Jović, Vladimir D.

Link to this page

Authority KeyName Variants
c58c7027-ca1f-4e19-b294-88e0114cd339
  • Jović, Vladimir D. (3)
  • Jović, Vladimir D (1)
Projects

Author's Bibliography

Hydrogen evolution at Ni foam electrodes and Ni-Sn coated Ni foam electrodes

Gojgić, Jelena D.; Petričević, Aleksandar M.; Rauscher, Thomas; Bernäcker, Christian I.; Weißgärber, Thomas; Pavko, Luka; Vasilić, Rastko; Krstajić Pajić, Mila N.; Jović, Vladimir D.

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Gojgić, Jelena D.
AU  - Petričević, Aleksandar M.
AU  - Rauscher, Thomas
AU  - Bernäcker, Christian I.
AU  - Weißgärber, Thomas
AU  - Pavko, Luka
AU  - Vasilić, Rastko
AU  - Krstajić Pajić, Mila N.
AU  - Jović, Vladimir D.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6577
AB  - The hydrogen evolution reaction (HER) was investigated in 1.0 M KOH at 25 °C at Ni foams with different pore sizes (450–1200 µm), and at the Ni-Sn/Ni foam electrodes, where Ni-Sn alloys were electrodeposited from the pyrophosphate-glycine bath using controlled potential coulometry (CPC) technique. The cross-section analysis revealed that rough Ni-Sn alloy covers complete available inner and outer foam surface, while investigated coating composition varied from 62 to 80 at% Ni (20–38 at% Sn). Comparing the HER polarization curves, the overpotential at j = −200 mA cm−2 was 427 mV lower for Ni-Sn samples than for bare Ni foams, while Tafel slopes changed from − 120 mV dec−1 at bare Ni foams to − 50 mV dec−1 for Ni-Sn/Ni foam samples. The lowest overpotential at − 100 mA cm−2 achieved is as low as − 77 mV. These cathodes could be promising 3D materials for industrial water electrolysis in zero-gap membrane flow cells.
PB  - Elsevier B.V.
T2  - Applied Catalysis A: General
T1  - Hydrogen evolution at Ni foam electrodes and Ni-Sn coated Ni foam electrodes
SP  - 119312
VL  - 663
DO  - 10.1016/j.apcata.2023.119312
ER  - 
@article{
author = "Gojgić, Jelena D. and Petričević, Aleksandar M. and Rauscher, Thomas and Bernäcker, Christian I. and Weißgärber, Thomas and Pavko, Luka and Vasilić, Rastko and Krstajić Pajić, Mila N. and Jović, Vladimir D.",
year = "2023",
abstract = "The hydrogen evolution reaction (HER) was investigated in 1.0 M KOH at 25 °C at Ni foams with different pore sizes (450–1200 µm), and at the Ni-Sn/Ni foam electrodes, where Ni-Sn alloys were electrodeposited from the pyrophosphate-glycine bath using controlled potential coulometry (CPC) technique. The cross-section analysis revealed that rough Ni-Sn alloy covers complete available inner and outer foam surface, while investigated coating composition varied from 62 to 80 at% Ni (20–38 at% Sn). Comparing the HER polarization curves, the overpotential at j = −200 mA cm−2 was 427 mV lower for Ni-Sn samples than for bare Ni foams, while Tafel slopes changed from − 120 mV dec−1 at bare Ni foams to − 50 mV dec−1 for Ni-Sn/Ni foam samples. The lowest overpotential at − 100 mA cm−2 achieved is as low as − 77 mV. These cathodes could be promising 3D materials for industrial water electrolysis in zero-gap membrane flow cells.",
publisher = "Elsevier B.V.",
journal = "Applied Catalysis A: General",
title = "Hydrogen evolution at Ni foam electrodes and Ni-Sn coated Ni foam electrodes",
pages = "119312",
volume = "663",
doi = "10.1016/j.apcata.2023.119312"
}
Gojgić, J. D., Petričević, A. M., Rauscher, T., Bernäcker, C. I., Weißgärber, T., Pavko, L., Vasilić, R., Krstajić Pajić, M. N.,& Jović, V. D.. (2023). Hydrogen evolution at Ni foam electrodes and Ni-Sn coated Ni foam electrodes. in Applied Catalysis A: General
Elsevier B.V.., 663, 119312.
https://doi.org/10.1016/j.apcata.2023.119312
Gojgić JD, Petričević AM, Rauscher T, Bernäcker CI, Weißgärber T, Pavko L, Vasilić R, Krstajić Pajić MN, Jović VD. Hydrogen evolution at Ni foam electrodes and Ni-Sn coated Ni foam electrodes. in Applied Catalysis A: General. 2023;663:119312.
doi:10.1016/j.apcata.2023.119312 .
Gojgić, Jelena D., Petričević, Aleksandar M., Rauscher, Thomas, Bernäcker, Christian I., Weißgärber, Thomas, Pavko, Luka, Vasilić, Rastko, Krstajić Pajić, Mila N., Jović, Vladimir D., "Hydrogen evolution at Ni foam electrodes and Ni-Sn coated Ni foam electrodes" in Applied Catalysis A: General, 663 (2023):119312,
https://doi.org/10.1016/j.apcata.2023.119312 . .
5
5

Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC

Jović, Borka M; Jović, Vladimir D; Branković, Goran; Radović, M.; Krstajić, Nedeljko V

(Pergamon-Elsevier Science Ltd, Oxford, 2017)

TY  - JOUR
AU  - Jović, Borka M
AU  - Jović, Vladimir D
AU  - Branković, Goran
AU  - Radović, M.
AU  - Krstajić, Nedeljko V
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5821
AB  - The hydrogen evolution reaction (HER) was studied in 0.5 M H2SO4 at 25 degrees C on Pd electrodeposited onto Ti2AlC substrate, as an excellent substrate due to its high conductivity and high stability in concentrated sulfuric acid. Pd was electrodeposited onto Ti2AlC by pulse technique from the solutions containing different concentrations of PdCl2 in 1 M NH4Cl. It was shown that in all investigated solutions Pd electrodeposition occurs by the diffusion-controlled 3D nucleation and growth. Two types of Pd electrodeposits were submitted to the study of the HER by the polarization measurements and the electrochemical impedance spectroscopy (EIS). The surface of Pd samples was characterized by scanning electron microscopy (SEM), by energy dispersive X-ray spectroscopy (EDS) and by atomic force microscopy (AFM). High catalytic activity for the HER was observed for all investigated samples. The Tafel slope of -64 mV dec(-1) was recorded for the Pd layer electrodeposited at 20 mV vs. saturated calomel electrode (SCE) for 5 s, mainly composed of isolated hemispherical 3D Pd centers and dendrites (sample (2)), while for Pd electrodeposit with the theoretical thickness of 1000 nm (sample (1)) Tafel slope of -143 mV dec(-1) was detected. All Tafel slopes recorded for the investigated samples could be explained by the Volmer-Tafel mechanism for the HER assuming Temkin adsorption isotherm, with either of the steps (Volmer or Tafel step) being the rate-determining one. By the analysis of the EIS results similar slopes for the E vs. log (R-F)(-1) dependences were observed for all investigated samples respectively, while the electrochemically active surface area (EASA), obtained by the integration of the charge for Pd-oxide reduction was found to be the highest for the sample (1). The exchange current densities corrected for the EASA were presented for all samples.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Electrochimica Acta
T1  - Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC
EP  - 584
SP  - 571
VL  - 224
DO  - 10.1016/j.electacta.2016.12.015
ER  - 
@article{
author = "Jović, Borka M and Jović, Vladimir D and Branković, Goran and Radović, M. and Krstajić, Nedeljko V",
year = "2017",
abstract = "The hydrogen evolution reaction (HER) was studied in 0.5 M H2SO4 at 25 degrees C on Pd electrodeposited onto Ti2AlC substrate, as an excellent substrate due to its high conductivity and high stability in concentrated sulfuric acid. Pd was electrodeposited onto Ti2AlC by pulse technique from the solutions containing different concentrations of PdCl2 in 1 M NH4Cl. It was shown that in all investigated solutions Pd electrodeposition occurs by the diffusion-controlled 3D nucleation and growth. Two types of Pd electrodeposits were submitted to the study of the HER by the polarization measurements and the electrochemical impedance spectroscopy (EIS). The surface of Pd samples was characterized by scanning electron microscopy (SEM), by energy dispersive X-ray spectroscopy (EDS) and by atomic force microscopy (AFM). High catalytic activity for the HER was observed for all investigated samples. The Tafel slope of -64 mV dec(-1) was recorded for the Pd layer electrodeposited at 20 mV vs. saturated calomel electrode (SCE) for 5 s, mainly composed of isolated hemispherical 3D Pd centers and dendrites (sample (2)), while for Pd electrodeposit with the theoretical thickness of 1000 nm (sample (1)) Tafel slope of -143 mV dec(-1) was detected. All Tafel slopes recorded for the investigated samples could be explained by the Volmer-Tafel mechanism for the HER assuming Temkin adsorption isotherm, with either of the steps (Volmer or Tafel step) being the rate-determining one. By the analysis of the EIS results similar slopes for the E vs. log (R-F)(-1) dependences were observed for all investigated samples respectively, while the electrochemically active surface area (EASA), obtained by the integration of the charge for Pd-oxide reduction was found to be the highest for the sample (1). The exchange current densities corrected for the EASA were presented for all samples.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Electrochimica Acta",
title = "Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC",
pages = "584-571",
volume = "224",
doi = "10.1016/j.electacta.2016.12.015"
}
Jović, B. M., Jović, V. D., Branković, G., Radović, M.,& Krstajić, N. V.. (2017). Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC. in Electrochimica Acta
Pergamon-Elsevier Science Ltd, Oxford., 224, 571-584.
https://doi.org/10.1016/j.electacta.2016.12.015
Jović BM, Jović VD, Branković G, Radović M, Krstajić NV. Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC. in Electrochimica Acta. 2017;224:571-584.
doi:10.1016/j.electacta.2016.12.015 .
Jović, Borka M, Jović, Vladimir D, Branković, Goran, Radović, M., Krstajić, Nedeljko V, "Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC" in Electrochimica Acta, 224 (2017):571-584,
https://doi.org/10.1016/j.electacta.2016.12.015 . .
14
8
14

Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions

Jović, Borka M.; Jović, Vladimir D.; Lačnjevac, Uroš; Stevanović, Sanja; Kovač, Janez; Radović, Miladin; Krstajić, Nedeljko V.

(Elsevier, 2016)

TY  - JOUR
AU  - Jović, Borka M.
AU  - Jović, Vladimir D.
AU  - Lačnjevac, Uroš
AU  - Stevanović, Sanja
AU  - Kovač, Janez
AU  - Radović, Miladin
AU  - Krstajić, Nedeljko V.
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5839
AB  - In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions
EP  - 86
SP  - 78
VL  - 766
DO  - 10.1016/j.jelechem.2016.01.038
ER  - 
@article{
author = "Jović, Borka M. and Jović, Vladimir D. and Lačnjevac, Uroš and Stevanović, Sanja and Kovač, Janez and Radović, Miladin and Krstajić, Nedeljko V.",
year = "2016",
abstract = "In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions",
pages = "86-78",
volume = "766",
doi = "10.1016/j.jelechem.2016.01.038"
}
Jović, B. M., Jović, V. D., Lačnjevac, U., Stevanović, S., Kovač, J., Radović, M.,& Krstajić, N. V.. (2016). Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry
Elsevier., 766, 78-86.
https://doi.org/10.1016/j.jelechem.2016.01.038
Jović BM, Jović VD, Lačnjevac U, Stevanović S, Kovač J, Radović M, Krstajić NV. Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry. 2016;766:78-86.
doi:10.1016/j.jelechem.2016.01.038 .
Jović, Borka M., Jović, Vladimir D., Lačnjevac, Uroš, Stevanović, Sanja, Kovač, Janez, Radović, Miladin, Krstajić, Nedeljko V., "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions" in Journal of Electroanalytical Chemistry, 766 (2016):78-86,
https://doi.org/10.1016/j.jelechem.2016.01.038 . .
18
14
19

Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions

Jović, Borka M.; Jović, Vladimir D.; Lačnjevac, Uroš; Stevanović, Sanja; Kovač, Janez; Radović, Miladin; Krstajić, Nedeljko V.

(Elsevier, 2016)

TY  - JOUR
AU  - Jović, Borka M.
AU  - Jović, Vladimir D.
AU  - Lačnjevac, Uroš
AU  - Stevanović, Sanja
AU  - Kovač, Janez
AU  - Radović, Miladin
AU  - Krstajić, Nedeljko V.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4297
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6365
AB  - In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions
EP  - 86
SP  - 78
VL  - 766
DO  - 10.1016/j.jelechem.2016.01.038
ER  - 
@article{
author = "Jović, Borka M. and Jović, Vladimir D. and Lačnjevac, Uroš and Stevanović, Sanja and Kovač, Janez and Radović, Miladin and Krstajić, Nedeljko V.",
year = "2016",
abstract = "In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions",
pages = "86-78",
volume = "766",
doi = "10.1016/j.jelechem.2016.01.038"
}
Jović, B. M., Jović, V. D., Lačnjevac, U., Stevanović, S., Kovač, J., Radović, M.,& Krstajić, N. V.. (2016). Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry
Elsevier., 766, 78-86.
https://doi.org/10.1016/j.jelechem.2016.01.038
Jović BM, Jović VD, Lačnjevac U, Stevanović S, Kovač J, Radović M, Krstajić NV. Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry. 2016;766:78-86.
doi:10.1016/j.jelechem.2016.01.038 .
Jović, Borka M., Jović, Vladimir D., Lačnjevac, Uroš, Stevanović, Sanja, Kovač, Janez, Radović, Miladin, Krstajić, Nedeljko V., "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions" in Journal of Electroanalytical Chemistry, 766 (2016):78-86,
https://doi.org/10.1016/j.jelechem.2016.01.038 . .
18
14
19