.
AU  - Nedović, Viktor A.
AU  - Pešić, Mirjana B.
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6650
AB  - This study aimed to evaluate the physical (particle size and ζ-potential) and techno-functional properties (emulsifying and foaming) of goat milk powders enriched with grape pomace seed extract (TME), as promising food ingredients in the formulation of functional food. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Raman spectroscopies, along with advanced chemometric tools were employed as well as Scanning Electron Microscopy (SEM) for analyzing TME powders. All powders exhibited a unimodal particle size distribution and ζ-potential values more negative than −36 mV. ATR-FTIR and Raman spectroscopies combined with principal component analysis (PCA) demonstrated distinct separation among skimmed goat milk (M), thermally treated skimmed goat milk (TM), and TME powders in different spectral regions (amide I, II, III, and fingerprint region). This separation resulted from the applied thermal treatment, the presence of phenolic compounds and their complexes with goat milk proteins, and the formation of Maillard reaction products. SEM analysis confirmed the different morphology and shapes of M, TM and TME powders. The 0.1% solutions of M, TM and TME exhibited good emulsifying properties (emulsion activity index and emulsion stability index) but showed poor foaming properties, except for the M sample. Solution concentrations higher than 0.1% for all samples (0.5% and 1.0%) displayed poor techno-functional properties. In summary, a schematic representation of the arrangement of casein micelles in 0.1% M, TM and TME samples, on oil/water and air/water surfaces was provided. The production of TME powders represents an innovative strategy for waste recovery in the production of functional food ingredients with good emulsifying properties.
PB  - Elsevier B.V.
T2  - Food Hydrocolloids
T1  - Goat milk powders enriched with grape pomace seed extract: Physical and techno-functional properties
SP  - 109293
VL  - 146
DO  - 10.1016/j.foodhyd.2023.109293
ER  - 
@article{
author = "Milinčić, Danijel D. and Kostić, Aleksandar Ž. and Kolašinac, Stefan and Rac, Vladislav and Banjac, Nebojša and Lađarević, Jelena and Lević, Steva and Pavlović, Vladimir B. and Stanojević, Slađana P. and Nedović, Viktor A. and Pešić, Mirjana B.",
year = "2024",
abstract = "This study aimed to evaluate the physical (particle size and ζ-potential) and techno-functional properties (emulsifying and foaming) of goat milk powders enriched with grape pomace seed extract (TME), as promising food ingredients in the formulation of functional food. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Raman spectroscopies, along with advanced chemometric tools were employed as well as Scanning Electron Microscopy (SEM) for analyzing TME powders. All powders exhibited a unimodal particle size distribution and ζ-potential values more negative than −36 mV. ATR-FTIR and Raman spectroscopies combined with principal component analysis (PCA) demonstrated distinct separation among skimmed goat milk (M), thermally treated skimmed goat milk (TM), and TME powders in different spectral regions (amide I, II, III, and fingerprint region). This separation resulted from the applied thermal treatment, the presence of phenolic compounds and their complexes with goat milk proteins, and the formation of Maillard reaction products. SEM analysis confirmed the different morphology and shapes of M, TM and TME powders. The 0.1% solutions of M, TM and TME exhibited good emulsifying properties (emulsion activity index and emulsion stability index) but showed poor foaming properties, except for the M sample. Solution concentrations higher than 0.1% for all samples (0.5% and 1.0%) displayed poor techno-functional properties. In summary, a schematic representation of the arrangement of casein micelles in 0.1% M, TM and TME samples, on oil/water and air/water surfaces was provided. The production of TME powders represents an innovative strategy for waste recovery in the production of functional food ingredients with good emulsifying properties.",
publisher = "Elsevier B.V.",
journal = "Food Hydrocolloids",
title = "Goat milk powders enriched with grape pomace seed extract: Physical and techno-functional properties",
pages = "109293",
volume = "146",
doi = "10.1016/j.foodhyd.2023.109293"
}
Milinčić, D. D., Kostić, A. Ž., Kolašinac, S., Rac, V., Banjac, N., Lađarević, J., Lević, S., Pavlović, V. B., Stanojević, S. P., Nedović, V. A.,& Pešić, M. B.. (2024). Goat milk powders enriched with grape pomace seed extract: Physical and techno-functional properties. in Food Hydrocolloids
Elsevier B.V.., 146, 109293.
https://doi.org/10.1016/j.foodhyd.2023.109293
Milinčić DD, Kostić AŽ, Kolašinac S, Rac V, Banjac N, Lađarević J, Lević S, Pavlović VB, Stanojević SP, Nedović VA, Pešić MB. Goat milk powders enriched with grape pomace seed extract: Physical and techno-functional properties. in Food Hydrocolloids. 2024;146:109293.
doi:10.1016/j.foodhyd.2023.109293 .
Milinčić, Danijel D., Kostić, Aleksandar Ž., Kolašinac, Stefan, Rac, Vladislav, Banjac, Nebojša, Lađarević, Jelena, Lević, Steva, Pavlović, Vladimir B., Stanojević, Slađana P., Nedović, Viktor A., Pešić, Mirjana B., "Goat milk powders enriched with grape pomace seed extract: Physical and techno-functional properties" in Food Hydrocolloids, 146 (2024):109293,
https://doi.org/10.1016/j.foodhyd.2023.109293 . .
1
1

Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications

Milivojević, Milan; Popović, Aleksandra; Pajić-Lijaković, Ivana; Šoštarić, Ivan; Kolašinac, Stefan; Dajić Stevanović, Zora

(MDPI, 2023)

TY  - JOUR
AU  - Milivojević, Milan
AU  - Popović, Aleksandra
AU  - Pajić-Lijaković, Ivana
AU  - Šoštarić, Ivan
AU  - Kolašinac, Stefan
AU  - Dajić Stevanović, Zora
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6616
AB  - Sodium alginate is one of the most interesting and the most investigated and applied biopolymers due to its advantageous properties. Among them, easy, simple, mild, rapid, non-toxic gelation by divalent cations is the most important. In addition, it is abundant, low-cost, eco-friendly, bio-compatible, bio-adhesive, biodegradable, stable, etc. All those properties were systematically considered within this review. Carotenoids are functional components in the human diet with plenty of health benefits. However, their sensitivity to environmental and process stresses, chemical instability, easy oxidation, low water solubility, and bioavailability limit their food and pharmaceutical applications. Encapsulation may help in overcoming these limitations and within this review, the role of alginate-based encapsulation systems in improving the stability and bioavailability of carotenoids is explored. It may be concluded that all alginate-based systems increase carotenoid stability, but only those of micro- and nano-size, as well as emulsion-based, may improve their low bioaccessibility. In addition, the incorporation of other biopolymers may further improve encapsulation system properties. Furthermore, the main techniques for evaluating the encapsulation are briefly considered. This review critically and profoundly explains the role of alginates in improving the encapsulation process of carotenoids, suggesting the best alternatives for those systems. Moreover, it provides a comprehensive cover of recent advances in this field.
PB  - MDPI
T2  - Gels
T1  - Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications
IS  - 8
SP  - 620
VL  - 9
DO  - 10.3390/gels9080620
ER  - 
@article{
author = "Milivojević, Milan and Popović, Aleksandra and Pajić-Lijaković, Ivana and Šoštarić, Ivan and Kolašinac, Stefan and Dajić Stevanović, Zora",
year = "2023",
abstract = "Sodium alginate is one of the most interesting and the most investigated and applied biopolymers due to its advantageous properties. Among them, easy, simple, mild, rapid, non-toxic gelation by divalent cations is the most important. In addition, it is abundant, low-cost, eco-friendly, bio-compatible, bio-adhesive, biodegradable, stable, etc. All those properties were systematically considered within this review. Carotenoids are functional components in the human diet with plenty of health benefits. However, their sensitivity to environmental and process stresses, chemical instability, easy oxidation, low water solubility, and bioavailability limit their food and pharmaceutical applications. Encapsulation may help in overcoming these limitations and within this review, the role of alginate-based encapsulation systems in improving the stability and bioavailability of carotenoids is explored. It may be concluded that all alginate-based systems increase carotenoid stability, but only those of micro- and nano-size, as well as emulsion-based, may improve their low bioaccessibility. In addition, the incorporation of other biopolymers may further improve encapsulation system properties. Furthermore, the main techniques for evaluating the encapsulation are briefly considered. This review critically and profoundly explains the role of alginates in improving the encapsulation process of carotenoids, suggesting the best alternatives for those systems. Moreover, it provides a comprehensive cover of recent advances in this field.",
publisher = "MDPI",
journal = "Gels",
title = "Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications",
number = "8",
pages = "620",
volume = "9",
doi = "10.3390/gels9080620"
}
Milivojević, M., Popović, A., Pajić-Lijaković, I., Šoštarić, I., Kolašinac, S.,& Dajić Stevanović, Z.. (2023). Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications. in Gels
MDPI., 9(8), 620.
https://doi.org/10.3390/gels9080620
Milivojević M, Popović A, Pajić-Lijaković I, Šoštarić I, Kolašinac S, Dajić Stevanović Z. Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications. in Gels. 2023;9(8):620.
doi:10.3390/gels9080620 .
Milivojević, Milan, Popović, Aleksandra, Pajić-Lijaković, Ivana, Šoštarić, Ivan, Kolašinac, Stefan, Dajić Stevanović, Zora, "Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications" in Gels, 9, no. 8 (2023):620,
https://doi.org/10.3390/gels9080620 . .
8
5

Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum)

Lučić, Milica; Potkonjak, Nebojša; Sredović Ignjatović, Ivana; Lević, Steva; Dajić-Stevanović, Zora; Kolašinac, Stefan; Belović, Miona; Torbica, Aleksandra; Zlatanović, Ivan; Pavlović, Vladimir; Onjia, Antonije

(MDPI, 2023)

TY  - JOUR
AU  - Lučić, Milica
AU  - Potkonjak, Nebojša
AU  - Sredović Ignjatović, Ivana
AU  - Lević, Steva
AU  - Dajić-Stevanović, Zora
AU  - Kolašinac, Stefan
AU  - Belović, Miona
AU  - Torbica, Aleksandra
AU  - Zlatanović, Ivan
AU  - Pavlović, Vladimir
AU  - Onjia, Antonije
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6532
AB  - This study investigates the effects of ultrasound, in combination with chemical pretreatments, on the quality attributes (total phenolic and carotenoid content, antioxidant activity (2,2-Diphenyl-1-picrylhydrazyl assay (DPPH)), ferric-reducing ability (FRAP), CIE L* a* b* color, non-enzymatic browning, rehydration ratio, textural and morphological properties) of red pepper subjected to drying (hot air drying or freeze drying). The fractional factorial design was used to assess the impact of factors. The global Derringer desirability function was used to determine the optimal conditions for the best quality attributes of dried pepper. The drying method influenced total phenolic content, a* (redness), and initial rehydration ratio; pretreatment time significantly affected FRAP antiradical activity, a*, chroma and non-browning index, while pH-value had a significant effect on the texture of dried pepper. Non-enzymatic browning was reduced to 72.6%, while the DPPH antioxidant capacity of freeze-dried peppers was enhanced from 4.2% to 71.9%. Ultrasonic pretreatment led to changes in the pepper morphology, while potassium metabisulfite (KMS) was a more effective additive than citric acid.
PB  - MDPI
T2  - Foods
T1  - Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum)
IS  - 13
SP  - 2468
VL  - 12
DO  - 10.3390/foods12132468
ER  - 
@article{
author = "Lučić, Milica and Potkonjak, Nebojša and Sredović Ignjatović, Ivana and Lević, Steva and Dajić-Stevanović, Zora and Kolašinac, Stefan and Belović, Miona and Torbica, Aleksandra and Zlatanović, Ivan and Pavlović, Vladimir and Onjia, Antonije",
year = "2023",
abstract = "This study investigates the effects of ultrasound, in combination with chemical pretreatments, on the quality attributes (total phenolic and carotenoid content, antioxidant activity (2,2-Diphenyl-1-picrylhydrazyl assay (DPPH)), ferric-reducing ability (FRAP), CIE L* a* b* color, non-enzymatic browning, rehydration ratio, textural and morphological properties) of red pepper subjected to drying (hot air drying or freeze drying). The fractional factorial design was used to assess the impact of factors. The global Derringer desirability function was used to determine the optimal conditions for the best quality attributes of dried pepper. The drying method influenced total phenolic content, a* (redness), and initial rehydration ratio; pretreatment time significantly affected FRAP antiradical activity, a*, chroma and non-browning index, while pH-value had a significant effect on the texture of dried pepper. Non-enzymatic browning was reduced to 72.6%, while the DPPH antioxidant capacity of freeze-dried peppers was enhanced from 4.2% to 71.9%. Ultrasonic pretreatment led to changes in the pepper morphology, while potassium metabisulfite (KMS) was a more effective additive than citric acid.",
publisher = "MDPI",
journal = "Foods",
title = "Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum)",
number = "13",
pages = "2468",
volume = "12",
doi = "10.3390/foods12132468"
}
Lučić, M., Potkonjak, N., Sredović Ignjatović, I., Lević, S., Dajić-Stevanović, Z., Kolašinac, S., Belović, M., Torbica, A., Zlatanović, I., Pavlović, V.,& Onjia, A.. (2023). Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum). in Foods
MDPI., 12(13), 2468.
https://doi.org/10.3390/foods12132468
Lučić M, Potkonjak N, Sredović Ignjatović I, Lević S, Dajić-Stevanović Z, Kolašinac S, Belović M, Torbica A, Zlatanović I, Pavlović V, Onjia A. Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum). in Foods. 2023;12(13):2468.
doi:10.3390/foods12132468 .
Lučić, Milica, Potkonjak, Nebojša, Sredović Ignjatović, Ivana, Lević, Steva, Dajić-Stevanović, Zora, Kolašinac, Stefan, Belović, Miona, Torbica, Aleksandra, Zlatanović, Ivan, Pavlović, Vladimir, Onjia, Antonije, "Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum)" in Foods, 12, no. 13 (2023):2468,
https://doi.org/10.3390/foods12132468 . .
2

Goat milk proteins enriched with Agaricus blazei Murrill ss. Heinem extracts: Electrophoretic, FTIR, DLS and microstructure characterization

Minić, Dušanka A. Popović; Milinčić, Danijel D.; Kolašinac, Stefan; Rac, Vladislav; Petrović, Jovana; Soković, Marina; Banjac, Nebojša; Lađarević, Jelena; Vidović, Bojana B.; Kostić, Aleksandar Ž.; Pavlović, Vladimir B.; Pešić, Mirjana B.

(Elsevier Ltd, 2023)

TY  - JOUR
AU  - Minić, Dušanka A. Popović
AU  - Milinčić, Danijel D.
AU  - Kolašinac, Stefan
AU  - Rac, Vladislav
AU  - Petrović, Jovana
AU  - Soković, Marina
AU  - Banjac, Nebojša
AU  - Lađarević, Jelena
AU  - Vidović, Bojana B.
AU  - Kostić, Aleksandar Ž.
AU  - Pavlović, Vladimir B.
AU  - Pešić, Mirjana B.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5222
AB  - This study aimed to characterize mixtures of goat milk proteins and Agaricus blazei Murrill (ABM) extracts (aqueous, AE and polysaccharides, PE). The mixtures showed stable particles with ζ-potential more negative than −41.1 mV. The addition of AMB extracts to goat milk did not result in a significant particle size change, whereas their addition to heated goat milk significantly increased mean particle diameter (from 194 nm to 225 nm). Fourier Transform Infrared Spectroscopy (FTIR) showed that ABM extracts provoked changes in the secondary structure of goat milk proteins and interactions between polysaccharides and milk proteins predominantly via hydrogen and/or glycoside bonds and hydrophobic interactions. The milk protein profiles revealed proteolytic activity in mixtures with AE resulting in the formation of five new polypeptides. The different microstructures of mixtures with AE and PE were found by Scanning Electron Microscopy (SEM). A schematic representation of possible milk proteins-ABM extracts interactions has been given.
PB  - Elsevier Ltd
T2  - Food Chemistry
T1  - Goat milk proteins enriched with Agaricus blazei Murrill ss. Heinem extracts: Electrophoretic, FTIR, DLS and microstructure characterization
SP  - 134299
VL  - 402
DO  - 10.1016/j.foodchem.2022.134299
ER  - 
@article{
author = "Minić, Dušanka A. Popović and Milinčić, Danijel D. and Kolašinac, Stefan and Rac, Vladislav and Petrović, Jovana and Soković, Marina and Banjac, Nebojša and Lađarević, Jelena and Vidović, Bojana B. and Kostić, Aleksandar Ž. and Pavlović, Vladimir B. and Pešić, Mirjana B.",
year = "2023",
abstract = "This study aimed to characterize mixtures of goat milk proteins and Agaricus blazei Murrill (ABM) extracts (aqueous, AE and polysaccharides, PE). The mixtures showed stable particles with ζ-potential more negative than −41.1 mV. The addition of AMB extracts to goat milk did not result in a significant particle size change, whereas their addition to heated goat milk significantly increased mean particle diameter (from 194 nm to 225 nm). Fourier Transform Infrared Spectroscopy (FTIR) showed that ABM extracts provoked changes in the secondary structure of goat milk proteins and interactions between polysaccharides and milk proteins predominantly via hydrogen and/or glycoside bonds and hydrophobic interactions. The milk protein profiles revealed proteolytic activity in mixtures with AE resulting in the formation of five new polypeptides. The different microstructures of mixtures with AE and PE were found by Scanning Electron Microscopy (SEM). A schematic representation of possible milk proteins-ABM extracts interactions has been given.",
publisher = "Elsevier Ltd",
journal = "Food Chemistry",
title = "Goat milk proteins enriched with Agaricus blazei Murrill ss. Heinem extracts: Electrophoretic, FTIR, DLS and microstructure characterization",
pages = "134299",
volume = "402",
doi = "10.1016/j.foodchem.2022.134299"
}
Minić, D. A. P., Milinčić, D. D., Kolašinac, S., Rac, V., Petrović, J., Soković, M., Banjac, N., Lađarević, J., Vidović, B. B., Kostić, A. Ž., Pavlović, V. B.,& Pešić, M. B.. (2023). Goat milk proteins enriched with Agaricus blazei Murrill ss. Heinem extracts: Electrophoretic, FTIR, DLS and microstructure characterization. in Food Chemistry
Elsevier Ltd., 402, 134299.
https://doi.org/10.1016/j.foodchem.2022.134299
Minić DAP, Milinčić DD, Kolašinac S, Rac V, Petrović J, Soković M, Banjac N, Lađarević J, Vidović BB, Kostić AŽ, Pavlović VB, Pešić MB. Goat milk proteins enriched with Agaricus blazei Murrill ss. Heinem extracts: Electrophoretic, FTIR, DLS and microstructure characterization. in Food Chemistry. 2023;402:134299.
doi:10.1016/j.foodchem.2022.134299 .
Minić, Dušanka A. Popović, Milinčić, Danijel D., Kolašinac, Stefan, Rac, Vladislav, Petrović, Jovana, Soković, Marina, Banjac, Nebojša, Lađarević, Jelena, Vidović, Bojana B., Kostić, Aleksandar Ž., Pavlović, Vladimir B., Pešić, Mirjana B., "Goat milk proteins enriched with Agaricus blazei Murrill ss. Heinem extracts: Electrophoretic, FTIR, DLS and microstructure characterization" in Food Chemistry, 402 (2023):134299,
https://doi.org/10.1016/j.foodchem.2022.134299 . .
4
3