Orlić, Jovana

Link to this page

Authority KeyName Variants
0994398e-e939-4b3c-8b74-f90d44733110
  • Orlić, Jovana (1)
Projects

Author's Bibliography

Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation

Marković, Marija; Marinović, Sanja; Mudrinić, Tihana; Ajduković, Marija; Jović-Jovičić, Nataša; Mojović, Zorica; Orlić, Jovana; Milutinović Nikolić, Aleksandra; Banković, Predrag

(Elsevier, 2019)

TY  - JOUR
AU  - Marković, Marija
AU  - Marinović, Sanja
AU  - Mudrinić, Tihana
AU  - Ajduković, Marija
AU  - Jović-Jovičić, Nataša
AU  - Mojović, Zorica
AU  - Orlić, Jovana
AU  - Milutinović Nikolić, Aleksandra
AU  - Banković, Predrag
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5883
AB  - Aluminum pillared clay was synthesized and impregnated with Co2+ (CoAP), using incipient wetness impregnation method. The obtained CoAP was characterized by chemical analysis, XRPD, SEM with EDS, XPS and low temperature N2 physisorption. By these methods the incorporation of Co2+ was confirmed in both micro and mesoporous region. The synthesized material was investigated as a catalyst in catalytic oxidation of organic water pollutants – dyes – in the presence of Oxone® (peroxymonosulfate). Oxone® is a precursor of sulfate radicals. Tartrazine was chosen as a model dye pollutant. The influence of the mass of the catalyst, temperature and initial pH was investigated. Temperature increase was beneficial for dye degradation rate. The reaction rate was the highest for initial pH values around those corresponding to neutral conditions, somewhat slower for pH < 4 values, while for pH > 10 decolorization was significantly less expressed. Along with decolorization of tartrazine solution the formation and degradation of tartrazine catalytic oxidation products were monitored using UV–Vis spectroscopy. CoAP was found to be efficient catalyst in Oxone® induced catalytic degradation of both tartrazine and detected products of its degradation.
PB  - Elsevier
T2  - Applied Clay Science
T1  - Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation
SP  - 105276
VL  - 182
DO  - 10.1016/j.clay.2019.105276
ER  - 
@article{
author = "Marković, Marija and Marinović, Sanja and Mudrinić, Tihana and Ajduković, Marija and Jović-Jovičić, Nataša and Mojović, Zorica and Orlić, Jovana and Milutinović Nikolić, Aleksandra and Banković, Predrag",
year = "2019",
abstract = "Aluminum pillared clay was synthesized and impregnated with Co2+ (CoAP), using incipient wetness impregnation method. The obtained CoAP was characterized by chemical analysis, XRPD, SEM with EDS, XPS and low temperature N2 physisorption. By these methods the incorporation of Co2+ was confirmed in both micro and mesoporous region. The synthesized material was investigated as a catalyst in catalytic oxidation of organic water pollutants – dyes – in the presence of Oxone® (peroxymonosulfate). Oxone® is a precursor of sulfate radicals. Tartrazine was chosen as a model dye pollutant. The influence of the mass of the catalyst, temperature and initial pH was investigated. Temperature increase was beneficial for dye degradation rate. The reaction rate was the highest for initial pH values around those corresponding to neutral conditions, somewhat slower for pH < 4 values, while for pH > 10 decolorization was significantly less expressed. Along with decolorization of tartrazine solution the formation and degradation of tartrazine catalytic oxidation products were monitored using UV–Vis spectroscopy. CoAP was found to be efficient catalyst in Oxone® induced catalytic degradation of both tartrazine and detected products of its degradation.",
publisher = "Elsevier",
journal = "Applied Clay Science",
title = "Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation",
pages = "105276",
volume = "182",
doi = "10.1016/j.clay.2019.105276"
}
Marković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović Nikolić, A.,& Banković, P.. (2019). Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. in Applied Clay Science
Elsevier., 182, 105276.
https://doi.org/10.1016/j.clay.2019.105276
Marković M, Marinović S, Mudrinić T, Ajduković M, Jović-Jovičić N, Mojović Z, Orlić J, Milutinović Nikolić A, Banković P. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. in Applied Clay Science. 2019;182:105276.
doi:10.1016/j.clay.2019.105276 .
Marković, Marija, Marinović, Sanja, Mudrinić, Tihana, Ajduković, Marija, Jović-Jovičić, Nataša, Mojović, Zorica, Orlić, Jovana, Milutinović Nikolić, Aleksandra, Banković, Predrag, "Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation" in Applied Clay Science, 182 (2019):105276,
https://doi.org/10.1016/j.clay.2019.105276 . .
32
18
29