Dascau, Horia

Link to this page

Authority KeyName Variants
225dee23-864f-42fa-9200-9d3680879109
  • Dascau, Horia (2)
Projects

Author's Bibliography

Numerical simulation of fatigue crack propagation in friction stir welded joint made of Al 2024-T351 alloy

Đurđević, Andrijana; Zivojinović, Danijela; Grbović, Aleksandar; Sedmak, Aleksandar; Rakin, Marko; Dascau, Horia; Kirin, Snežana

(Pergamon-Elsevier Science Ltd, Oxford, 2015)

TY  - JOUR
AU  - Đurđević, Andrijana
AU  - Zivojinović, Danijela
AU  - Grbović, Aleksandar
AU  - Sedmak, Aleksandar
AU  - Rakin, Marko
AU  - Dascau, Horia
AU  - Kirin, Snežana
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3056
AB  - In this work, fatigue crack propagation in thin-walled aluminium alloy structure with two friction stir welded T joints has been simulated numerically. Crack propagation in stiffened part of the structure between two friction stir welded T joints is analysed by using the eXtended Finite Element Method (XFEM), including software ABAQUS, as well as MORFEO, for modelling and results display. Tensile fatigue loading is applied, with stress ratio R = 0, and maximum stress sigma(max) = 10 MPa. Material properties (Al 2024-T351, as used in aeronautical industry) in different welded joints zones are adopted from available literature data. Following results are obtained by numerical analysis: stress-strain and displacement state in the structure, position of the crack tip and value of stress intensity factor for every crack propagation step, as well as the structural life estimation, i.e. number of load cycles, N, also for each crack propagation step. Using these results the number of cycles at which the crack starts to propagate in an unstable manner is predicted.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Engineering Failure Analysis
T1  - Numerical simulation of fatigue crack propagation in friction stir welded joint made of Al 2024-T351 alloy
EP  - 484
SP  - 477
VL  - 58
DO  - 10.1016/j.engfailanal.2015.08.028
ER  - 
@article{
author = "Đurđević, Andrijana and Zivojinović, Danijela and Grbović, Aleksandar and Sedmak, Aleksandar and Rakin, Marko and Dascau, Horia and Kirin, Snežana",
year = "2015",
abstract = "In this work, fatigue crack propagation in thin-walled aluminium alloy structure with two friction stir welded T joints has been simulated numerically. Crack propagation in stiffened part of the structure between two friction stir welded T joints is analysed by using the eXtended Finite Element Method (XFEM), including software ABAQUS, as well as MORFEO, for modelling and results display. Tensile fatigue loading is applied, with stress ratio R = 0, and maximum stress sigma(max) = 10 MPa. Material properties (Al 2024-T351, as used in aeronautical industry) in different welded joints zones are adopted from available literature data. Following results are obtained by numerical analysis: stress-strain and displacement state in the structure, position of the crack tip and value of stress intensity factor for every crack propagation step, as well as the structural life estimation, i.e. number of load cycles, N, also for each crack propagation step. Using these results the number of cycles at which the crack starts to propagate in an unstable manner is predicted.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Engineering Failure Analysis",
title = "Numerical simulation of fatigue crack propagation in friction stir welded joint made of Al 2024-T351 alloy",
pages = "484-477",
volume = "58",
doi = "10.1016/j.engfailanal.2015.08.028"
}
Đurđević, A., Zivojinović, D., Grbović, A., Sedmak, A., Rakin, M., Dascau, H.,& Kirin, S.. (2015). Numerical simulation of fatigue crack propagation in friction stir welded joint made of Al 2024-T351 alloy. in Engineering Failure Analysis
Pergamon-Elsevier Science Ltd, Oxford., 58, 477-484.
https://doi.org/10.1016/j.engfailanal.2015.08.028
Đurđević A, Zivojinović D, Grbović A, Sedmak A, Rakin M, Dascau H, Kirin S. Numerical simulation of fatigue crack propagation in friction stir welded joint made of Al 2024-T351 alloy. in Engineering Failure Analysis. 2015;58:477-484.
doi:10.1016/j.engfailanal.2015.08.028 .
Đurđević, Andrijana, Zivojinović, Danijela, Grbović, Aleksandar, Sedmak, Aleksandar, Rakin, Marko, Dascau, Horia, Kirin, Snežana, "Numerical simulation of fatigue crack propagation in friction stir welded joint made of Al 2024-T351 alloy" in Engineering Failure Analysis, 58 (2015):477-484,
https://doi.org/10.1016/j.engfailanal.2015.08.028 . .
27
21
33

Numerical simulation of the plunge stage in friction stir welding

Veljić, Darko; Perović, Milenko; Sedmak, Aleksandar; Rakin, Marko; Bajić, Nikola; Međo, Bojan; Dascau, Horia

(Society for Structural Integrity and Life, Institute for Material Testing, 2011)

TY  - JOUR
AU  - Veljić, Darko
AU  - Perović, Milenko
AU  - Sedmak, Aleksandar
AU  - Rakin, Marko
AU  - Bajić, Nikola
AU  - Međo, Bojan
AU  - Dascau, Horia
PY  - 2011
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1842
AB  - This paper investigates the plunge stage using numerical modeling. A three-dimensional finite element model (FEM) of the plunge stage is developed using the commercial code ABAQUS to study the thermo-mechanical processes involved during the plunge stage. A coupled thermo-mechanical 3D FE model uses the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb's Law of friction. The model is developed to study the temperature fields of alloy Al2024-T351 under different process parameters (rotating speed) during the friction stir welding (FSW) process. Numerical results indicate that the maximal temperature of the FSW process can be increased with the increase of rotational speed and that temperature is lower than the melting point of the welding material. In this analysis, temperature, displacement, and mechanical responses are determined simultaneously. The heat generation in FSW can be divided into three parts: frictional heat generated by the tool shoulder, frictional heat generated by the tool pin, and heat generated by material deformation near the pin region.
AB  - U ovom radu je istražena faza uranjanja alata primenom numeričkog modeliranja. Trodimenzionalni model konačnih elemenata (FEM) faze uranjanja je razvijen primenom softvera ABAQUS radi proučavanja termomehaničkih procesa koji se odvijaju tokom faze uranjanja. Spregnuti termomehanički 3D FE model se bazira na proizvoljnim formulacijama Lagranža-Ojlera, zakonu materijala Džonson-Kuk i Kulonovom zakonu trenja. Model je razvijen radi proučavanja temperaturskih polja legure Al2024-T351 pod različitim parametrima postupka (brzina rotacije) kod postupka zavarivanja trenjem mešanjem (FSW). Numerički rezultati pokazuju da se maksimalna temperatura postupka FSW može povećati sa povećanjem brzine rotacije, kao i da je temperatura niža od tačke topljenja zavarenog materijala. U ovoj analizi, temperatura, pomeranje i mehanički odzivi se određuju simultano. Izdvajanje toplote kod FSW se može podeliti na tri dela: toplota trenja koja se razvija kretanjem čela alata, toplota trenja dobijena kretanjem trna alata, kao i toplota usled plastične deformacije materijala u blizini oblasti trna alata.
PB  - Society for Structural Integrity and Life, Institute for Material Testing
T2  - Integritet i vek konstrukcija
T1  - Numerical simulation of the plunge stage in friction stir welding
T1  - Numerička simulacija faze uranjanja kod zavarivanja trenjem mešanjem
EP  - 134
IS  - 2
SP  - 131
VL  - 11
UR  - https://hdl.handle.net/21.15107/rcub_technorep_1842
ER  - 
@article{
author = "Veljić, Darko and Perović, Milenko and Sedmak, Aleksandar and Rakin, Marko and Bajić, Nikola and Međo, Bojan and Dascau, Horia",
year = "2011",
abstract = "This paper investigates the plunge stage using numerical modeling. A three-dimensional finite element model (FEM) of the plunge stage is developed using the commercial code ABAQUS to study the thermo-mechanical processes involved during the plunge stage. A coupled thermo-mechanical 3D FE model uses the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb's Law of friction. The model is developed to study the temperature fields of alloy Al2024-T351 under different process parameters (rotating speed) during the friction stir welding (FSW) process. Numerical results indicate that the maximal temperature of the FSW process can be increased with the increase of rotational speed and that temperature is lower than the melting point of the welding material. In this analysis, temperature, displacement, and mechanical responses are determined simultaneously. The heat generation in FSW can be divided into three parts: frictional heat generated by the tool shoulder, frictional heat generated by the tool pin, and heat generated by material deformation near the pin region., U ovom radu je istražena faza uranjanja alata primenom numeričkog modeliranja. Trodimenzionalni model konačnih elemenata (FEM) faze uranjanja je razvijen primenom softvera ABAQUS radi proučavanja termomehaničkih procesa koji se odvijaju tokom faze uranjanja. Spregnuti termomehanički 3D FE model se bazira na proizvoljnim formulacijama Lagranža-Ojlera, zakonu materijala Džonson-Kuk i Kulonovom zakonu trenja. Model je razvijen radi proučavanja temperaturskih polja legure Al2024-T351 pod različitim parametrima postupka (brzina rotacije) kod postupka zavarivanja trenjem mešanjem (FSW). Numerički rezultati pokazuju da se maksimalna temperatura postupka FSW može povećati sa povećanjem brzine rotacije, kao i da je temperatura niža od tačke topljenja zavarenog materijala. U ovoj analizi, temperatura, pomeranje i mehanički odzivi se određuju simultano. Izdvajanje toplote kod FSW se može podeliti na tri dela: toplota trenja koja se razvija kretanjem čela alata, toplota trenja dobijena kretanjem trna alata, kao i toplota usled plastične deformacije materijala u blizini oblasti trna alata.",
publisher = "Society for Structural Integrity and Life, Institute for Material Testing",
journal = "Integritet i vek konstrukcija",
title = "Numerical simulation of the plunge stage in friction stir welding, Numerička simulacija faze uranjanja kod zavarivanja trenjem mešanjem",
pages = "134-131",
number = "2",
volume = "11",
url = "https://hdl.handle.net/21.15107/rcub_technorep_1842"
}
Veljić, D., Perović, M., Sedmak, A., Rakin, M., Bajić, N., Međo, B.,& Dascau, H.. (2011). Numerical simulation of the plunge stage in friction stir welding. in Integritet i vek konstrukcija
Society for Structural Integrity and Life, Institute for Material Testing., 11(2), 131-134.
https://hdl.handle.net/21.15107/rcub_technorep_1842
Veljić D, Perović M, Sedmak A, Rakin M, Bajić N, Međo B, Dascau H. Numerical simulation of the plunge stage in friction stir welding. in Integritet i vek konstrukcija. 2011;11(2):131-134.
https://hdl.handle.net/21.15107/rcub_technorep_1842 .
Veljić, Darko, Perović, Milenko, Sedmak, Aleksandar, Rakin, Marko, Bajić, Nikola, Međo, Bojan, Dascau, Horia, "Numerical simulation of the plunge stage in friction stir welding" in Integritet i vek konstrukcija, 11, no. 2 (2011):131-134,
https://hdl.handle.net/21.15107/rcub_technorep_1842 .