Škapin, Srečo Davor

Link to this page

Authority KeyName Variants
orcid::0000-0001-8071-0421
  • Škapin, Srečo Davor (9)
  • Škapin, Srečo (1)
Projects
Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them Application of biotechnological methods for sustainable exploitation of by-products of agro-industry
Reinforcing of Nanotechnology and Functional Materials Centre Development and Application of Methods and Materials for Monitoring New Organic Contaminants, Toxic Compounds and Heavy Metals
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade) Synthesis, processing and applications of nanostructured multifunctional materials with defined properties
Sinteza funkcionalnih materijala sa kontrolisanom strukturom na molekularnom i nano nivou Predefined functional properties polymer composite materials processes and equipment development
Republic of Serbia Republic of Serbia "Nanostructured and mesoporous functional materials with enhanced solar light driven photocatalytic activity" for 2018-2019
Republic of Slovenia ``Nanostructured and mesoporous functional materials with enhanced solar light driven photocatalytic activity'' Republic of Slovenia "Nanostructured and mesoporous functional materials with enhanced solar light driven photocatalytic activity" for 2018-2019

Author's Bibliography

Evaluation of the antibacterial effectiveness of novel copper/polypyrrole nanocomposite

Mašojević, Dijana; Stamenović, Una; Otoničar, Mojca; Davidović, Slađana; Škapin, Srečo; Barudžija, Tanja; Vodnik, Vesna

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Mašojević, Dijana
AU  - Stamenović, Una
AU  - Otoničar, Mojca
AU  - Davidović, Slađana
AU  - Škapin, Srečo
AU  - Barudžija, Tanja
AU  - Vodnik, Vesna
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5918
AB  - A novel and effective antibacterial agent based on a combination of copper nanoparticles (CuNPs) and polypyrrole (PPy) is presented. By using a straightforward in situ polymerization method in water, a copper/polypyrrole (Cu/PPy) nanocomposite with spherical CuNPs, around 25 nm in diameter, uniformly dispersed throughout a granular PPy matrix, was characterized and subjected to determination of antibacterial activity toward E. coli, and S. aureus. In this survey, the synergistic engagement of various features of CuNPs and PPy against bacteria was somewhat expected. After a 24 h interaction with S. aureus, already 2 ppm of Cu/PPy with only 9.45 wt% content of Cu is acting almost completely cidal, with 99.17 % bacterial growth inhibition, while 10 ppm has a cidal value of 99.99 % at the same time. Safe and environmentally acceptable concentrations of Cu/PPy indicate that it is convenient as an antibacterial agent for wider use.
PB  - Elsevier B.V.
T2  - Materials Letters
T1  - Evaluation of the antibacterial effectiveness of novel copper/polypyrrole nanocomposite
SP  - 134051
VL  - 338
DO  - 10.1016/j.matlet.2023.134051
ER  - 
@article{
author = "Mašojević, Dijana and Stamenović, Una and Otoničar, Mojca and Davidović, Slađana and Škapin, Srečo and Barudžija, Tanja and Vodnik, Vesna",
year = "2023",
abstract = "A novel and effective antibacterial agent based on a combination of copper nanoparticles (CuNPs) and polypyrrole (PPy) is presented. By using a straightforward in situ polymerization method in water, a copper/polypyrrole (Cu/PPy) nanocomposite with spherical CuNPs, around 25 nm in diameter, uniformly dispersed throughout a granular PPy matrix, was characterized and subjected to determination of antibacterial activity toward E. coli, and S. aureus. In this survey, the synergistic engagement of various features of CuNPs and PPy against bacteria was somewhat expected. After a 24 h interaction with S. aureus, already 2 ppm of Cu/PPy with only 9.45 wt% content of Cu is acting almost completely cidal, with 99.17 % bacterial growth inhibition, while 10 ppm has a cidal value of 99.99 % at the same time. Safe and environmentally acceptable concentrations of Cu/PPy indicate that it is convenient as an antibacterial agent for wider use.",
publisher = "Elsevier B.V.",
journal = "Materials Letters",
title = "Evaluation of the antibacterial effectiveness of novel copper/polypyrrole nanocomposite",
pages = "134051",
volume = "338",
doi = "10.1016/j.matlet.2023.134051"
}
Mašojević, D., Stamenović, U., Otoničar, M., Davidović, S., Škapin, S., Barudžija, T.,& Vodnik, V.. (2023). Evaluation of the antibacterial effectiveness of novel copper/polypyrrole nanocomposite. in Materials Letters
Elsevier B.V.., 338, 134051.
https://doi.org/10.1016/j.matlet.2023.134051
Mašojević D, Stamenović U, Otoničar M, Davidović S, Škapin S, Barudžija T, Vodnik V. Evaluation of the antibacterial effectiveness of novel copper/polypyrrole nanocomposite. in Materials Letters. 2023;338:134051.
doi:10.1016/j.matlet.2023.134051 .
Mašojević, Dijana, Stamenović, Una, Otoničar, Mojca, Davidović, Slađana, Škapin, Srečo, Barudžija, Tanja, Vodnik, Vesna, "Evaluation of the antibacterial effectiveness of novel copper/polypyrrole nanocomposite" in Materials Letters, 338 (2023):134051,
https://doi.org/10.1016/j.matlet.2023.134051 . .
3
2

Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković-Simatović, Ivana; Veselinović, Ljiljana; Belošević-Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković-Častvan, Ivona; Marković, Smilja

(Royal Soc Chemistry, Cambridge, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković-Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević-Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković-Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4368
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1-xFexO,x= 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn(2+)partial substitution with Fe(3+)on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 Vvs.RHE), current density (0.231 mA cm(-2)at 0.150 Vvs.RHE), and faster kinetics (Tafel slope,b= 248 mV dec(-1)), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (0001x304;) facets. Quite the contrary, the OER study showed that the introduction of Fe(3+)ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm(-2)at 2.216 Vvs.RHE, an onset potential of 1.856 Vvs.RHE, and the smallest potential difference between the OER and ORR (Delta E= 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Soc Chemistry, Cambridge
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry
EP  - 22095
IS  - 38
SP  - 22078
VL  - 22
DO  - 10.1039/d0cp03377d
ER  - 
@article{
author = "Rajić, Vladimir and Stojković-Simatović, Ivana and Veselinović, Ljiljana and Belošević-Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković-Častvan, Ivona and Marković, Smilja",
year = "2020",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1-xFexO,x= 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn(2+)partial substitution with Fe(3+)on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 Vvs.RHE), current density (0.231 mA cm(-2)at 0.150 Vvs.RHE), and faster kinetics (Tafel slope,b= 248 mV dec(-1)), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (0001x304;) facets. Quite the contrary, the OER study showed that the introduction of Fe(3+)ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm(-2)at 2.216 Vvs.RHE, an onset potential of 1.856 Vvs.RHE, and the smallest potential difference between the OER and ORR (Delta E= 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22095-22078",
number = "38",
volume = "22",
doi = "10.1039/d0cp03377d"
}
Rajić, V., Stojković-Simatović, I., Veselinović, L., Belošević-Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković-Častvan, I.,& Marković, S.. (2020). Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics
Royal Soc Chemistry, Cambridge., 22(38), 22078-22095.
https://doi.org/10.1039/d0cp03377d
Rajić V, Stojković-Simatović I, Veselinović L, Belošević-Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković-Častvan I, Marković S. Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics. 2020;22(38):22078-22095.
doi:10.1039/d0cp03377d .
Rajić, Vladimir, Stojković-Simatović, Ivana, Veselinović, Ljiljana, Belošević-Čavor, Jelena, Novaković, Mirjana, Popović, Maja, Škapin, Srečo Davor, Mojović, Miloš, Stojadinović, Stevan, Rac, Vladislav, Janković-Častvan, Ivona, Marković, Smilja, "Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry" in Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/d0cp03377d . .
11
3
10

Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties

Marković, Smilja; Stojković-Simatović, Ivana; Ahmetović, Sanita; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Škapin, Srečo Davor; Bajuk-Bogdanović, Danica; Janković-Častvan, Ivona; Uskoković, Dragan

(Royal Soc Chemistry, Cambridge, 2019)

TY  - JOUR
AU  - Marković, Smilja
AU  - Stojković-Simatović, Ivana
AU  - Ahmetović, Sanita
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Bajuk-Bogdanović, Danica
AU  - Janković-Častvan, Ivona
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4235
AB  - ZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g(-1), compared to ZnO (10.4 mA g(-1)) and ZnO/F127 photoanodes (20 mA g(-1)) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm(-2). A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron-hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties
EP  - 17178
IS  - 30
SP  - 17165
VL  - 9
DO  - 10.1039/c9ra02553g
ER  - 
@article{
author = "Marković, Smilja and Stojković-Simatović, Ivana and Ahmetović, Sanita and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Škapin, Srečo Davor and Bajuk-Bogdanović, Danica and Janković-Častvan, Ivona and Uskoković, Dragan",
year = "2019",
abstract = "ZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g(-1), compared to ZnO (10.4 mA g(-1)) and ZnO/F127 photoanodes (20 mA g(-1)) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm(-2). A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron-hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties",
pages = "17178-17165",
number = "30",
volume = "9",
doi = "10.1039/c9ra02553g"
}
Marković, S., Stojković-Simatović, I., Ahmetović, S., Veselinović, L., Stojadinović, S., Rac, V., Škapin, S. D., Bajuk-Bogdanović, D., Janković-Častvan, I.,& Uskoković, D.. (2019). Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties. in RSC Advances
Royal Soc Chemistry, Cambridge., 9(30), 17165-17178.
https://doi.org/10.1039/c9ra02553g
Marković S, Stojković-Simatović I, Ahmetović S, Veselinović L, Stojadinović S, Rac V, Škapin SD, Bajuk-Bogdanović D, Janković-Častvan I, Uskoković D. Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties. in RSC Advances. 2019;9(30):17165-17178.
doi:10.1039/c9ra02553g .
Marković, Smilja, Stojković-Simatović, Ivana, Ahmetović, Sanita, Veselinović, Ljiljana, Stojadinović, Stevan, Rac, Vladislav, Škapin, Srečo Davor, Bajuk-Bogdanović, Danica, Janković-Častvan, Ivona, Uskoković, Dragan, "Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties" in RSC Advances, 9, no. 30 (2019):17165-17178,
https://doi.org/10.1039/c9ra02553g . .
1
23
11
25

Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation

Bogdanović, Una; Dimitrijević, Suzana; Škapin, Srečo Davor; Popović, Maja; Rakočević, Zlatko Lj.; Leskovac, Andreja; Petrović, Sandra; Stoiljković, Milovan; Vodnik, Vesna

(Elsevier, Amsterdam, 2018)

TY  - JOUR
AU  - Bogdanović, Una
AU  - Dimitrijević, Suzana
AU  - Škapin, Srečo Davor
AU  - Popović, Maja
AU  - Rakočević, Zlatko Lj.
AU  - Leskovac, Andreja
AU  - Petrović, Sandra
AU  - Stoiljković, Milovan
AU  - Vodnik, Vesna
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3928
AB  - Copper nanoparticles (Cu NPs) have proven to own excellent antimicrobial efficacy, but the problems of easy oxidation and aggregation limit their practical application. Here, nanocomposite based on polyaniline (PANI) and Cu NPs solved this problem and brought additional physicochemical properties that are markedly advantageous for antimicrobial applications. Current work exploits this potential, to examine its time- and concentration-dependent antimicrobial activity, employing E. coli, S. aureus, and C. albicans as a model microbial species. Regarding the presence of polaronic charge carriers in the fibrous polyaniline network, effects of Cu NPs size and their partially oxidized surfaces (the data were confirmed by HRTEM, FESEM, XRD, Raman and XPS analysis), as well as rapid copper ions release, Cu-PANI nanocomposite showed efficient bactericidal and fungicidal activities at the concentrations  lt = 1 ppm, within the incubation time of 2 h. Beside the quantitative analysis, the high levels of cellular disruption for all tested microbes were evidenced by atomic force microscopy. Moreover, the minimum inhibitory and bactericidal concentrations of the Cu-PANI nanocomposite were lower than those reported for other nanocomposites. Using such low concentrations is recognized as a good way to avoid its toxicity toward the environment. For this purpose, Cu-PANI nanocomposite is tested for its genotoxicity and influence on the oxidative status of the human cells in vitro.
PB  - Elsevier, Amsterdam
T2  - Materials Science & Engineering C-Materials for Biological Applications
T1  - Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation
EP  - 60
SP  - 49
VL  - 93
DO  - 10.1016/j.msec.2018.07.067
ER  - 
@article{
author = "Bogdanović, Una and Dimitrijević, Suzana and Škapin, Srečo Davor and Popović, Maja and Rakočević, Zlatko Lj. and Leskovac, Andreja and Petrović, Sandra and Stoiljković, Milovan and Vodnik, Vesna",
year = "2018",
abstract = "Copper nanoparticles (Cu NPs) have proven to own excellent antimicrobial efficacy, but the problems of easy oxidation and aggregation limit their practical application. Here, nanocomposite based on polyaniline (PANI) and Cu NPs solved this problem and brought additional physicochemical properties that are markedly advantageous for antimicrobial applications. Current work exploits this potential, to examine its time- and concentration-dependent antimicrobial activity, employing E. coli, S. aureus, and C. albicans as a model microbial species. Regarding the presence of polaronic charge carriers in the fibrous polyaniline network, effects of Cu NPs size and their partially oxidized surfaces (the data were confirmed by HRTEM, FESEM, XRD, Raman and XPS analysis), as well as rapid copper ions release, Cu-PANI nanocomposite showed efficient bactericidal and fungicidal activities at the concentrations  lt = 1 ppm, within the incubation time of 2 h. Beside the quantitative analysis, the high levels of cellular disruption for all tested microbes were evidenced by atomic force microscopy. Moreover, the minimum inhibitory and bactericidal concentrations of the Cu-PANI nanocomposite were lower than those reported for other nanocomposites. Using such low concentrations is recognized as a good way to avoid its toxicity toward the environment. For this purpose, Cu-PANI nanocomposite is tested for its genotoxicity and influence on the oxidative status of the human cells in vitro.",
publisher = "Elsevier, Amsterdam",
journal = "Materials Science & Engineering C-Materials for Biological Applications",
title = "Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation",
pages = "60-49",
volume = "93",
doi = "10.1016/j.msec.2018.07.067"
}
Bogdanović, U., Dimitrijević, S., Škapin, S. D., Popović, M., Rakočević, Z. Lj., Leskovac, A., Petrović, S., Stoiljković, M.,& Vodnik, V.. (2018). Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation. in Materials Science & Engineering C-Materials for Biological Applications
Elsevier, Amsterdam., 93, 49-60.
https://doi.org/10.1016/j.msec.2018.07.067
Bogdanović U, Dimitrijević S, Škapin SD, Popović M, Rakočević ZL, Leskovac A, Petrović S, Stoiljković M, Vodnik V. Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation. in Materials Science & Engineering C-Materials for Biological Applications. 2018;93:49-60.
doi:10.1016/j.msec.2018.07.067 .
Bogdanović, Una, Dimitrijević, Suzana, Škapin, Srečo Davor, Popović, Maja, Rakočević, Zlatko Lj., Leskovac, Andreja, Petrović, Sandra, Stoiljković, Milovan, Vodnik, Vesna, "Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation" in Materials Science & Engineering C-Materials for Biological Applications, 93 (2018):49-60,
https://doi.org/10.1016/j.msec.2018.07.067 . .
25
14
24

Simultaneous enhancement of natural sunlightand artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite

Marković, Smilja; Stanković, Ana; Dostanić, Jasmina; Veselinović, Ljiljana; Mančić, Lidija; Škapin, Srečo Davor; Dražić, Goran; Janković-Častvan, Ivona; Uskoković, Dragan

(Royal Soc Chemistry, Cambridge, 2017)

TY  - JOUR
AU  - Marković, Smilja
AU  - Stanković, Ana
AU  - Dostanić, Jasmina
AU  - Veselinović, Ljiljana
AU  - Mančić, Lidija
AU  - Škapin, Srečo Davor
AU  - Dražić, Goran
AU  - Janković-Častvan, Ivona
AU  - Uskoković, Dragan
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3541
AB  - Mechanical milling of commercial ZnO and SnO2 was used to produce a ZnO/SnO2 composite with a high density of surface defects; in particular, zinc interstitials (Zni) and oxygen vacancies (VO). To determine the impact of surface defects on photocatalytic activity, the relative concentration ratio of bulk defects to surface defects was modified by annealing at 400 and 700 degrees C. The possible application of the ZnO/SnO2 composite as a natural sunlight and UV- light driven photocatalyst was revealed via de-colorization of methylene blue. In both cases the ZnO/SnO2 composite exhibited enhanced photocatalytic activity as compared to the pristine ZnO. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), laser diffraction particle size analysis, Brunauer-Emmett-Teller, UV-Vis diffuse reflectance and photoluminescence spectroscopy. High-resolution transmission electron microscopy (HRTEM) and elemental mapping analyses were used to reveal the presence of SnO2 nanocrystallites on the surface of larger ZnO particles. The enhanced photocatalytic activity of the composite can be attributed to the synergetic effect of the surface defects and the ZnO/SnO2 heterojunction particles, which facilitated charge separation, thereby hindering the recombination of photogenerated carriers. This study draws attention to mechanical activation as an inexpensive and environmentally friendly technique for the large-scale production of the composite with an enhanced photocatalytic activity under illumination of either UV or sunlight.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Simultaneous enhancement of natural sunlightand artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite
EP  - 42737
IS  - 68
SP  - 42725
VL  - 7
DO  - 10.1039/c7ra06895f
ER  - 
@article{
author = "Marković, Smilja and Stanković, Ana and Dostanić, Jasmina and Veselinović, Ljiljana and Mančić, Lidija and Škapin, Srečo Davor and Dražić, Goran and Janković-Častvan, Ivona and Uskoković, Dragan",
year = "2017",
abstract = "Mechanical milling of commercial ZnO and SnO2 was used to produce a ZnO/SnO2 composite with a high density of surface defects; in particular, zinc interstitials (Zni) and oxygen vacancies (VO). To determine the impact of surface defects on photocatalytic activity, the relative concentration ratio of bulk defects to surface defects was modified by annealing at 400 and 700 degrees C. The possible application of the ZnO/SnO2 composite as a natural sunlight and UV- light driven photocatalyst was revealed via de-colorization of methylene blue. In both cases the ZnO/SnO2 composite exhibited enhanced photocatalytic activity as compared to the pristine ZnO. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), laser diffraction particle size analysis, Brunauer-Emmett-Teller, UV-Vis diffuse reflectance and photoluminescence spectroscopy. High-resolution transmission electron microscopy (HRTEM) and elemental mapping analyses were used to reveal the presence of SnO2 nanocrystallites on the surface of larger ZnO particles. The enhanced photocatalytic activity of the composite can be attributed to the synergetic effect of the surface defects and the ZnO/SnO2 heterojunction particles, which facilitated charge separation, thereby hindering the recombination of photogenerated carriers. This study draws attention to mechanical activation as an inexpensive and environmentally friendly technique for the large-scale production of the composite with an enhanced photocatalytic activity under illumination of either UV or sunlight.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Simultaneous enhancement of natural sunlightand artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite",
pages = "42737-42725",
number = "68",
volume = "7",
doi = "10.1039/c7ra06895f"
}
Marković, S., Stanković, A., Dostanić, J., Veselinović, L., Mančić, L., Škapin, S. D., Dražić, G., Janković-Častvan, I.,& Uskoković, D.. (2017). Simultaneous enhancement of natural sunlightand artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite. in RSC Advances
Royal Soc Chemistry, Cambridge., 7(68), 42725-42737.
https://doi.org/10.1039/c7ra06895f
Marković S, Stanković A, Dostanić J, Veselinović L, Mančić L, Škapin SD, Dražić G, Janković-Častvan I, Uskoković D. Simultaneous enhancement of natural sunlightand artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite. in RSC Advances. 2017;7(68):42725-42737.
doi:10.1039/c7ra06895f .
Marković, Smilja, Stanković, Ana, Dostanić, Jasmina, Veselinović, Ljiljana, Mančić, Lidija, Škapin, Srečo Davor, Dražić, Goran, Janković-Častvan, Ivona, Uskoković, Dragan, "Simultaneous enhancement of natural sunlightand artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite" in RSC Advances, 7, no. 68 (2017):42725-42737,
https://doi.org/10.1039/c7ra06895f . .
28
18
29

Nanomaterial with High Antimicrobial Efficacy-Copper/Polyaniline Nanocomposite

Bogdanović, Una; Vodnik, Vesna; Mitrić, Miodrag; Dimitrijević, Suzana; Škapin, Srečo Davor; Zunić, Vojka; Budimir, Milica; Stoiljković, Milovan

(Amer Chemical Soc, Washington, 2015)

TY  - JOUR
AU  - Bogdanović, Una
AU  - Vodnik, Vesna
AU  - Mitrić, Miodrag
AU  - Dimitrijević, Suzana
AU  - Škapin, Srečo Davor
AU  - Zunić, Vojka
AU  - Budimir, Milica
AU  - Stoiljković, Milovan
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3040
AB  - This study explores different mechanisms of antimicrobial action by designing hybrid nanomaterials that provide a new approach in the fight against resistant microbes. Here, we present a cheap copper-polyaniline (Cu-PANI) nanocomposite material with enhanced antimicrobial properties, prepared by simple in situ polymerization method, when polymer and metal nanoparticles are produced simultaneously. The copper nanoparticles (CuNPs) are uniformly dispersed in the polymer and have a narrow size distribution (dav = 6 nm). We found that CuNPs and PANI act synergistically against three strains, Escherichia coli, Staphylococcus aureus, and Candida albicans, and resulting nanocomposite exhibits higher antimicrobial activity than any component acting alone. Before using the colony counting method to quantify its time and concentration antimicrobial activity, different techniques (UV-visible spectroscopy, transmission electron microscopy, scanning electron microscope, field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrophotometry, and inductively coupled plasma optical emission spectrometry) were used to identify the optical, structural, and chemical aspects of the formed Cu-PANI nanocomposite. The antimicrobial activity of this nanocomposite shows that the microbial growth has been fully inhibited; moreover, some of the tested microbes were killed. Atomic force microscopy revealed dramatic changes in morphology of tested cells due to disruption of their cell wall integrity after incubation with Cu-PANI nanocomposite.
PB  - Amer Chemical Soc, Washington
T2  - ACS Applied Materials & Interfaces
T1  - Nanomaterial with High Antimicrobial Efficacy-Copper/Polyaniline Nanocomposite
EP  - 1966
IS  - 3
SP  - 1955
VL  - 7
DO  - 10.1021/am507746m
ER  - 
@article{
author = "Bogdanović, Una and Vodnik, Vesna and Mitrić, Miodrag and Dimitrijević, Suzana and Škapin, Srečo Davor and Zunić, Vojka and Budimir, Milica and Stoiljković, Milovan",
year = "2015",
abstract = "This study explores different mechanisms of antimicrobial action by designing hybrid nanomaterials that provide a new approach in the fight against resistant microbes. Here, we present a cheap copper-polyaniline (Cu-PANI) nanocomposite material with enhanced antimicrobial properties, prepared by simple in situ polymerization method, when polymer and metal nanoparticles are produced simultaneously. The copper nanoparticles (CuNPs) are uniformly dispersed in the polymer and have a narrow size distribution (dav = 6 nm). We found that CuNPs and PANI act synergistically against three strains, Escherichia coli, Staphylococcus aureus, and Candida albicans, and resulting nanocomposite exhibits higher antimicrobial activity than any component acting alone. Before using the colony counting method to quantify its time and concentration antimicrobial activity, different techniques (UV-visible spectroscopy, transmission electron microscopy, scanning electron microscope, field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrophotometry, and inductively coupled plasma optical emission spectrometry) were used to identify the optical, structural, and chemical aspects of the formed Cu-PANI nanocomposite. The antimicrobial activity of this nanocomposite shows that the microbial growth has been fully inhibited; moreover, some of the tested microbes were killed. Atomic force microscopy revealed dramatic changes in morphology of tested cells due to disruption of their cell wall integrity after incubation with Cu-PANI nanocomposite.",
publisher = "Amer Chemical Soc, Washington",
journal = "ACS Applied Materials & Interfaces",
title = "Nanomaterial with High Antimicrobial Efficacy-Copper/Polyaniline Nanocomposite",
pages = "1966-1955",
number = "3",
volume = "7",
doi = "10.1021/am507746m"
}
Bogdanović, U., Vodnik, V., Mitrić, M., Dimitrijević, S., Škapin, S. D., Zunić, V., Budimir, M.,& Stoiljković, M.. (2015). Nanomaterial with High Antimicrobial Efficacy-Copper/Polyaniline Nanocomposite. in ACS Applied Materials & Interfaces
Amer Chemical Soc, Washington., 7(3), 1955-1966.
https://doi.org/10.1021/am507746m
Bogdanović U, Vodnik V, Mitrić M, Dimitrijević S, Škapin SD, Zunić V, Budimir M, Stoiljković M. Nanomaterial with High Antimicrobial Efficacy-Copper/Polyaniline Nanocomposite. in ACS Applied Materials & Interfaces. 2015;7(3):1955-1966.
doi:10.1021/am507746m .
Bogdanović, Una, Vodnik, Vesna, Mitrić, Miodrag, Dimitrijević, Suzana, Škapin, Srečo Davor, Zunić, Vojka, Budimir, Milica, Stoiljković, Milovan, "Nanomaterial with High Antimicrobial Efficacy-Copper/Polyaniline Nanocomposite" in ACS Applied Materials & Interfaces, 7, no. 3 (2015):1955-1966,
https://doi.org/10.1021/am507746m . .
1
139
85
135

The Viscoelastic Properties of Modified Thermoplastic Impregnated Multiaxial Aramid Fabrics

Torki, A. M.; Stojanović, Dušica; Živković, Irena; Marinković, Aleksandar; Škapin, Srečo Davor; Uskoković, Petar; Aleksić, Radoslav

(Wiley, Hoboken, 2012)

TY  - JOUR
AU  - Torki, A. M.
AU  - Stojanović, Dušica
AU  - Živković, Irena
AU  - Marinković, Aleksandar
AU  - Škapin, Srečo Davor
AU  - Uskoković, Petar
AU  - Aleksić, Radoslav
PY  - 2012
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2251
AB  - This study reports the manufacture of new fabric forms from the preparation of hybrid laminated multiaxial composites with enhanced thermo-mechanical properties. Thermal and dynamic mechanical analysis of polymer matrix films and fabricated hybrid composites were used to determine the optimal material composition and reinforcement content for composites with improved viscoelastic properties. The introduction of 5 wt% silica nanoparticles in a composite of p-aramid-poly(vinyl butyral) led to significant improvements in the mechanical properties, and the addition of silane coupling agents yielded maximal values of the storage modulus for hybrid nanocomposites. The introduction of silane led to a better dispersion and deagglomeration of SiO2 particles, and to the formation of chemical bonds between organic and inorganic constituents, or p-aramid-poly( vinyl butyral) composites. In this way, the mobility of macromolecules was reduced, which can be seen from the decreasing value of damping factor for the p-aramid-poly( vinyl butyral) composite. Analysis of the glass transition temperature of the composite with amino-functionalized silica nanoparticles revealed improved thermal stability in addition to the aforementioned mechanical properties of the tested materials. POLYM. COMPOS., 33:158-168, 2012.
PB  - Wiley, Hoboken
T2  - Polymer Composites
T1  - The Viscoelastic Properties of Modified Thermoplastic Impregnated Multiaxial Aramid Fabrics
EP  - 168
IS  - 1
SP  - 158
VL  - 33
DO  - 10.1002/pc.21260
ER  - 
@article{
author = "Torki, A. M. and Stojanović, Dušica and Živković, Irena and Marinković, Aleksandar and Škapin, Srečo Davor and Uskoković, Petar and Aleksić, Radoslav",
year = "2012",
abstract = "This study reports the manufacture of new fabric forms from the preparation of hybrid laminated multiaxial composites with enhanced thermo-mechanical properties. Thermal and dynamic mechanical analysis of polymer matrix films and fabricated hybrid composites were used to determine the optimal material composition and reinforcement content for composites with improved viscoelastic properties. The introduction of 5 wt% silica nanoparticles in a composite of p-aramid-poly(vinyl butyral) led to significant improvements in the mechanical properties, and the addition of silane coupling agents yielded maximal values of the storage modulus for hybrid nanocomposites. The introduction of silane led to a better dispersion and deagglomeration of SiO2 particles, and to the formation of chemical bonds between organic and inorganic constituents, or p-aramid-poly( vinyl butyral) composites. In this way, the mobility of macromolecules was reduced, which can be seen from the decreasing value of damping factor for the p-aramid-poly( vinyl butyral) composite. Analysis of the glass transition temperature of the composite with amino-functionalized silica nanoparticles revealed improved thermal stability in addition to the aforementioned mechanical properties of the tested materials. POLYM. COMPOS., 33:158-168, 2012.",
publisher = "Wiley, Hoboken",
journal = "Polymer Composites",
title = "The Viscoelastic Properties of Modified Thermoplastic Impregnated Multiaxial Aramid Fabrics",
pages = "168-158",
number = "1",
volume = "33",
doi = "10.1002/pc.21260"
}
Torki, A. M., Stojanović, D., Živković, I., Marinković, A., Škapin, S. D., Uskoković, P.,& Aleksić, R.. (2012). The Viscoelastic Properties of Modified Thermoplastic Impregnated Multiaxial Aramid Fabrics. in Polymer Composites
Wiley, Hoboken., 33(1), 158-168.
https://doi.org/10.1002/pc.21260
Torki AM, Stojanović D, Živković I, Marinković A, Škapin SD, Uskoković P, Aleksić R. The Viscoelastic Properties of Modified Thermoplastic Impregnated Multiaxial Aramid Fabrics. in Polymer Composites. 2012;33(1):158-168.
doi:10.1002/pc.21260 .
Torki, A. M., Stojanović, Dušica, Živković, Irena, Marinković, Aleksandar, Škapin, Srečo Davor, Uskoković, Petar, Aleksić, Radoslav, "The Viscoelastic Properties of Modified Thermoplastic Impregnated Multiaxial Aramid Fabrics" in Polymer Composites, 33, no. 1 (2012):158-168,
https://doi.org/10.1002/pc.21260 . .
22
21
25

Removal of lead from water by amino modified multi-walled carbon nanotubes

Vuković, Goran D.; Marinković, Aleksandar; Škapin, Srečo Davor; Ristić, Mirjana; Aleksić, Radoslav; Perić-Grujić, Aleksandra; Uskoković, Petar

(Elsevier Science Sa, Lausanne, 2011)

TY  - JOUR
AU  - Vuković, Goran D.
AU  - Marinković, Aleksandar
AU  - Škapin, Srečo Davor
AU  - Ristić, Mirjana
AU  - Aleksić, Radoslav
AU  - Perić-Grujić, Aleksandra
AU  - Uskoković, Petar
PY  - 2011
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1856
AB  - Pristine, oxidized, ethylenediamine, diethylenetriamine and triethylenetetramine modified multi-walled carbon nanotubes (raw-MWCNT, o-MWCNT, e-MWCNT, d-MWCNT and t-MWCNT, respectively) were employed as adsorbents in order to study individual and competitive adsorption characteristics of Pb2+ and Cd2+ ions. In batch tests, the influence of functionalization, pH, contact time, initial metal ion concentration and temperature, on the ion adsorption on MWCNTs was studied. Adsorption of Pb2+ and Cd2+ on MWCNTs strongly depends on pH. Time dependent Pb2+ adsorption and adsorption data can be described by pseudo-second-order kinetic model and by Langmuir isotherm, respectively. The maximum adsorption capacities of Pb2+ and Cd2+ on d-MWCNT were 58.26 and 31.45 mg g(-1) at 45 degrees C. respectively. The competitive adsorption studies showed that the metal order affinity with respect to d-MWCNT and e-MWCNT is Pb2+  gt  Cd2+. Thermodynamic parameters showed that the adsorption of Pb2+ on appropriate nanotubes was spontaneous and endothermic. According to desorption studies, regenerated MWCNT can be reused over five times with minimal loss of adsorption capacity. Comparison of obtained results with capacities and affinities of other adsorbents indicates suitability of amino-functionalized MWCNT application for removal of Pb2+ and Cd2+ from aqueous solution.
PB  - Elsevier Science Sa, Lausanne
T2  - Chemical Engineering Journal
T1  - Removal of lead from water by amino modified multi-walled carbon nanotubes
EP  - 865
IS  - 3
SP  - 855
VL  - 173
DO  - 10.1016/j.cej.2011.08.036
ER  - 
@article{
author = "Vuković, Goran D. and Marinković, Aleksandar and Škapin, Srečo Davor and Ristić, Mirjana and Aleksić, Radoslav and Perić-Grujić, Aleksandra and Uskoković, Petar",
year = "2011",
abstract = "Pristine, oxidized, ethylenediamine, diethylenetriamine and triethylenetetramine modified multi-walled carbon nanotubes (raw-MWCNT, o-MWCNT, e-MWCNT, d-MWCNT and t-MWCNT, respectively) were employed as adsorbents in order to study individual and competitive adsorption characteristics of Pb2+ and Cd2+ ions. In batch tests, the influence of functionalization, pH, contact time, initial metal ion concentration and temperature, on the ion adsorption on MWCNTs was studied. Adsorption of Pb2+ and Cd2+ on MWCNTs strongly depends on pH. Time dependent Pb2+ adsorption and adsorption data can be described by pseudo-second-order kinetic model and by Langmuir isotherm, respectively. The maximum adsorption capacities of Pb2+ and Cd2+ on d-MWCNT were 58.26 and 31.45 mg g(-1) at 45 degrees C. respectively. The competitive adsorption studies showed that the metal order affinity with respect to d-MWCNT and e-MWCNT is Pb2+  gt  Cd2+. Thermodynamic parameters showed that the adsorption of Pb2+ on appropriate nanotubes was spontaneous and endothermic. According to desorption studies, regenerated MWCNT can be reused over five times with minimal loss of adsorption capacity. Comparison of obtained results with capacities and affinities of other adsorbents indicates suitability of amino-functionalized MWCNT application for removal of Pb2+ and Cd2+ from aqueous solution.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Chemical Engineering Journal",
title = "Removal of lead from water by amino modified multi-walled carbon nanotubes",
pages = "865-855",
number = "3",
volume = "173",
doi = "10.1016/j.cej.2011.08.036"
}
Vuković, G. D., Marinković, A., Škapin, S. D., Ristić, M., Aleksić, R., Perić-Grujić, A.,& Uskoković, P.. (2011). Removal of lead from water by amino modified multi-walled carbon nanotubes. in Chemical Engineering Journal
Elsevier Science Sa, Lausanne., 173(3), 855-865.
https://doi.org/10.1016/j.cej.2011.08.036
Vuković GD, Marinković A, Škapin SD, Ristić M, Aleksić R, Perić-Grujić A, Uskoković P. Removal of lead from water by amino modified multi-walled carbon nanotubes. in Chemical Engineering Journal. 2011;173(3):855-865.
doi:10.1016/j.cej.2011.08.036 .
Vuković, Goran D., Marinković, Aleksandar, Škapin, Srečo Davor, Ristić, Mirjana, Aleksić, Radoslav, Perić-Grujić, Aleksandra, Uskoković, Petar, "Removal of lead from water by amino modified multi-walled carbon nanotubes" in Chemical Engineering Journal, 173, no. 3 (2011):855-865,
https://doi.org/10.1016/j.cej.2011.08.036 . .
226
188
235

Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery

Vukomanović, Marija; Škapin, Srečo Davor; Jančar, Boštjan; Maksin, Tatjana; Ignjatović, Nenad; Uskoković, Vuk; Uskoković, Dragan

(2011)

TY  - JOUR
AU  - Vukomanović, Marija
AU  - Škapin, Srečo Davor
AU  - Jančar, Boštjan
AU  - Maksin, Tatjana
AU  - Ignjatović, Nenad
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2011
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5650
AB  - Biodegradable poly(D,L-lactide-co-glycolide) (PLGA) and bioactive hydroxyapatite (HAP) are selected for the formation of a multifunctional system with the specific core-shell structure to be applied as a carrier of a drug. As a result, both components of PLGA/HAp core-shells are able to capture one part of the drug. Polymeric shells consisting of small nanospheres up to 20 nm in size act as a matrix in which one part of the drug is dispersed. In the same time, ceramic cores are formed of rod-like hydroxyapatite particles at the surface of which another part of the drug is adsorbed onto the interface between the polymer and the ceramics. The content of the loaded drug, as well as the selected solvent/non-solvent system, have a crucial influence on the resulting PLGA/HAp morphology and, finally, unimodal distribution of core-shells is obtained. The redistribution of the drug between the organic and inorganic parts of the material is expected to provide an interesting contribution to the kinetics of the drug release resulting in non-typical two-step drug release. (C) 2010 Elsevier B.V. All rights reserved.
T2  - Colloids and Surfaces B: Biointerfaces
T1  - Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery
EP  - 413
IS  - 2
SP  - 404
VL  - 82
DO  - 10.1016/j.colsurfb.2010.09.011
UR  - https://hdl.handle.net/21.15107/rcub_dais_2749
ER  - 
@article{
author = "Vukomanović, Marija and Škapin, Srečo Davor and Jančar, Boštjan and Maksin, Tatjana and Ignjatović, Nenad and Uskoković, Vuk and Uskoković, Dragan",
year = "2011",
abstract = "Biodegradable poly(D,L-lactide-co-glycolide) (PLGA) and bioactive hydroxyapatite (HAP) are selected for the formation of a multifunctional system with the specific core-shell structure to be applied as a carrier of a drug. As a result, both components of PLGA/HAp core-shells are able to capture one part of the drug. Polymeric shells consisting of small nanospheres up to 20 nm in size act as a matrix in which one part of the drug is dispersed. In the same time, ceramic cores are formed of rod-like hydroxyapatite particles at the surface of which another part of the drug is adsorbed onto the interface between the polymer and the ceramics. The content of the loaded drug, as well as the selected solvent/non-solvent system, have a crucial influence on the resulting PLGA/HAp morphology and, finally, unimodal distribution of core-shells is obtained. The redistribution of the drug between the organic and inorganic parts of the material is expected to provide an interesting contribution to the kinetics of the drug release resulting in non-typical two-step drug release. (C) 2010 Elsevier B.V. All rights reserved.",
journal = "Colloids and Surfaces B: Biointerfaces",
title = "Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery",
pages = "413-404",
number = "2",
volume = "82",
doi = "10.1016/j.colsurfb.2010.09.011",
url = "https://hdl.handle.net/21.15107/rcub_dais_2749"
}
Vukomanović, M., Škapin, S. D., Jančar, B., Maksin, T., Ignjatović, N., Uskoković, V.,& Uskoković, D.. (2011). Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery. in Colloids and Surfaces B: Biointerfaces, 82(2), 404-413.
https://doi.org/10.1016/j.colsurfb.2010.09.011
https://hdl.handle.net/21.15107/rcub_dais_2749
Vukomanović M, Škapin SD, Jančar B, Maksin T, Ignjatović N, Uskoković V, Uskoković D. Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery. in Colloids and Surfaces B: Biointerfaces. 2011;82(2):404-413.
doi:10.1016/j.colsurfb.2010.09.011
https://hdl.handle.net/21.15107/rcub_dais_2749 .
Vukomanović, Marija, Škapin, Srečo Davor, Jančar, Boštjan, Maksin, Tatjana, Ignjatović, Nenad, Uskoković, Vuk, Uskoković, Dragan, "Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery" in Colloids and Surfaces B: Biointerfaces, 82, no. 2 (2011):404-413,
https://doi.org/10.1016/j.colsurfb.2010.09.011 .,
https://hdl.handle.net/21.15107/rcub_dais_2749 .
6
30
25
32

Influence of size scale and morphology on antibacterial properties of ZnO nanoparticles

Stanković, Ana; Stojanović, Zoran S.; Veselinović, Ljiljana; Dimitrijević, Suzana; Škapin, Srečo Davor; Uskoković, Dragan

(2010)

TY  - CONF
AU  - Stanković, Ana
AU  - Stojanović, Zoran S.
AU  - Veselinović, Ljiljana
AU  - Dimitrijević, Suzana
AU  - Škapin, Srečo Davor
AU  - Uskoković, Dragan
PY  - 2010
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1576
AB  - Poster presented at the 12th Annual Conference of the Materials Research Society of Serbia - YUCOMAT 2010, Herceg Novi, Montenegro, September 6–10, 2010
T1  - Influence of size scale and morphology on antibacterial properties of ZnO nanoparticles
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7363
ER  - 
@conference{
author = "Stanković, Ana and Stojanović, Zoran S. and Veselinović, Ljiljana and Dimitrijević, Suzana and Škapin, Srečo Davor and Uskoković, Dragan",
year = "2010",
abstract = "Poster presented at the 12th Annual Conference of the Materials Research Society of Serbia - YUCOMAT 2010, Herceg Novi, Montenegro, September 6–10, 2010",
title = "Influence of size scale and morphology on antibacterial properties of ZnO nanoparticles",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7363"
}
Stanković, A., Stojanović, Z. S., Veselinović, L., Dimitrijević, S., Škapin, S. D.,& Uskoković, D.. (2010). Influence of size scale and morphology on antibacterial properties of ZnO nanoparticles. .
https://hdl.handle.net/21.15107/rcub_vinar_7363
Stanković A, Stojanović ZS, Veselinović L, Dimitrijević S, Škapin SD, Uskoković D. Influence of size scale and morphology on antibacterial properties of ZnO nanoparticles. 2010;.
https://hdl.handle.net/21.15107/rcub_vinar_7363 .
Stanković, Ana, Stojanović, Zoran S., Veselinović, Ljiljana, Dimitrijević, Suzana, Škapin, Srečo Davor, Uskoković, Dragan, "Influence of size scale and morphology on antibacterial properties of ZnO nanoparticles" (2010),
https://hdl.handle.net/21.15107/rcub_vinar_7363 .