Petrović, Miloš

Link to this page

Authority KeyName Variants
orcid::0000-0002-2460-7793
  • Petrović, Miloš (38)
  • Petrović, Miloš M. (2)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Predefined functional properties polymer composite materials processes and equipment development
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200287 (Innovation Center of the Faculty of Technology and Metallurgy)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Synthesis, processing and applications of nanostructured multifunctional materials with defined properties
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200161 (University of Belgrade, Faculty of Pharmacy) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200024 (University of Belgrade, Institute of Physics, Belgrade-Zemun)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade) Environmental Protection of the Republic of Serbia
Synthesis and characterization of novel functional polymers and polymeric nanocomposites Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200162 (University of Belgrade, Faculty of Physics) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200372 (University of Arts, Faculty of Applied Arts)
Optoelectronics nanodimension systems - the rout towards applications Interakcija imobilisanih ćelija, tkiva i biološki aktivnih molekula u bioreaktorskim sistemima
Research of technical-technological, staff and organizational capacity of Serbian Railways, from the viewpoint of current and future European Union requirements Ministry of Science
Ministry of Science and Enviromental Protection of the Republic of Serbia Pupin Telecom DKTS
Pupin Telecom DKTS. Swiss National Science FoundationSwiss National Science Foundation (SNSF) [IB73B0-111016/1]
This work was financially supported by the North Carolina Central University, USA, NSF DMR EiR 2101041, NSF DMR PREM 2122044, and DOE/NNSA NA0003979 awards.

Author's Bibliography

Citric Acid Cross-Linked Gelatin-Based Composites with Improved Microhardness

Taboun, Abdulrraouf; Jovanović, Marija; Petrović, Miloš; Stajčić, Ivana; Pešić, Ivan; Stojanović, Dušica B.; Radojević, Vesna

(MDPI, 2024)

TY  - JOUR
AU  - Taboun, Abdulrraouf
AU  - Jovanović, Marija
AU  - Petrović, Miloš
AU  - Stajčić, Ivana
AU  - Pešić, Ivan
AU  - Stojanović, Dušica B.
AU  - Radojević, Vesna
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7455
AB  - The aim of this study is to investigate the influence of cross-linking and reinforcements in gelatin on the physico-mechanical properties of obtained composites. The gelatin-based composites cross-linked with citric acid (CA) were prepared: gelatin type B (GB) and β-tricalcium phosphate (β-TCP) and novel hybrid composite GB with β-TCP and hydroxyapatite (HAp) particles, and their structure, thermal, and mechanical properties were compared with pure gelatin B samples. FTIR analysis revealed that no chemical interaction between the reinforcements and gelatin matrix was established during the processing of hybrid composites by the solution casting method, proving the particles had no influence on GB cross-linking. The morphological investigation of hybrid composites revealed that cross-linking with CA improved the dispersion of particles, which further led to an increase in mechanical performance. The microindentation test showed that the hardness value was increased by up to 449%, which shows the high potential of β-TCP and HAp particle reinforcement combined with CA as a cross-linking agent. Furthermore, the reduced modulus of elasticity was increased by up to 288%. Results of the MTT assay on L929 cells have revealed that the hybrid composite GB-TCP-HA-CA was not cytotoxic. These results showed that GB cross-linked with CA and reinforced with different calcium phosphates presents a valuable novel material with potential applications in dentistry.
PB  - MDPI
T2  - Polymers
T1  - Citric Acid Cross-Linked Gelatin-Based Composites with Improved Microhardness
IS  - 8
SP  - 1077
VL  - 16
DO  - 10.3390/polym16081077
ER  - 
@article{
author = "Taboun, Abdulrraouf and Jovanović, Marija and Petrović, Miloš and Stajčić, Ivana and Pešić, Ivan and Stojanović, Dušica B. and Radojević, Vesna",
year = "2024",
abstract = "The aim of this study is to investigate the influence of cross-linking and reinforcements in gelatin on the physico-mechanical properties of obtained composites. The gelatin-based composites cross-linked with citric acid (CA) were prepared: gelatin type B (GB) and β-tricalcium phosphate (β-TCP) and novel hybrid composite GB with β-TCP and hydroxyapatite (HAp) particles, and their structure, thermal, and mechanical properties were compared with pure gelatin B samples. FTIR analysis revealed that no chemical interaction between the reinforcements and gelatin matrix was established during the processing of hybrid composites by the solution casting method, proving the particles had no influence on GB cross-linking. The morphological investigation of hybrid composites revealed that cross-linking with CA improved the dispersion of particles, which further led to an increase in mechanical performance. The microindentation test showed that the hardness value was increased by up to 449%, which shows the high potential of β-TCP and HAp particle reinforcement combined with CA as a cross-linking agent. Furthermore, the reduced modulus of elasticity was increased by up to 288%. Results of the MTT assay on L929 cells have revealed that the hybrid composite GB-TCP-HA-CA was not cytotoxic. These results showed that GB cross-linked with CA and reinforced with different calcium phosphates presents a valuable novel material with potential applications in dentistry.",
publisher = "MDPI",
journal = "Polymers",
title = "Citric Acid Cross-Linked Gelatin-Based Composites with Improved Microhardness",
number = "8",
pages = "1077",
volume = "16",
doi = "10.3390/polym16081077"
}
Taboun, A., Jovanović, M., Petrović, M., Stajčić, I., Pešić, I., Stojanović, D. B.,& Radojević, V.. (2024). Citric Acid Cross-Linked Gelatin-Based Composites with Improved Microhardness. in Polymers
MDPI., 16(8), 1077.
https://doi.org/10.3390/polym16081077
Taboun A, Jovanović M, Petrović M, Stajčić I, Pešić I, Stojanović DB, Radojević V. Citric Acid Cross-Linked Gelatin-Based Composites with Improved Microhardness. in Polymers. 2024;16(8):1077.
doi:10.3390/polym16081077 .
Taboun, Abdulrraouf, Jovanović, Marija, Petrović, Miloš, Stajčić, Ivana, Pešić, Ivan, Stojanović, Dušica B., Radojević, Vesna, "Citric Acid Cross-Linked Gelatin-Based Composites with Improved Microhardness" in Polymers, 16, no. 8 (2024):1077,
https://doi.org/10.3390/polym16081077 . .

Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite

Janićijević, Aleksandra; Filipović, Suzana; Sknepnek, Aleksandra; Salević-Jelić, Ana; Jančić-Heinemann, Radmila; Petrović, Miloš; Petronijević, Ivan; Stamenović, Marina; Živković, Predrag; Potkonjak, Nebojša; Pavlović, Vladimir B.

(MDPI, 2024)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Filipović, Suzana
AU  - Sknepnek, Aleksandra
AU  - Salević-Jelić, Ana
AU  - Jančić-Heinemann, Radmila
AU  - Petrović, Miloš
AU  - Petronijević, Ivan
AU  - Stamenović, Marina
AU  - Živković, Predrag
AU  - Potkonjak, Nebojša
AU  - Pavlović, Vladimir B.
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7454
AB  - This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction of BT in PVDF was 5%, and the samples were differentiated based on the duration of the mechanical activation of BT. This innovative PVDF laminate polymer with environmentally friendly fillers aligns with the concept of circular usage, resulting in a reduction in plastic content and potential improvement of the piezoelectric properties of the entire composite. This work presents new, multifunctional “green” packaging materials that potentially could be a good alternative to specific popular materials used for this purpose. The synthesis of the films was carried out using the hot press method. Tensile tests, water vapor permeability examination, and structural analyses using SEM-EDS and FTIR have been conducted. The sample PVDF/BT20/BNC/Fe3O4 exhibited the best barrier properties (impermeability to water vapor), while the highest tensile strength and toughness were exhibited by the PVDF/BT5/BNC/Fe3O4 sample.
PB  - MDPI
T2  - Polymers
T1  - Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite
IS  - 8
SP  - 1033
VL  - 16
DO  - 10.3390/polym16081033
ER  - 
@article{
author = "Janićijević, Aleksandra and Filipović, Suzana and Sknepnek, Aleksandra and Salević-Jelić, Ana and Jančić-Heinemann, Radmila and Petrović, Miloš and Petronijević, Ivan and Stamenović, Marina and Živković, Predrag and Potkonjak, Nebojša and Pavlović, Vladimir B.",
year = "2024",
abstract = "This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction of BT in PVDF was 5%, and the samples were differentiated based on the duration of the mechanical activation of BT. This innovative PVDF laminate polymer with environmentally friendly fillers aligns with the concept of circular usage, resulting in a reduction in plastic content and potential improvement of the piezoelectric properties of the entire composite. This work presents new, multifunctional “green” packaging materials that potentially could be a good alternative to specific popular materials used for this purpose. The synthesis of the films was carried out using the hot press method. Tensile tests, water vapor permeability examination, and structural analyses using SEM-EDS and FTIR have been conducted. The sample PVDF/BT20/BNC/Fe3O4 exhibited the best barrier properties (impermeability to water vapor), while the highest tensile strength and toughness were exhibited by the PVDF/BT5/BNC/Fe3O4 sample.",
publisher = "MDPI",
journal = "Polymers",
title = "Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite",
number = "8",
pages = "1033",
volume = "16",
doi = "10.3390/polym16081033"
}
Janićijević, A., Filipović, S., Sknepnek, A., Salević-Jelić, A., Jančić-Heinemann, R., Petrović, M., Petronijević, I., Stamenović, M., Živković, P., Potkonjak, N.,& Pavlović, V. B.. (2024). Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite. in Polymers
MDPI., 16(8), 1033.
https://doi.org/10.3390/polym16081033
Janićijević A, Filipović S, Sknepnek A, Salević-Jelić A, Jančić-Heinemann R, Petrović M, Petronijević I, Stamenović M, Živković P, Potkonjak N, Pavlović VB. Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite. in Polymers. 2024;16(8):1033.
doi:10.3390/polym16081033 .
Janićijević, Aleksandra, Filipović, Suzana, Sknepnek, Aleksandra, Salević-Jelić, Ana, Jančić-Heinemann, Radmila, Petrović, Miloš, Petronijević, Ivan, Stamenović, Marina, Živković, Predrag, Potkonjak, Nebojša, Pavlović, Vladimir B., "Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite" in Polymers, 16, no. 8 (2024):1033,
https://doi.org/10.3390/polym16081033 . .

Evaluation of crosslinked gelatin-polyvinylpyrrolidone scaffold for application in drug delivery and tissue engineering

Jovanović, Marija; Petrović, Miloš; Stojanović, Dušica; Radulović, Nataša; Pantelić, Danijel; Radojević, Vesna; Uskoković, Petar

(Savez hemijskih inženjera Srbije, 2024)

TY  - CONF
AU  - Jovanović, Marija
AU  - Petrović, Miloš
AU  - Stojanović, Dušica
AU  - Radulović, Nataša
AU  - Pantelić, Danijel
AU  - Radojević, Vesna
AU  - Uskoković, Petar
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7441
AB  - The objective of this study was to processand evaluatea suitablescaffold matrix system for drug delivery and tissue regeneration. Abioinspired approachwas applied.Thescaffold based onnatural polymer gelatin,blended  with polyvinylpyrrolidone,and crosslinked  by  genipin,was  3D  printed  by semi-solid  extrusion(SSE).This  3D printing techniquedoes not require high temperature or UV curing, so it allows the use  ofthermo-and UV-sensitive drugs, cells, or other biological components.The influence of genipin, a natural crosslinking agent, and itscontent on the mechanical properties and the cytotoxicity of obtained scaffolds were investigated.
PB  - Savez hemijskih inženjera Srbije
C3  - Hemijska industrija - Supplementary Issue - ExcellMater Conference 2024 Abstracts
T1  - Evaluation of crosslinked gelatin-polyvinylpyrrolidone scaffold for application in drug delivery and tissue engineering
IS  - 1S
SP  - 25
VL  - 78
UR  - https://hdl.handle.net/21.15107/rcub_technorep_7441
ER  - 
@conference{
author = "Jovanović, Marija and Petrović, Miloš and Stojanović, Dušica and Radulović, Nataša and Pantelić, Danijel and Radojević, Vesna and Uskoković, Petar",
year = "2024",
abstract = "The objective of this study was to processand evaluatea suitablescaffold matrix system for drug delivery and tissue regeneration. Abioinspired approachwas applied.Thescaffold based onnatural polymer gelatin,blended  with polyvinylpyrrolidone,and crosslinked  by  genipin,was  3D  printed  by semi-solid  extrusion(SSE).This  3D printing techniquedoes not require high temperature or UV curing, so it allows the use  ofthermo-and UV-sensitive drugs, cells, or other biological components.The influence of genipin, a natural crosslinking agent, and itscontent on the mechanical properties and the cytotoxicity of obtained scaffolds were investigated.",
publisher = "Savez hemijskih inženjera Srbije",
journal = "Hemijska industrija - Supplementary Issue - ExcellMater Conference 2024 Abstracts",
title = "Evaluation of crosslinked gelatin-polyvinylpyrrolidone scaffold for application in drug delivery and tissue engineering",
number = "1S",
pages = "25",
volume = "78",
url = "https://hdl.handle.net/21.15107/rcub_technorep_7441"
}
Jovanović, M., Petrović, M., Stojanović, D., Radulović, N., Pantelić, D., Radojević, V.,& Uskoković, P.. (2024). Evaluation of crosslinked gelatin-polyvinylpyrrolidone scaffold for application in drug delivery and tissue engineering. in Hemijska industrija - Supplementary Issue - ExcellMater Conference 2024 Abstracts
Savez hemijskih inženjera Srbije., 78(1S), 25.
https://hdl.handle.net/21.15107/rcub_technorep_7441
Jovanović M, Petrović M, Stojanović D, Radulović N, Pantelić D, Radojević V, Uskoković P. Evaluation of crosslinked gelatin-polyvinylpyrrolidone scaffold for application in drug delivery and tissue engineering. in Hemijska industrija - Supplementary Issue - ExcellMater Conference 2024 Abstracts. 2024;78(1S):25.
https://hdl.handle.net/21.15107/rcub_technorep_7441 .
Jovanović, Marija, Petrović, Miloš, Stojanović, Dušica, Radulović, Nataša, Pantelić, Danijel, Radojević, Vesna, Uskoković, Petar, "Evaluation of crosslinked gelatin-polyvinylpyrrolidone scaffold for application in drug delivery and tissue engineering" in Hemijska industrija - Supplementary Issue - ExcellMater Conference 2024 Abstracts, 78, no. 1S (2024):25,
https://hdl.handle.net/21.15107/rcub_technorep_7441 .

Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior

Elhmali, Houda Taher; Stajčić, Ivana; Stajčić, Aleksandar; Pešić, Ivan; Jovanović, Marija; Petrović, Miloš; Radojević, Vesna

(MDPI, 2024)

TY  - JOUR
AU  - Elhmali, Houda Taher
AU  - Stajčić, Ivana
AU  - Stajčić, Aleksandar
AU  - Pešić, Ivan
AU  - Jovanović, Marija
AU  - Petrović, Miloš
AU  - Radojević, Vesna
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7157
AB  - While dental poly methyl methacrylate(PMMA) possesses distinctive qualities such as ease of fabrication, cost-effectiveness, and favorable physical and mechanical properties, these attributes alone are inadequate to impart the necessary impact strength and hardness. Consequently, pure PMMA is less suitable for dental applications. This research focused on the incorporation of Strontium titanate (SrTiO3-STO) and hybrid filler STO/Manganese oxide (MnO2) to improve impact resistance and hardness. The potential of STO in reinforcing PMMA is poorly investigated, while hybrid filler STO/MnO2 has not been presented yet. Differential scanning calorimetry is conducted in order to investigate the agglomeration influence on the PMMA glass transition temperature (Tg), as well as the leaching of residual monomer and volatile additives that could pose a threat to human health. It has been determined that agglomeration with 1 wt% loading had no influence on Tg, while the first scan revealed differences in evaporation of small molecules, in favor of composite PMMA-STO/MnO2, which showed the trapping potential of volatiles. Investigations of mechanical properties have revealed the significant influence of hybrid STO/MnO2 filler on microhardness and total absorbed impact energy, which were increased by 89.9% and 145.4%, respectively. Results presented in this study revealed the reinforcing potential of hybrid nanoparticles that could find application in other polymers as well.
PB  - MDPI
T2  - Polymers
T1  - Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior
IS  - 2
SP  - 278
VL  - 16
DO  - 10.3390/polym16020278
ER  - 
@article{
author = "Elhmali, Houda Taher and Stajčić, Ivana and Stajčić, Aleksandar and Pešić, Ivan and Jovanović, Marija and Petrović, Miloš and Radojević, Vesna",
year = "2024",
abstract = "While dental poly methyl methacrylate(PMMA) possesses distinctive qualities such as ease of fabrication, cost-effectiveness, and favorable physical and mechanical properties, these attributes alone are inadequate to impart the necessary impact strength and hardness. Consequently, pure PMMA is less suitable for dental applications. This research focused on the incorporation of Strontium titanate (SrTiO3-STO) and hybrid filler STO/Manganese oxide (MnO2) to improve impact resistance and hardness. The potential of STO in reinforcing PMMA is poorly investigated, while hybrid filler STO/MnO2 has not been presented yet. Differential scanning calorimetry is conducted in order to investigate the agglomeration influence on the PMMA glass transition temperature (Tg), as well as the leaching of residual monomer and volatile additives that could pose a threat to human health. It has been determined that agglomeration with 1 wt% loading had no influence on Tg, while the first scan revealed differences in evaporation of small molecules, in favor of composite PMMA-STO/MnO2, which showed the trapping potential of volatiles. Investigations of mechanical properties have revealed the significant influence of hybrid STO/MnO2 filler on microhardness and total absorbed impact energy, which were increased by 89.9% and 145.4%, respectively. Results presented in this study revealed the reinforcing potential of hybrid nanoparticles that could find application in other polymers as well.",
publisher = "MDPI",
journal = "Polymers",
title = "Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior",
number = "2",
pages = "278",
volume = "16",
doi = "10.3390/polym16020278"
}
Elhmali, H. T., Stajčić, I., Stajčić, A., Pešić, I., Jovanović, M., Petrović, M.,& Radojević, V.. (2024). Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior. in Polymers
MDPI., 16(2), 278.
https://doi.org/10.3390/polym16020278
Elhmali HT, Stajčić I, Stajčić A, Pešić I, Jovanović M, Petrović M, Radojević V. Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior. in Polymers. 2024;16(2):278.
doi:10.3390/polym16020278 .
Elhmali, Houda Taher, Stajčić, Ivana, Stajčić, Aleksandar, Pešić, Ivan, Jovanović, Marija, Petrović, Miloš, Radojević, Vesna, "Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior" in Polymers, 16, no. 2 (2024):278,
https://doi.org/10.3390/polym16020278 . .

Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide

Alazreg, Asma; Vuksanović, Marija M.; Egelja, Adela; Mladenović, Ivana O.; Radovanović, Željko; Petrović, Miloš; Marinković, Aleksandar; Jančić Heinemann, Radmila

(John Wiley and Sons Inc., 2023)

TY  - JOUR
AU  - Alazreg, Asma
AU  - Vuksanović, Marija M.
AU  - Egelja, Adela
AU  - Mladenović, Ivana O.
AU  - Radovanović, Željko
AU  - Petrović, Miloš
AU  - Marinković, Aleksandar
AU  - Jančić Heinemann, Radmila
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6589
AB  - Acrylate polymers are used in several applications such as dentistry, medicine, and industry. The modification of their properties using the reinforcement is of key importance for the possible applications. Layered double hydroxides are materials that are easily synthesized by several techniques giving the possibility to modulate the chemical composition and morphology of the reinforcement and they consist of a divalent and a trivalent anion hydroxide and the layers can be exfoliated and thus provide a material interesting for composite reinforcement. In this paper, Mn was used as a divalent and Al as a trivalent cation. The obtained particles were used as reinforcement for the preparation of composites in 1, 3, and 5 wt% quantities and prepared samples were compared to the matrix consisting of PMMA. Physical mechanical properties of the sample having the best mechanical properties (with 3 wt% of MnAl-LDH filers) exhibited 6.38% modulus of elasticity, 27% hardness, and 10% tensile strength improved values compared to the clear PMMA matrix. Toughness was lowered in this sort of composite compared to the pure matrix. Highlights: MnAl-LDH-PMMA composites improved modulus, strength, hardness Loss of toughness is tolerable for 3 wt% reinforcement Viscoelastic properties are improved for composites compared to matrix.
PB  - John Wiley and Sons Inc.
T2  - Polymer Composites
T1  - Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide
DO  - 10.1002/pc.27597
ER  - 
@article{
author = "Alazreg, Asma and Vuksanović, Marija M. and Egelja, Adela and Mladenović, Ivana O. and Radovanović, Željko and Petrović, Miloš and Marinković, Aleksandar and Jančić Heinemann, Radmila",
year = "2023",
abstract = "Acrylate polymers are used in several applications such as dentistry, medicine, and industry. The modification of their properties using the reinforcement is of key importance for the possible applications. Layered double hydroxides are materials that are easily synthesized by several techniques giving the possibility to modulate the chemical composition and morphology of the reinforcement and they consist of a divalent and a trivalent anion hydroxide and the layers can be exfoliated and thus provide a material interesting for composite reinforcement. In this paper, Mn was used as a divalent and Al as a trivalent cation. The obtained particles were used as reinforcement for the preparation of composites in 1, 3, and 5 wt% quantities and prepared samples were compared to the matrix consisting of PMMA. Physical mechanical properties of the sample having the best mechanical properties (with 3 wt% of MnAl-LDH filers) exhibited 6.38% modulus of elasticity, 27% hardness, and 10% tensile strength improved values compared to the clear PMMA matrix. Toughness was lowered in this sort of composite compared to the pure matrix. Highlights: MnAl-LDH-PMMA composites improved modulus, strength, hardness Loss of toughness is tolerable for 3 wt% reinforcement Viscoelastic properties are improved for composites compared to matrix.",
publisher = "John Wiley and Sons Inc.",
journal = "Polymer Composites",
title = "Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide",
doi = "10.1002/pc.27597"
}
Alazreg, A., Vuksanović, M. M., Egelja, A., Mladenović, I. O., Radovanović, Ž., Petrović, M., Marinković, A.,& Jančić Heinemann, R.. (2023). Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide. in Polymer Composites
John Wiley and Sons Inc...
https://doi.org/10.1002/pc.27597
Alazreg A, Vuksanović MM, Egelja A, Mladenović IO, Radovanović Ž, Petrović M, Marinković A, Jančić Heinemann R. Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide. in Polymer Composites. 2023;.
doi:10.1002/pc.27597 .
Alazreg, Asma, Vuksanović, Marija M., Egelja, Adela, Mladenović, Ivana O., Radovanović, Željko, Petrović, Miloš, Marinković, Aleksandar, Jančić Heinemann, Radmila, "Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide" in Polymer Composites (2023),
https://doi.org/10.1002/pc.27597 . .
1
1

Electrospun polycaprolactone nanofibers functionalized with Achillea millefolium extract yield biomaterial with antibacterial, antioxidant and improved mechanical properties

Radisavljević, Anđela; Stojanović, Dušica B.; Petrović, Miloš; Radojević, Vesna; Uskoković, Petar; Rajilić-Stojanović, Mirjana

(John Wiley and Sons Inc., 2023)

TY  - JOUR
AU  - Radisavljević, Anđela
AU  - Stojanović, Dušica B.
AU  - Petrović, Miloš
AU  - Radojević, Vesna
AU  - Uskoković, Petar
AU  - Rajilić-Stojanović, Mirjana
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5295
AB  - In this study, polycaprolactone (PCL), as a biocompatible polymer was functionalized by addition of medicinal plant extract- Achillea millefolium L. (yarrow). Nanofiber mats were fabricated from PCL solutions containing dry yarrow extract in four concentrations (5%, 10%, 15%, and 20% relative to the weight of the polymer) by using blend electrospinning method. The nanofibers were characterized for their biological, mechanical and drug release behavior. In vitro release of yarrow polyphenols from the electrospun PCL nanofibers over a period of 5 days showed the release of up to 98% of the total loaded polyphenols. The released polyphenols retained its antioxidant activity, which was determined by DPPH assay. Electrospun PCL/yarrow nanofiber mats exhibited the antibacterial effect against Staphylococcus aureus, but had no effect on the growth of Pseudomonas aeruginosa. All PCL/yarrow nanofiber mats had improved mechanical properties compared to the neat PCL nanofibers, as evident by an increase in Young's modulus of elasticity (up to 5.7 times), the tensile strength (up to 5.5 times), and the strain at break (up to 1.45 times). Based on our results, yarrow-loaded PCL nanofiber mats appeared to be multi-functional biomaterials suitable for the production of catheter-coating materials, patches, or gauzes with antibacterial and antioxidant properties.
PB  - John Wiley and Sons Inc.
T2  - Journal of Biomedical Materials Research - Part A
T1  - Electrospun polycaprolactone nanofibers functionalized with Achillea millefolium extract yield biomaterial with antibacterial, antioxidant and improved mechanical properties
EP  - 974
IS  - 7
SP  - 962
VL  - 111
DO  - 10.1002/jbm.a.37481
ER  - 
@article{
author = "Radisavljević, Anđela and Stojanović, Dušica B. and Petrović, Miloš and Radojević, Vesna and Uskoković, Petar and Rajilić-Stojanović, Mirjana",
year = "2023",
abstract = "In this study, polycaprolactone (PCL), as a biocompatible polymer was functionalized by addition of medicinal plant extract- Achillea millefolium L. (yarrow). Nanofiber mats were fabricated from PCL solutions containing dry yarrow extract in four concentrations (5%, 10%, 15%, and 20% relative to the weight of the polymer) by using blend electrospinning method. The nanofibers were characterized for their biological, mechanical and drug release behavior. In vitro release of yarrow polyphenols from the electrospun PCL nanofibers over a period of 5 days showed the release of up to 98% of the total loaded polyphenols. The released polyphenols retained its antioxidant activity, which was determined by DPPH assay. Electrospun PCL/yarrow nanofiber mats exhibited the antibacterial effect against Staphylococcus aureus, but had no effect on the growth of Pseudomonas aeruginosa. All PCL/yarrow nanofiber mats had improved mechanical properties compared to the neat PCL nanofibers, as evident by an increase in Young's modulus of elasticity (up to 5.7 times), the tensile strength (up to 5.5 times), and the strain at break (up to 1.45 times). Based on our results, yarrow-loaded PCL nanofiber mats appeared to be multi-functional biomaterials suitable for the production of catheter-coating materials, patches, or gauzes with antibacterial and antioxidant properties.",
publisher = "John Wiley and Sons Inc.",
journal = "Journal of Biomedical Materials Research - Part A",
title = "Electrospun polycaprolactone nanofibers functionalized with Achillea millefolium extract yield biomaterial with antibacterial, antioxidant and improved mechanical properties",
pages = "974-962",
number = "7",
volume = "111",
doi = "10.1002/jbm.a.37481"
}
Radisavljević, A., Stojanović, D. B., Petrović, M., Radojević, V., Uskoković, P.,& Rajilić-Stojanović, M.. (2023). Electrospun polycaprolactone nanofibers functionalized with Achillea millefolium extract yield biomaterial with antibacterial, antioxidant and improved mechanical properties. in Journal of Biomedical Materials Research - Part A
John Wiley and Sons Inc.., 111(7), 962-974.
https://doi.org/10.1002/jbm.a.37481
Radisavljević A, Stojanović DB, Petrović M, Radojević V, Uskoković P, Rajilić-Stojanović M. Electrospun polycaprolactone nanofibers functionalized with Achillea millefolium extract yield biomaterial with antibacterial, antioxidant and improved mechanical properties. in Journal of Biomedical Materials Research - Part A. 2023;111(7):962-974.
doi:10.1002/jbm.a.37481 .
Radisavljević, Anđela, Stojanović, Dušica B., Petrović, Miloš, Radojević, Vesna, Uskoković, Petar, Rajilić-Stojanović, Mirjana, "Electrospun polycaprolactone nanofibers functionalized with Achillea millefolium extract yield biomaterial with antibacterial, antioxidant and improved mechanical properties" in Journal of Biomedical Materials Research - Part A, 111, no. 7 (2023):962-974,
https://doi.org/10.1002/jbm.a.37481 . .
1
4
3

Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey

Stajčić, Ivana; Veljković, Filip; Petrović, Miloš; Veličković, Suzana; Radojević, Vesna; Vlahović, Branislav; Stajčić, Aleksandar

(MDPI, 2023)

TY  - JOUR
AU  - Stajčić, Ivana
AU  - Veljković, Filip
AU  - Petrović, Miloš
AU  - Veličković, Suzana
AU  - Radojević, Vesna
AU  - Vlahović, Branislav
AU  - Stajčić, Aleksandar
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6464
AB  - High performance polymers with bio-based modifiers are promising materials in terms of applications and environmental impact. In this work, raw acacia honey was used as a bio-modifier for epoxy resin, as a rich source of functional groups. The addition of honey resulted in the formation of highly stable structures that were observed in scanning electron microscopy images as separate phases at the fracture surface, which were involved in the toughening of the resin. Structural changes were investigated, revealing the formation of a new aldehyde carbonyl group. Thermal analysis confirmed the formation of products that were stable up to 600 °C, with a glass transition temperature of 228 °C. An energy-controlled impact test was performed to compare the absorbed impact energy of bio-modified epoxy containing different amounts of honey with unmodified epoxy resin. The results showed that bio-modified epoxy resin with 3 wt% of acacia honey could withstand several impacts with full recovery, while unmodified epoxy resin broke at first impact. The absorbed energy at first impact was 2.5 times higher for bio-modified epoxy resin than it was for unmodified epoxy resin. In this manner, by using simple preparation and a raw material that is abundant in nature, a novel epoxy with high thermal and impact resistance was obtained, opening a path for further research in this field.
PB  - MDPI
T2  - Polymers
T1  - Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey
IS  - 10
SP  - 2261
VL  - 15
DO  - 10.3390/polym15102261
ER  - 
@article{
author = "Stajčić, Ivana and Veljković, Filip and Petrović, Miloš and Veličković, Suzana and Radojević, Vesna and Vlahović, Branislav and Stajčić, Aleksandar",
year = "2023",
abstract = "High performance polymers with bio-based modifiers are promising materials in terms of applications and environmental impact. In this work, raw acacia honey was used as a bio-modifier for epoxy resin, as a rich source of functional groups. The addition of honey resulted in the formation of highly stable structures that were observed in scanning electron microscopy images as separate phases at the fracture surface, which were involved in the toughening of the resin. Structural changes were investigated, revealing the formation of a new aldehyde carbonyl group. Thermal analysis confirmed the formation of products that were stable up to 600 °C, with a glass transition temperature of 228 °C. An energy-controlled impact test was performed to compare the absorbed impact energy of bio-modified epoxy containing different amounts of honey with unmodified epoxy resin. The results showed that bio-modified epoxy resin with 3 wt% of acacia honey could withstand several impacts with full recovery, while unmodified epoxy resin broke at first impact. The absorbed energy at first impact was 2.5 times higher for bio-modified epoxy resin than it was for unmodified epoxy resin. In this manner, by using simple preparation and a raw material that is abundant in nature, a novel epoxy with high thermal and impact resistance was obtained, opening a path for further research in this field.",
publisher = "MDPI",
journal = "Polymers",
title = "Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey",
number = "10",
pages = "2261",
volume = "15",
doi = "10.3390/polym15102261"
}
Stajčić, I., Veljković, F., Petrović, M., Veličković, S., Radojević, V., Vlahović, B.,& Stajčić, A.. (2023). Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey. in Polymers
MDPI., 15(10), 2261.
https://doi.org/10.3390/polym15102261
Stajčić I, Veljković F, Petrović M, Veličković S, Radojević V, Vlahović B, Stajčić A. Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey. in Polymers. 2023;15(10):2261.
doi:10.3390/polym15102261 .
Stajčić, Ivana, Veljković, Filip, Petrović, Miloš, Veličković, Suzana, Radojević, Vesna, Vlahović, Branislav, Stajčić, Aleksandar, "Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey" in Polymers, 15, no. 10 (2023):2261,
https://doi.org/10.3390/polym15102261 . .
4
4

Impact properties of Kolon/PVB fabrics reinforced with rice-husk silica particles

Obradović, Vera; Vuksanović, Marija M.; Tomić, Nataša; Petrović, Miloš; Marinković, Aleksandar; Stojanović, Dušica; Radojević, Vesna; Jančić-Heinemann, Radmila; Uskoković, Petar

(2022)

TY  - JOUR
AU  - Obradović, Vera
AU  - Vuksanović, Marija M.
AU  - Tomić, Nataša
AU  - Petrović, Miloš
AU  - Marinković, Aleksandar
AU  - Stojanović, Dušica
AU  - Radojević, Vesna
AU  - Jančić-Heinemann, Radmila
AU  - Uskoković, Petar
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5167
AB  - This study presents the impact properties of the new form of hybrid thermoplastic composites. The Kolon fabrics were impregnated with the 10 wt% poly (vinyl butyral) (PVB)/ethanol solution with the addition of silica (SiO2) particles originating from rice husk or layered double hydroxide modified silica particles (FeAl-LDH@SiO2) as reinforcement. All the composites consisted of one layer of the impregnated fabric where the silica particles concentrations were 0.5 wt% and 1.0 wt% regarding PVB. The impact properties of the composite samples were analyzed by the controlled energy puncture impact tester. The structures of the composite samples were determined by the attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and field emission scanning electron microscopy (FE-SEM). The results showed that the Kolon/PVB/1 wt% FeAl-LDH@SiO2 sample yielded the maximum impact force.
T2  - Materials Letters
T1  - Impact properties of Kolon/PVB fabrics reinforced with rice-husk silica particles
SP  - 132668
VL  - 324
DO  - 10.1016/j.matlet.2022.132668
ER  - 
@article{
author = "Obradović, Vera and Vuksanović, Marija M. and Tomić, Nataša and Petrović, Miloš and Marinković, Aleksandar and Stojanović, Dušica and Radojević, Vesna and Jančić-Heinemann, Radmila and Uskoković, Petar",
year = "2022",
abstract = "This study presents the impact properties of the new form of hybrid thermoplastic composites. The Kolon fabrics were impregnated with the 10 wt% poly (vinyl butyral) (PVB)/ethanol solution with the addition of silica (SiO2) particles originating from rice husk or layered double hydroxide modified silica particles (FeAl-LDH@SiO2) as reinforcement. All the composites consisted of one layer of the impregnated fabric where the silica particles concentrations were 0.5 wt% and 1.0 wt% regarding PVB. The impact properties of the composite samples were analyzed by the controlled energy puncture impact tester. The structures of the composite samples were determined by the attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and field emission scanning electron microscopy (FE-SEM). The results showed that the Kolon/PVB/1 wt% FeAl-LDH@SiO2 sample yielded the maximum impact force.",
journal = "Materials Letters",
title = "Impact properties of Kolon/PVB fabrics reinforced with rice-husk silica particles",
pages = "132668",
volume = "324",
doi = "10.1016/j.matlet.2022.132668"
}
Obradović, V., Vuksanović, M. M., Tomić, N., Petrović, M., Marinković, A., Stojanović, D., Radojević, V., Jančić-Heinemann, R.,& Uskoković, P.. (2022). Impact properties of Kolon/PVB fabrics reinforced with rice-husk silica particles. in Materials Letters, 324, 132668.
https://doi.org/10.1016/j.matlet.2022.132668
Obradović V, Vuksanović MM, Tomić N, Petrović M, Marinković A, Stojanović D, Radojević V, Jančić-Heinemann R, Uskoković P. Impact properties of Kolon/PVB fabrics reinforced with rice-husk silica particles. in Materials Letters. 2022;324:132668.
doi:10.1016/j.matlet.2022.132668 .
Obradović, Vera, Vuksanović, Marija M., Tomić, Nataša, Petrović, Miloš, Marinković, Aleksandar, Stojanović, Dušica, Radojević, Vesna, Jančić-Heinemann, Radmila, Uskoković, Petar, "Impact properties of Kolon/PVB fabrics reinforced with rice-husk silica particles" in Materials Letters, 324 (2022):132668,
https://doi.org/10.1016/j.matlet.2022.132668 . .
5
2

Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material

Vuksanović, Marija M.; Mladenović, Ivana O.; Tomić, Nataša Z.; Petrović, Miloš; Radojević, Vesna J.; Marinković, Aleksandar D.; Jančić-Heinemann, Radmila M.

(2022)

TY  - JOUR
AU  - Vuksanović, Marija M.
AU  - Mladenović, Ivana O.
AU  - Tomić, Nataša Z.
AU  - Petrović, Miloš
AU  - Radojević, Vesna J.
AU  - Marinković, Aleksandar D.
AU  - Jančić-Heinemann, Radmila M.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5172
AB  - Rice husk was used to produce silica particles, which were then used to reinforce the polymer matrix. The synthesized SiO2 particles were characterized using X-ray diffraction, Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy with EDS. In a PMMA matrix, prepared SiO2 particles in amounts of 1, 3, and 5 wt.% were used as reinforcing agents. The goal of this research was to see if SiO2 particles had any effect on the mechanical properties of polymer composite materials. The morphology of the composites was examined using a field emission scanning electron microscope (FE-SEM). Vickers microindentation hardness and impact testing were used to determine the mechanical properties of the obtained composites. The indentation creep’s behavior of a polymethylmetacrylate (PMMA) composite material with varying amounts of nanoparticles (SiO2) was investigated and analyzed.
T2  - Science of Sintering
T1  - Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material
IS  - 2
VL  - 54
DO  - 10.2298/SOS2202211V
ER  - 
@article{
author = "Vuksanović, Marija M. and Mladenović, Ivana O. and Tomić, Nataša Z. and Petrović, Miloš and Radojević, Vesna J. and Marinković, Aleksandar D. and Jančić-Heinemann, Radmila M.",
year = "2022",
abstract = "Rice husk was used to produce silica particles, which were then used to reinforce the polymer matrix. The synthesized SiO2 particles were characterized using X-ray diffraction, Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy with EDS. In a PMMA matrix, prepared SiO2 particles in amounts of 1, 3, and 5 wt.% were used as reinforcing agents. The goal of this research was to see if SiO2 particles had any effect on the mechanical properties of polymer composite materials. The morphology of the composites was examined using a field emission scanning electron microscope (FE-SEM). Vickers microindentation hardness and impact testing were used to determine the mechanical properties of the obtained composites. The indentation creep’s behavior of a polymethylmetacrylate (PMMA) composite material with varying amounts of nanoparticles (SiO2) was investigated and analyzed.",
journal = "Science of Sintering",
title = "Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material",
number = "2",
volume = "54",
doi = "10.2298/SOS2202211V"
}
Vuksanović, M. M., Mladenović, I. O., Tomić, N. Z., Petrović, M., Radojević, V. J., Marinković, A. D.,& Jančić-Heinemann, R. M.. (2022). Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material. in Science of Sintering, 54(2).
https://doi.org/10.2298/SOS2202211V
Vuksanović MM, Mladenović IO, Tomić NZ, Petrović M, Radojević VJ, Marinković AD, Jančić-Heinemann RM. Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material. in Science of Sintering. 2022;54(2).
doi:10.2298/SOS2202211V .
Vuksanović, Marija M., Mladenović, Ivana O., Tomić, Nataša Z., Petrović, Miloš, Radojević, Vesna J., Marinković, Aleksandar D., Jančić-Heinemann, Radmila M., "Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material" in Science of Sintering, 54, no. 2 (2022),
https://doi.org/10.2298/SOS2202211V . .
7
6

Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane

Pešić, Ivan; Petrović, Miloš; Vuksanović, Marija; Popović, Maja; Rabasović, Maja; Šević, Dragutin; Radojević, Vesna

(Taylor & Francis Group, 2022)

TY  - JOUR
AU  - Pešić, Ivan
AU  - Petrović, Miloš
AU  - Vuksanović, Marija
AU  - Popović, Maja
AU  - Rabasović, Maja
AU  - Šević, Dragutin
AU  - Radojević, Vesna
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5456
AB  - Processing   and characterization   of   PMMA-MXene   composites   were   investigated.γ-Methacryloxypropyltrimethoxy(MEMO)  silane  was  usedto  modify  the  surface  of  MXenesand improve the compatibility between MXenes and the polymer. The FTIR analysis revealed the formation of a chemical bond between MXene and MEMO silane, while the XPS analysis confirmed the presence of silicon in the functionalized MXene.PMMA composites with non-functionalized  and  functionalized  MXene  were  prepared using  a solution  casting  method. Tensile  testsshowed  that,compared  to  neat  PMMA, Young’smodulusincreasedin  both composites by 22.1%and  27.6%,  respectively. As  a  result  of  coupling  between  the  PMMA matrix and the surface-modified MXenes, thetensile strength also increased by about 37%.In addition,  optical  spectroscopy  showed  higher  absorption  for  the  composite  with surface-modifiedMXenes  and  short-livedfluorescence  with  emission  intensity  sensitive  to  the crumpling of functionalized MXene nanosheets.
PB  - Taylor & Francis Group
T2  - Nanocomposites
T1  - Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane
DO  - 10.1080/20550324.2023.2168844
ER  - 
@article{
author = "Pešić, Ivan and Petrović, Miloš and Vuksanović, Marija and Popović, Maja and Rabasović, Maja and Šević, Dragutin and Radojević, Vesna",
year = "2022",
abstract = "Processing   and characterization   of   PMMA-MXene   composites   were   investigated.γ-Methacryloxypropyltrimethoxy(MEMO)  silane  was  usedto  modify  the  surface  of  MXenesand improve the compatibility between MXenes and the polymer. The FTIR analysis revealed the formation of a chemical bond between MXene and MEMO silane, while the XPS analysis confirmed the presence of silicon in the functionalized MXene.PMMA composites with non-functionalized  and  functionalized  MXene  were  prepared using  a solution  casting  method. Tensile  testsshowed  that,compared  to  neat  PMMA, Young’smodulusincreasedin  both composites by 22.1%and  27.6%,  respectively. As  a  result  of  coupling  between  the  PMMA matrix and the surface-modified MXenes, thetensile strength also increased by about 37%.In addition,  optical  spectroscopy  showed  higher  absorption  for  the  composite  with surface-modifiedMXenes  and  short-livedfluorescence  with  emission  intensity  sensitive  to  the crumpling of functionalized MXene nanosheets.",
publisher = "Taylor & Francis Group",
journal = "Nanocomposites",
title = "Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane",
doi = "10.1080/20550324.2023.2168844"
}
Pešić, I., Petrović, M., Vuksanović, M., Popović, M., Rabasović, M., Šević, D.,& Radojević, V.. (2022). Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane. in Nanocomposites
Taylor & Francis Group..
https://doi.org/10.1080/20550324.2023.2168844
Pešić I, Petrović M, Vuksanović M, Popović M, Rabasović M, Šević D, Radojević V. Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane. in Nanocomposites. 2022;.
doi:10.1080/20550324.2023.2168844 .
Pešić, Ivan, Petrović, Miloš, Vuksanović, Marija, Popović, Maja, Rabasović, Maja, Šević, Dragutin, Radojević, Vesna, "Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane" in Nanocomposites (2022),
https://doi.org/10.1080/20550324.2023.2168844 . .
3

Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane

Pešić, Ivan; Petrović, Miloš; Vuksanović, Marija; Popović, Maja; Rabasović, Maja; Šević, Dragutin; Radojević, Vesna

(Taylor & Francis Group, 2022)

TY  - JOUR
AU  - Pešić, Ivan
AU  - Petrović, Miloš
AU  - Vuksanović, Marija
AU  - Popović, Maja
AU  - Rabasović, Maja
AU  - Šević, Dragutin
AU  - Radojević, Vesna
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6383
AB  - Processing and characterization of PMMA-MXene composites were investigated. γ-Methacryloxypropyltrimethoxy (MEMO) silane was used to modify the surface of MXenes and improve the compatibility between MXenes and the polymer. The FTIR analysis revealed the formation of a chemical bond between MXene and MEMO silane, while the XPS analysis confirmed the presence of silicon in the functionalized MXene. PMMA composites with non-functionalized and functionalized MXene were prepared using a solution casting method. Tensile tests showed that, compared to neat PMMA, Young’s modulus increased in both composites by 22.1 and 27.6%, respectively. As a result of coupling between the PMMA matrix and the surface-modified MXenes, the tensile strength also increased by about 37%. In addition, optical spectroscopy showed higher absorption for the composite with surface-modified MXenes and short-lived fluorescence with emission intensity sensitive to the crumpling of functionalized MXene nanosheets.
PB  - Taylor & Francis Group
T2  - Nanocomposites
T1  - Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane
EP  - 226
IS  - 1
SP  - 215
VL  - 8
DO  - 10.1080/20550324.2023.2168844
ER  - 
@article{
author = "Pešić, Ivan and Petrović, Miloš and Vuksanović, Marija and Popović, Maja and Rabasović, Maja and Šević, Dragutin and Radojević, Vesna",
year = "2022",
abstract = "Processing and characterization of PMMA-MXene composites were investigated. γ-Methacryloxypropyltrimethoxy (MEMO) silane was used to modify the surface of MXenes and improve the compatibility between MXenes and the polymer. The FTIR analysis revealed the formation of a chemical bond between MXene and MEMO silane, while the XPS analysis confirmed the presence of silicon in the functionalized MXene. PMMA composites with non-functionalized and functionalized MXene were prepared using a solution casting method. Tensile tests showed that, compared to neat PMMA, Young’s modulus increased in both composites by 22.1 and 27.6%, respectively. As a result of coupling between the PMMA matrix and the surface-modified MXenes, the tensile strength also increased by about 37%. In addition, optical spectroscopy showed higher absorption for the composite with surface-modified MXenes and short-lived fluorescence with emission intensity sensitive to the crumpling of functionalized MXene nanosheets.",
publisher = "Taylor & Francis Group",
journal = "Nanocomposites",
title = "Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane",
pages = "226-215",
number = "1",
volume = "8",
doi = "10.1080/20550324.2023.2168844"
}
Pešić, I., Petrović, M., Vuksanović, M., Popović, M., Rabasović, M., Šević, D.,& Radojević, V.. (2022). Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane. in Nanocomposites
Taylor & Francis Group., 8(1), 215-226.
https://doi.org/10.1080/20550324.2023.2168844
Pešić I, Petrović M, Vuksanović M, Popović M, Rabasović M, Šević D, Radojević V. Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane. in Nanocomposites. 2022;8(1):215-226.
doi:10.1080/20550324.2023.2168844 .
Pešić, Ivan, Petrović, Miloš, Vuksanović, Marija, Popović, Maja, Rabasović, Maja, Šević, Dragutin, Radojević, Vesna, "Structural, optical and mechanical characterization of PMMA- MXene composites functionalized with MEMO silane" in Nanocomposites, 8, no. 1 (2022):215-226,
https://doi.org/10.1080/20550324.2023.2168844 . .
3
3

Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior

Gojgić, Jelena; Petrović, Miloš; Jugović, Branimir; Jokić, Bojan; Grgur, Branimir; Gvozdenović, Milica

(MDPI, 2022)

TY  - JOUR
AU  - Gojgić, Jelena
AU  - Petrović, Miloš
AU  - Jugović, Branimir
AU  - Jokić, Bojan
AU  - Grgur, Branimir
AU  - Gvozdenović, Milica
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5297
AB  - Polyaniline (PANI), due to its highly reversible electrochemistry with superior energy storage and delivery characteristics, is considered as an electrode material in batteries, capacitors, and hybrid systems. We used a facile electrochemical synthesis for the formation of the PANI electrode using galvanostatic polymerization of aniline on the graphite electrode at the current density of 2.0 mA cm−2 from the aqueous electrolyte containing 0.25 mol dm−3 aniline and 1.0 mol dm−3 H2SO4. Electrochemical and electrical characterization suggested excellent energy storage features of the PANI electrode in a three-electrode system with specific energy up to 53 Wh kg−1 and specific power up to 7600 W kg−1. After 2000 successive charge/discharge cycles at 9.5 Ag−1, the PANI electrode retained 95% of the initial capacity, with practically unaltered Coulombic efficiency of nearly 98%, providing a good base for future studies and practical applications.
PB  - MDPI
T2  - Polymers
T1  - Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior
IS  - 24
SP  - 5365
VL  - 14
DO  - 10.3390/polym14245365
ER  - 
@article{
author = "Gojgić, Jelena and Petrović, Miloš and Jugović, Branimir and Jokić, Bojan and Grgur, Branimir and Gvozdenović, Milica",
year = "2022",
abstract = "Polyaniline (PANI), due to its highly reversible electrochemistry with superior energy storage and delivery characteristics, is considered as an electrode material in batteries, capacitors, and hybrid systems. We used a facile electrochemical synthesis for the formation of the PANI electrode using galvanostatic polymerization of aniline on the graphite electrode at the current density of 2.0 mA cm−2 from the aqueous electrolyte containing 0.25 mol dm−3 aniline and 1.0 mol dm−3 H2SO4. Electrochemical and electrical characterization suggested excellent energy storage features of the PANI electrode in a three-electrode system with specific energy up to 53 Wh kg−1 and specific power up to 7600 W kg−1. After 2000 successive charge/discharge cycles at 9.5 Ag−1, the PANI electrode retained 95% of the initial capacity, with practically unaltered Coulombic efficiency of nearly 98%, providing a good base for future studies and practical applications.",
publisher = "MDPI",
journal = "Polymers",
title = "Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior",
number = "24",
pages = "5365",
volume = "14",
doi = "10.3390/polym14245365"
}
Gojgić, J., Petrović, M., Jugović, B., Jokić, B., Grgur, B.,& Gvozdenović, M.. (2022). Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior. in Polymers
MDPI., 14(24), 5365.
https://doi.org/10.3390/polym14245365
Gojgić J, Petrović M, Jugović B, Jokić B, Grgur B, Gvozdenović M. Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior. in Polymers. 2022;14(24):5365.
doi:10.3390/polym14245365 .
Gojgić, Jelena, Petrović, Miloš, Jugović, Branimir, Jokić, Bojan, Grgur, Branimir, Gvozdenović, Milica, "Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior" in Polymers, 14, no. 24 (2022):5365,
https://doi.org/10.3390/polym14245365 . .
1

Preparation and characterization of 3D printed bone scaffold for ibuprofen delivery

Jovanović, Marija; Petrović, Miloš; Stojanović, Dušica; Ibrić, Svetlana; Uskoković, Petar

(Savez farmaceutskih udruženja Srbije, 2022)

TY  - JOUR
AU  - Jovanović, Marija
AU  - Petrović, Miloš
AU  - Stojanović, Dušica
AU  - Ibrić, Svetlana
AU  - Uskoković, Petar
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5961
AB  - In this work, a blend of gelatin A (GA) and polyvinylpyrrolidone (PVP K30) was used for semi-solid 3D printing of bone scaffold for ibuprofen (IBU) delivery. The cross-linking of the obtained scaffold was performed with a 1% glutaraldehyde (GTA) solution, followed by lyophilization. The thermal and mechanical properties, as well as drug release profiles, and drug kinetics of prepared scaffolds were investigated. The cross-linked and lyophilized scaffold has shown good thermal stability, mechanical properties, and prolonged release of IBU following the Fickian diffusion process.
PB  - Savez farmaceutskih udruženja Srbije
T2  - Arhiv za Farmaciju
T1  - Preparation and characterization of 3D printed bone scaffold for ibuprofen delivery
T1  - 3D štampa i karakterizacija nosača za dostavu ibuprofena u koštanom tkivu
EP  - 673
IS  - 6
SP  - 661
VL  - 72
DO  - 10.5937/ARHFARM72-40262
ER  - 
@article{
author = "Jovanović, Marija and Petrović, Miloš and Stojanović, Dušica and Ibrić, Svetlana and Uskoković, Petar",
year = "2022",
abstract = "In this work, a blend of gelatin A (GA) and polyvinylpyrrolidone (PVP K30) was used for semi-solid 3D printing of bone scaffold for ibuprofen (IBU) delivery. The cross-linking of the obtained scaffold was performed with a 1% glutaraldehyde (GTA) solution, followed by lyophilization. The thermal and mechanical properties, as well as drug release profiles, and drug kinetics of prepared scaffolds were investigated. The cross-linked and lyophilized scaffold has shown good thermal stability, mechanical properties, and prolonged release of IBU following the Fickian diffusion process.",
publisher = "Savez farmaceutskih udruženja Srbije",
journal = "Arhiv za Farmaciju",
title = "Preparation and characterization of 3D printed bone scaffold for ibuprofen delivery, 3D štampa i karakterizacija nosača za dostavu ibuprofena u koštanom tkivu",
pages = "673-661",
number = "6",
volume = "72",
doi = "10.5937/ARHFARM72-40262"
}
Jovanović, M., Petrović, M., Stojanović, D., Ibrić, S.,& Uskoković, P.. (2022). Preparation and characterization of 3D printed bone scaffold for ibuprofen delivery. in Arhiv za Farmaciju
Savez farmaceutskih udruženja Srbije., 72(6), 661-673.
https://doi.org/10.5937/ARHFARM72-40262
Jovanović M, Petrović M, Stojanović D, Ibrić S, Uskoković P. Preparation and characterization of 3D printed bone scaffold for ibuprofen delivery. in Arhiv za Farmaciju. 2022;72(6):661-673.
doi:10.5937/ARHFARM72-40262 .
Jovanović, Marija, Petrović, Miloš, Stojanović, Dušica, Ibrić, Svetlana, Uskoković, Petar, "Preparation and characterization of 3D printed bone scaffold for ibuprofen delivery" in Arhiv za Farmaciju, 72, no. 6 (2022):661-673,
https://doi.org/10.5937/ARHFARM72-40262 . .
1

Primena čestica silicijum dioksida dobijenog iz biomase za ojačanje aramidnih kompozita otpornih na udar

Obradović, Vera; Vuksanović, Marija; Tomić, Nataša; Petrović, Miloš; Marinković, Aleksandar; Radojević, Vesna; Jančić Heinemann, Radmila; Stojanović, Dušica; Uskoković, Petar

(2021)


                                            

                                            
Obradović, V., Vuksanović, M., Tomić, N., Petrović, M., Marinković, A., Radojević, V., Jančić Heinemann, R., Stojanović, D.,& Uskoković, P.. (2021). Primena čestica silicijum dioksida dobijenog iz biomase za ojačanje aramidnih kompozita otpornih na udar. .
https://hdl.handle.net/21.15107/rcub_technorep_7067
Obradović V, Vuksanović M, Tomić N, Petrović M, Marinković A, Radojević V, Jančić Heinemann R, Stojanović D, Uskoković P. Primena čestica silicijum dioksida dobijenog iz biomase za ojačanje aramidnih kompozita otpornih na udar. 2021;.
https://hdl.handle.net/21.15107/rcub_technorep_7067 .
Obradović, Vera, Vuksanović, Marija, Tomić, Nataša, Petrović, Miloš, Marinković, Aleksandar, Radojević, Vesna, Jančić Heinemann, Radmila, Stojanović, Dušica, Uskoković, Petar, "Primena čestica silicijum dioksida dobijenog iz biomase za ojačanje aramidnih kompozita otpornih na udar" (2021),
https://hdl.handle.net/21.15107/rcub_technorep_7067 .

Inorganically modified particles FeAl-LDH"SiO2 as reinforcement in poly (methyl) methacrylate matrix composite

Vuksanović, Marija M.; Egelja, Adela; Barudzija, Tanja; Tomić, Nataša; Petrović, Miloš; Marinković, Aleksandar; Radojević, Vesna; Jančić-Heinemann, Radmila

(2021)

TY  - JOUR
AU  - Vuksanović, Marija M.
AU  - Egelja, Adela
AU  - Barudzija, Tanja
AU  - Tomić, Nataša
AU  - Petrović, Miloš
AU  - Marinković, Aleksandar
AU  - Radojević, Vesna
AU  - Jančić-Heinemann, Radmila
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4793
AB  - Silica particles were obtained from rice husk to which layered double hydroxide particles were deposited (weight ratio 1 : 1). Fe2+-Al3+ layered double hydroxides (FeAl-LDH) were synthesized by co-precipitation with ratios Fe : Al of 3 : 1 in the presence of SiO2 particles from the rice husk. Characterization of the synthesized FeAl-LDH"SiO2 particles was performed by X-ray diffraction, Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy with EDS. Prepared FeAl-LDH"SiO2 particles were used as reinforcing agents in 1, 3 and 5 wt% quantity in poly (methyl) methacrylate matrix. The aim of this study was to examine whether FeAl-LDH"SiO2 particles affect the mechanical properties of polymer composite materials. The morphology of the composites was examined using a field emission scanning electron microscope. Microindentation, tensile and impact testing determined the mechanical properties of the obtained composites.
T2  - Royal Society Open Science
T1  - Inorganically modified particles FeAl-LDH"SiO2 as reinforcement in poly (methyl) methacrylate matrix composite
IS  - 9
VL  - 8
DO  - 10.1098/rsos.210835
ER  - 
@article{
author = "Vuksanović, Marija M. and Egelja, Adela and Barudzija, Tanja and Tomić, Nataša and Petrović, Miloš and Marinković, Aleksandar and Radojević, Vesna and Jančić-Heinemann, Radmila",
year = "2021",
abstract = "Silica particles were obtained from rice husk to which layered double hydroxide particles were deposited (weight ratio 1 : 1). Fe2+-Al3+ layered double hydroxides (FeAl-LDH) were synthesized by co-precipitation with ratios Fe : Al of 3 : 1 in the presence of SiO2 particles from the rice husk. Characterization of the synthesized FeAl-LDH"SiO2 particles was performed by X-ray diffraction, Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy with EDS. Prepared FeAl-LDH"SiO2 particles were used as reinforcing agents in 1, 3 and 5 wt% quantity in poly (methyl) methacrylate matrix. The aim of this study was to examine whether FeAl-LDH"SiO2 particles affect the mechanical properties of polymer composite materials. The morphology of the composites was examined using a field emission scanning electron microscope. Microindentation, tensile and impact testing determined the mechanical properties of the obtained composites.",
journal = "Royal Society Open Science",
title = "Inorganically modified particles FeAl-LDH"SiO2 as reinforcement in poly (methyl) methacrylate matrix composite",
number = "9",
volume = "8",
doi = "10.1098/rsos.210835"
}
Vuksanović, M. M., Egelja, A., Barudzija, T., Tomić, N., Petrović, M., Marinković, A., Radojević, V.,& Jančić-Heinemann, R.. (2021). Inorganically modified particles FeAl-LDH"SiO2 as reinforcement in poly (methyl) methacrylate matrix composite. in Royal Society Open Science, 8(9).
https://doi.org/10.1098/rsos.210835
Vuksanović MM, Egelja A, Barudzija T, Tomić N, Petrović M, Marinković A, Radojević V, Jančić-Heinemann R. Inorganically modified particles FeAl-LDH"SiO2 as reinforcement in poly (methyl) methacrylate matrix composite. in Royal Society Open Science. 2021;8(9).
doi:10.1098/rsos.210835 .
Vuksanović, Marija M., Egelja, Adela, Barudzija, Tanja, Tomić, Nataša, Petrović, Miloš, Marinković, Aleksandar, Radojević, Vesna, Jančić-Heinemann, Radmila, "Inorganically modified particles FeAl-LDH"SiO2 as reinforcement in poly (methyl) methacrylate matrix composite" in Royal Society Open Science, 8, no. 9 (2021),
https://doi.org/10.1098/rsos.210835 . .
4
4

Uticaj parametara sinteze na mehanička svojstva nanokompozita PMMAmakseni

Pešić, Ivan D.; Petrović, Miloš M.; Radojević, Vesna J.

(Savez inženjera i tehničara Srbije, Beograd, 2021)

TY  - JOUR
AU  - Pešić, Ivan D.
AU  - Petrović, Miloš M.
AU  - Radojević, Vesna J.
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5973
AB  - U ovom radu je ispitan uticaj rastvarača i načina procesiranja ojačanja na mehanička svojstva nanokompozita poli-(metil metakrilat) PMMA-Ti3C2Tx makseni. Korišćen je maseni udeo ojačanja 1% i dve vrste rastvarača za pripremu uzoraka: dimetilformamid (DMF) i aceton (Ac). Za delaminaciju maksena korišćeni su dejonizovana voda i DMF. Na FTIR spektrima dobijenih uzoraka uočava se dodatan pik na 1675 cm-1 što ukazuje da je DMF zaostao u materijalu tokom sušenja. Rezultati mikroindentacije pokazuju da uzorci gde je maksen delaminisan u dejonizovanoj vodi a PMMA rastvaran u acetonu imaju 74,46% veći redukovani modul elastičnosti, što je podržano i SEM snimcima gde se uočava bolja dispergovanost maksena.
AB  - In this paper, the influence of solvents and reinforcement processing methods on the mechanical properties of nanocomposite poly-(methyl methacrylate) PMMA-Ti3C2Tx MXene was investigated. A weight fraction of reinforcement was 1% and two types of solvents were used for sample preparation: dimethylformamide (DMF) and acetone (Ac). Deionized water and DMF were used to delaminate the MXene. An additional peak at 1675 cm-1 was observed on the FTIR spectra of the obtained samples, which indicates that some amount of DMF remained in the material after drying. The results of microindentation show that samples where MXene was delaminated in deionized water and PMMA dissolved in acetone had a 74.46% higher reduced modulus of elasticity, which is supported by SEM images where better dispersion of MXenes is observed.
PB  - Savez inženjera i tehničara Srbije, Beograd
T2  - Tehnika - Novi materijali
T1  - Uticaj parametara sinteze na mehanička svojstva nanokompozita PMMAmakseni
T1  - Influence of synthesis parameters on mechanical properties of nanocomposite PMMA-MXene
EP  - 549
IS  - 5
SP  - 545
VL  - 30
DO  - 10.5937/tehnika2105545P
ER  - 
@article{
author = "Pešić, Ivan D. and Petrović, Miloš M. and Radojević, Vesna J.",
year = "2021",
abstract = "U ovom radu je ispitan uticaj rastvarača i načina procesiranja ojačanja na mehanička svojstva nanokompozita poli-(metil metakrilat) PMMA-Ti3C2Tx makseni. Korišćen je maseni udeo ojačanja 1% i dve vrste rastvarača za pripremu uzoraka: dimetilformamid (DMF) i aceton (Ac). Za delaminaciju maksena korišćeni su dejonizovana voda i DMF. Na FTIR spektrima dobijenih uzoraka uočava se dodatan pik na 1675 cm-1 što ukazuje da je DMF zaostao u materijalu tokom sušenja. Rezultati mikroindentacije pokazuju da uzorci gde je maksen delaminisan u dejonizovanoj vodi a PMMA rastvaran u acetonu imaju 74,46% veći redukovani modul elastičnosti, što je podržano i SEM snimcima gde se uočava bolja dispergovanost maksena., In this paper, the influence of solvents and reinforcement processing methods on the mechanical properties of nanocomposite poly-(methyl methacrylate) PMMA-Ti3C2Tx MXene was investigated. A weight fraction of reinforcement was 1% and two types of solvents were used for sample preparation: dimethylformamide (DMF) and acetone (Ac). Deionized water and DMF were used to delaminate the MXene. An additional peak at 1675 cm-1 was observed on the FTIR spectra of the obtained samples, which indicates that some amount of DMF remained in the material after drying. The results of microindentation show that samples where MXene was delaminated in deionized water and PMMA dissolved in acetone had a 74.46% higher reduced modulus of elasticity, which is supported by SEM images where better dispersion of MXenes is observed.",
publisher = "Savez inženjera i tehničara Srbije, Beograd",
journal = "Tehnika - Novi materijali",
title = "Uticaj parametara sinteze na mehanička svojstva nanokompozita PMMAmakseni, Influence of synthesis parameters on mechanical properties of nanocomposite PMMA-MXene",
pages = "549-545",
number = "5",
volume = "30",
doi = "10.5937/tehnika2105545P"
}
Pešić, I. D., Petrović, M. M.,& Radojević, V. J.. (2021). Uticaj parametara sinteze na mehanička svojstva nanokompozita PMMAmakseni. in Tehnika - Novi materijali
Savez inženjera i tehničara Srbije, Beograd., 30(5), 545-549.
https://doi.org/10.5937/tehnika2105545P
Pešić ID, Petrović MM, Radojević VJ. Uticaj parametara sinteze na mehanička svojstva nanokompozita PMMAmakseni. in Tehnika - Novi materijali. 2021;30(5):545-549.
doi:10.5937/tehnika2105545P .
Pešić, Ivan D., Petrović, Miloš M., Radojević, Vesna J., "Uticaj parametara sinteze na mehanička svojstva nanokompozita PMMAmakseni" in Tehnika - Novi materijali, 30, no. 5 (2021):545-549,
https://doi.org/10.5937/tehnika2105545P . .
1

A novel method of preparing the silver chloride cathode for the magnesium seawater activated primary cell

Grgur, Branimir; Gojgić, Jelena; Petrović, Miloš

(2021)

TY  - JOUR
AU  - Grgur, Branimir
AU  - Gojgić, Jelena
AU  - Petrović, Miloš
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4898
AB  - The novel method based on the inexpensive and fast modified successive ion layer adsorption and reaction (SILAR) method of preparing silver chloride cathode on the carbon felt is developed. The electrochemical behavior of the silver chloride cathode in the combination with magnesium alloy AZ63 anode is investigated, as the seawater activated primary cell. Under the discharge rate of the cell of 1C, 157 mA g(-1) of active materials, the voltage discharge plateau of similar to 1.25 V-0.9 V; specific capacity of 130 mAh g(-1); specific energy of 145 mWh g(-1), and specific power of 175 mW g(-1) are obtained.
T2  - Journal of Power Sources
T1  - A novel method of preparing the silver chloride cathode for the magnesium seawater activated primary cell
VL  - 490
DO  - 10.1016/j.jpowsour.2021.229549
ER  - 
@article{
author = "Grgur, Branimir and Gojgić, Jelena and Petrović, Miloš",
year = "2021",
abstract = "The novel method based on the inexpensive and fast modified successive ion layer adsorption and reaction (SILAR) method of preparing silver chloride cathode on the carbon felt is developed. The electrochemical behavior of the silver chloride cathode in the combination with magnesium alloy AZ63 anode is investigated, as the seawater activated primary cell. Under the discharge rate of the cell of 1C, 157 mA g(-1) of active materials, the voltage discharge plateau of similar to 1.25 V-0.9 V; specific capacity of 130 mAh g(-1); specific energy of 145 mWh g(-1), and specific power of 175 mW g(-1) are obtained.",
journal = "Journal of Power Sources",
title = "A novel method of preparing the silver chloride cathode for the magnesium seawater activated primary cell",
volume = "490",
doi = "10.1016/j.jpowsour.2021.229549"
}
Grgur, B., Gojgić, J.,& Petrović, M.. (2021). A novel method of preparing the silver chloride cathode for the magnesium seawater activated primary cell. in Journal of Power Sources, 490.
https://doi.org/10.1016/j.jpowsour.2021.229549
Grgur B, Gojgić J, Petrović M. A novel method of preparing the silver chloride cathode for the magnesium seawater activated primary cell. in Journal of Power Sources. 2021;490.
doi:10.1016/j.jpowsour.2021.229549 .
Grgur, Branimir, Gojgić, Jelena, Petrović, Miloš, "A novel method of preparing the silver chloride cathode for the magnesium seawater activated primary cell" in Journal of Power Sources, 490 (2021),
https://doi.org/10.1016/j.jpowsour.2021.229549 . .
8
7

3D printed mucoadhesive gelatin based buccal films

Jovanović, Marija N.; Radisavljević, Anđela N.; Petrović, Miloš M.; Stojanović, Dušica B.; Ibrić, Svetlana R.; Uskoković, Petar S.

(Belgrade : Materials Research Society of Serbia, 2021)

TY  - CONF
AU  - Jovanović, Marija N.
AU  - Radisavljević, Anđela N.
AU  - Petrović, Miloš M.
AU  - Stojanović, Dušica B.
AU  - Ibrić, Svetlana R.
AU  - Uskoković, Petar S.
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6078
AB  - The oral mucoadhesive film is a novel and attractive formulation for local and/or systemic drug
delivery through the mucosal membrane of the oral cavity. Certain active pharmaceutical ingredients (API) in conventional formulations (tablets, capsules, syrups) are absorbed in the gastrointestinal tract and undergo first-pass metabolism through the liver, thereby reducing their bioavailability. This problem can be overcome by using intraoral formulations, such as mucoadhesive buccal films that disintegrate and dissolve in the oral cavity where the absorption of API occurs. In this work, the mucoadhesive films were prepared by 3D paste printing and the influence of processing parameters on film properties and the release rate of a drug was investigated. Gelatin (GA) and the blend of gelatin/polyvinylpyrrolidone (GA/PVP) were used because of their biocompatibility. Propranolol hydrochloride (PRH) was used as a model substance because it has high first-pass metabolism and is soluble in water. Film morphology and drug distribution were followed by SEM analysis. Dissolution test in simulated saliva was done to see how PRH was released from films. Mucoadhesion test revealed that the GA/PVP films with PRH have the highest adhesion force. Obtained results introduce GA/PVP as a promising material with good adhesion and rate of drug release.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Twenty-second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro
T1  - 3D printed mucoadhesive gelatin based buccal films
SP  - 122
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6078
ER  - 
@conference{
author = "Jovanović, Marija N. and Radisavljević, Anđela N. and Petrović, Miloš M. and Stojanović, Dušica B. and Ibrić, Svetlana R. and Uskoković, Petar S.",
year = "2021",
abstract = "The oral mucoadhesive film is a novel and attractive formulation for local and/or systemic drug
delivery through the mucosal membrane of the oral cavity. Certain active pharmaceutical ingredients (API) in conventional formulations (tablets, capsules, syrups) are absorbed in the gastrointestinal tract and undergo first-pass metabolism through the liver, thereby reducing their bioavailability. This problem can be overcome by using intraoral formulations, such as mucoadhesive buccal films that disintegrate and dissolve in the oral cavity where the absorption of API occurs. In this work, the mucoadhesive films were prepared by 3D paste printing and the influence of processing parameters on film properties and the release rate of a drug was investigated. Gelatin (GA) and the blend of gelatin/polyvinylpyrrolidone (GA/PVP) were used because of their biocompatibility. Propranolol hydrochloride (PRH) was used as a model substance because it has high first-pass metabolism and is soluble in water. Film morphology and drug distribution were followed by SEM analysis. Dissolution test in simulated saliva was done to see how PRH was released from films. Mucoadhesion test revealed that the GA/PVP films with PRH have the highest adhesion force. Obtained results introduce GA/PVP as a promising material with good adhesion and rate of drug release.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Twenty-second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro",
title = "3D printed mucoadhesive gelatin based buccal films",
pages = "122",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6078"
}
Jovanović, M. N., Radisavljević, A. N., Petrović, M. M., Stojanović, D. B., Ibrić, S. R.,& Uskoković, P. S.. (2021). 3D printed mucoadhesive gelatin based buccal films. in Twenty-second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro
Belgrade : Materials Research Society of Serbia., 122.
https://hdl.handle.net/21.15107/rcub_technorep_6078
Jovanović MN, Radisavljević AN, Petrović MM, Stojanović DB, Ibrić SR, Uskoković PS. 3D printed mucoadhesive gelatin based buccal films. in Twenty-second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro. 2021;:122.
https://hdl.handle.net/21.15107/rcub_technorep_6078 .
Jovanović, Marija N., Radisavljević, Anđela N., Petrović, Miloš M., Stojanović, Dušica B., Ibrić, Svetlana R., Uskoković, Petar S., "3D printed mucoadhesive gelatin based buccal films" in Twenty-second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro (2021):122,
https://hdl.handle.net/21.15107/rcub_technorep_6078 .

3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction

Jovanović, Marija; Petrović, Miloš; Cvijic, Sandra; Tomić, Nataša; Stojanović, Dušica; Ibric, Svetlana; Uskoković, Petar

(2021)

TY  - JOUR
AU  - Jovanović, Marija
AU  - Petrović, Miloš
AU  - Cvijic, Sandra
AU  - Tomić, Nataša
AU  - Stojanović, Dušica
AU  - Ibric, Svetlana
AU  - Uskoković, Petar
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4778
AB  - Gelatin-polyvinylpyrrolidone (PVP) and gelatin-poly(vinyl alcohol) (PVA) mucoadhesive buccal films loaded with propranolol hydrochloride (PRH) were prepared by semi-solid extrusion 3D printing. The aim of this study was to evaluate the effects of the synthetic polymers PVP and PVA on thermal and mechanical properties and drug release profiles of gelatin-based films. The Fourier-transform infrared spectroscopy showed that hydrogen bonding between gelatin and PVP formed during printing. In the other blend, neither the esterification of PVA nor gelatin occurred. Differential scanning calorimetry revealed the presence of partial helical structures. In line with these results, the mechanical properties and drug release profiles were different for each blend. Formulation with gelatin-PVP and PRH showed higher tensile strength, hardness, and adhesive strength but slower drug release than formulation with gelatin-PVA and PRH. The in silico population simulations indicated increased drug bioavailability and decreased inter-individual variations in the resulting pharmacokinetic profiles compared to immediate-release tablets. Moreover, the simulation results suggested that reduced PRH daily dosing can be achieved with prolonged-release buccal films, which improves patient compliance.
T2  - Pharmaceutics
T1  - 3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction
IS  - 12
VL  - 13
DO  - 10.3390/pharmaceutics13122143
ER  - 
@article{
author = "Jovanović, Marija and Petrović, Miloš and Cvijic, Sandra and Tomić, Nataša and Stojanović, Dušica and Ibric, Svetlana and Uskoković, Petar",
year = "2021",
abstract = "Gelatin-polyvinylpyrrolidone (PVP) and gelatin-poly(vinyl alcohol) (PVA) mucoadhesive buccal films loaded with propranolol hydrochloride (PRH) were prepared by semi-solid extrusion 3D printing. The aim of this study was to evaluate the effects of the synthetic polymers PVP and PVA on thermal and mechanical properties and drug release profiles of gelatin-based films. The Fourier-transform infrared spectroscopy showed that hydrogen bonding between gelatin and PVP formed during printing. In the other blend, neither the esterification of PVA nor gelatin occurred. Differential scanning calorimetry revealed the presence of partial helical structures. In line with these results, the mechanical properties and drug release profiles were different for each blend. Formulation with gelatin-PVP and PRH showed higher tensile strength, hardness, and adhesive strength but slower drug release than formulation with gelatin-PVA and PRH. The in silico population simulations indicated increased drug bioavailability and decreased inter-individual variations in the resulting pharmacokinetic profiles compared to immediate-release tablets. Moreover, the simulation results suggested that reduced PRH daily dosing can be achieved with prolonged-release buccal films, which improves patient compliance.",
journal = "Pharmaceutics",
title = "3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction",
number = "12",
volume = "13",
doi = "10.3390/pharmaceutics13122143"
}
Jovanović, M., Petrović, M., Cvijic, S., Tomić, N., Stojanović, D., Ibric, S.,& Uskoković, P.. (2021). 3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction. in Pharmaceutics, 13(12).
https://doi.org/10.3390/pharmaceutics13122143
Jovanović M, Petrović M, Cvijic S, Tomić N, Stojanović D, Ibric S, Uskoković P. 3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction. in Pharmaceutics. 2021;13(12).
doi:10.3390/pharmaceutics13122143 .
Jovanović, Marija, Petrović, Miloš, Cvijic, Sandra, Tomić, Nataša, Stojanović, Dušica, Ibric, Svetlana, Uskoković, Petar, "3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction" in Pharmaceutics, 13, no. 12 (2021),
https://doi.org/10.3390/pharmaceutics13122143 . .
1
28
20

Determination of temperature stresses in CWR based on measured rail surface temperatures

Mirković, Nikola; Brajović, Ljiljana; Popović, Zdenka; Todorović, Goran; Lazarević, Luka; Petrović, Miloš

(2021)

TY  - JOUR
AU  - Mirković, Nikola
AU  - Brajović, Ljiljana
AU  - Popović, Zdenka
AU  - Todorović, Goran
AU  - Lazarević, Luka
AU  - Petrović, Miloš
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4908
AB  - The main aim of conducted research is determination of temperature stresses due to the uneven temperature distribution in CWR. This paper presents a methodology for determination of temperature stresses in CWR based on (1) measurement system developed by the authors for measurement of rail surface temperatures, and (2) coupled transient thermal-stress analysis for simulation of rail temperature field and corresponding stresses. The main advantages of the proposed methodology are high sensitivity to the small temperature variations, taking into account the effect of thermal inertia, as well as measurement of single input parameter rail surface temperature. The obtained experimental results showed lower rail temperatures in sleeper zones and rail foot along CWR, which emphasize the effect of heat transfer between rail and sleeper, as well as rail foot and ballast. These effects of heat transfer directly influence the decrease of temperature stresses in the mentioned zones of CWR. The maximum values of simulated temperature stresses are up to 16% less in the centre of gravity of railhead, up to 9.8% less in the centre of gravity of rail foot, and up to 0.2% less in the centre of gravity of rail web, compared to the common engineering calculation. In addition, the maximum value of simulated temperature force, based on temperature stresses in the rail cross-section, was up to 5.3% less than the value obtained in the common engineering calculation.
T2  - Construction and Building Materials
T1  - Determination of temperature stresses in CWR based on measured rail surface temperatures
VL  - 284
DO  - 10.1016/j.conbuildmat.2021.122713
ER  - 
@article{
author = "Mirković, Nikola and Brajović, Ljiljana and Popović, Zdenka and Todorović, Goran and Lazarević, Luka and Petrović, Miloš",
year = "2021",
abstract = "The main aim of conducted research is determination of temperature stresses due to the uneven temperature distribution in CWR. This paper presents a methodology for determination of temperature stresses in CWR based on (1) measurement system developed by the authors for measurement of rail surface temperatures, and (2) coupled transient thermal-stress analysis for simulation of rail temperature field and corresponding stresses. The main advantages of the proposed methodology are high sensitivity to the small temperature variations, taking into account the effect of thermal inertia, as well as measurement of single input parameter rail surface temperature. The obtained experimental results showed lower rail temperatures in sleeper zones and rail foot along CWR, which emphasize the effect of heat transfer between rail and sleeper, as well as rail foot and ballast. These effects of heat transfer directly influence the decrease of temperature stresses in the mentioned zones of CWR. The maximum values of simulated temperature stresses are up to 16% less in the centre of gravity of railhead, up to 9.8% less in the centre of gravity of rail foot, and up to 0.2% less in the centre of gravity of rail web, compared to the common engineering calculation. In addition, the maximum value of simulated temperature force, based on temperature stresses in the rail cross-section, was up to 5.3% less than the value obtained in the common engineering calculation.",
journal = "Construction and Building Materials",
title = "Determination of temperature stresses in CWR based on measured rail surface temperatures",
volume = "284",
doi = "10.1016/j.conbuildmat.2021.122713"
}
Mirković, N., Brajović, L., Popović, Z., Todorović, G., Lazarević, L.,& Petrović, M.. (2021). Determination of temperature stresses in CWR based on measured rail surface temperatures. in Construction and Building Materials, 284.
https://doi.org/10.1016/j.conbuildmat.2021.122713
Mirković N, Brajović L, Popović Z, Todorović G, Lazarević L, Petrović M. Determination of temperature stresses in CWR based on measured rail surface temperatures. in Construction and Building Materials. 2021;284.
doi:10.1016/j.conbuildmat.2021.122713 .
Mirković, Nikola, Brajović, Ljiljana, Popović, Zdenka, Todorović, Goran, Lazarević, Luka, Petrović, Miloš, "Determination of temperature stresses in CWR based on measured rail surface temperatures" in Construction and Building Materials, 284 (2021),
https://doi.org/10.1016/j.conbuildmat.2021.122713 . .
10
2
10

Optimization of modifier deposition on the alumina surface to enhance mechanical properties and cavitation resistance

Ashor, Almabrok A.; Vuksanović, Marija M.; Tomić, Nataša; Petrović, Miloš; Dojčinović, Marina; Volkov-Husović, Tatjana; Radojević, Vesna; Jančić-Heinemann, Radmila

(Springer, New York, 2020)

TY  - JOUR
AU  - Ashor, Almabrok A.
AU  - Vuksanović, Marija M.
AU  - Tomić, Nataša
AU  - Petrović, Miloš
AU  - Dojčinović, Marina
AU  - Volkov-Husović, Tatjana
AU  - Radojević, Vesna
AU  - Jančić-Heinemann, Radmila
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4544
AB  - Composites based on poly(methyl methacrylate), dimethyl itaconate matrix and alumina particles were prepared. Ferrous oxide-doped alumina particles (Al2O3Fe) and commercial alumina nanoparticles (Al(2)O(3)n) modified with (3-aminopropyl)trimethoxysilane (AM) and methyl esters of linseed oil fatty acids (biodiesel-BD) were used as reinforcement. The mechanical properties of the prepared composites, containing 1, 3 and 5 wt% of surface-modified alumina particles, are compared to a neat polymer matrix. The particles were characterized by single-beam Fourier transform infrared spectroscopy, thermogravimetry and differential scanning calorimetry. The mechanical properties of the composites were determined by micro-Vickers hardness and impact testing. The morphology of the surface of the composites exposed to cavitation was observed through a field emission scanning electron microscope. AFM analysis was used to compare surface features seen using the SEM and to interpret the surface degradation properties. The hardness, cavitation resistance and high-impact energy resistance of the composites are better in the case of AM surface modification of alumina fillers, but biodiesel modified particles have comparable mechanical properties and a stabilized Al-O-Si bond that could be important when a composite is exposed to humidity or a wet environment.
PB  - Springer, New York
T2  - Polymer Bulletin
T1  - Optimization of modifier deposition on the alumina surface to enhance mechanical properties and cavitation resistance
EP  - 3620
IS  - 7
SP  - 3603
VL  - 77
DO  - 10.1007/s00289-019-02923-8
ER  - 
@article{
author = "Ashor, Almabrok A. and Vuksanović, Marija M. and Tomić, Nataša and Petrović, Miloš and Dojčinović, Marina and Volkov-Husović, Tatjana and Radojević, Vesna and Jančić-Heinemann, Radmila",
year = "2020",
abstract = "Composites based on poly(methyl methacrylate), dimethyl itaconate matrix and alumina particles were prepared. Ferrous oxide-doped alumina particles (Al2O3Fe) and commercial alumina nanoparticles (Al(2)O(3)n) modified with (3-aminopropyl)trimethoxysilane (AM) and methyl esters of linseed oil fatty acids (biodiesel-BD) were used as reinforcement. The mechanical properties of the prepared composites, containing 1, 3 and 5 wt% of surface-modified alumina particles, are compared to a neat polymer matrix. The particles were characterized by single-beam Fourier transform infrared spectroscopy, thermogravimetry and differential scanning calorimetry. The mechanical properties of the composites were determined by micro-Vickers hardness and impact testing. The morphology of the surface of the composites exposed to cavitation was observed through a field emission scanning electron microscope. AFM analysis was used to compare surface features seen using the SEM and to interpret the surface degradation properties. The hardness, cavitation resistance and high-impact energy resistance of the composites are better in the case of AM surface modification of alumina fillers, but biodiesel modified particles have comparable mechanical properties and a stabilized Al-O-Si bond that could be important when a composite is exposed to humidity or a wet environment.",
publisher = "Springer, New York",
journal = "Polymer Bulletin",
title = "Optimization of modifier deposition on the alumina surface to enhance mechanical properties and cavitation resistance",
pages = "3620-3603",
number = "7",
volume = "77",
doi = "10.1007/s00289-019-02923-8"
}
Ashor, A. A., Vuksanović, M. M., Tomić, N., Petrović, M., Dojčinović, M., Volkov-Husović, T., Radojević, V.,& Jančić-Heinemann, R.. (2020). Optimization of modifier deposition on the alumina surface to enhance mechanical properties and cavitation resistance. in Polymer Bulletin
Springer, New York., 77(7), 3603-3620.
https://doi.org/10.1007/s00289-019-02923-8
Ashor AA, Vuksanović MM, Tomić N, Petrović M, Dojčinović M, Volkov-Husović T, Radojević V, Jančić-Heinemann R. Optimization of modifier deposition on the alumina surface to enhance mechanical properties and cavitation resistance. in Polymer Bulletin. 2020;77(7):3603-3620.
doi:10.1007/s00289-019-02923-8 .
Ashor, Almabrok A., Vuksanović, Marija M., Tomić, Nataša, Petrović, Miloš, Dojčinović, Marina, Volkov-Husović, Tatjana, Radojević, Vesna, Jančić-Heinemann, Radmila, "Optimization of modifier deposition on the alumina surface to enhance mechanical properties and cavitation resistance" in Polymer Bulletin, 77, no. 7 (2020):3603-3620,
https://doi.org/10.1007/s00289-019-02923-8 . .
6
4
6

Impact of Alumina Particles on the Morphology and Mechanics of Hybrid Wood Plastic Composite Materials

Perišić, Srđan; Vuksanović, Marija M.; Petrović, Miloš; Radisavljević, Anđela; Grujić, Aleksandar; Jančić-Heinemann, Radmila; Radojević, Vesna

(Međunarodni Institut za nauku o sinterovanju, Beograd, 2019)

TY  - JOUR
AU  - Perišić, Srđan
AU  - Vuksanović, Marija M.
AU  - Petrović, Miloš
AU  - Radisavljević, Anđela
AU  - Grujić, Aleksandar
AU  - Jančić-Heinemann, Radmila
AU  - Radojević, Vesna
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4144
AB  - Hybrid composite panels of Wood-Plastic Composites (WPC) consisting of wood and poly (methyl methacrylate) (PMMA) were reinforced with alumina particles and made by "hot pressing" method. Alumina-based particles were made by sol-gel technique. The particles were characterized by the X-ray diffraction (XRD). The resulting alumina particles were modified with (3mercaptopropyl) trimethoxysilane (MPTMS), in order to obtain better mechanical properties of the composite relative to the composite with unmodified alumina particles. The aim of this work was to study the influence of composite structure and the moisture absorption on bending and the impact properties of the hybrid composite. The bending and impact tests revealed that modulus of elasticity and absorbed energy of deformation increased with modification of alumina and slightly decrease after moisture absorption.
PB  - Međunarodni Institut za nauku o sinterovanju, Beograd
T2  - Science of Sintering
T1  - Impact of Alumina Particles on the Morphology and Mechanics of Hybrid Wood Plastic Composite Materials
EP  - 124
IS  - 1
SP  - 115
VL  - 51
DO  - 10.2298/SOS1901115P
ER  - 
@article{
author = "Perišić, Srđan and Vuksanović, Marija M. and Petrović, Miloš and Radisavljević, Anđela and Grujić, Aleksandar and Jančić-Heinemann, Radmila and Radojević, Vesna",
year = "2019",
abstract = "Hybrid composite panels of Wood-Plastic Composites (WPC) consisting of wood and poly (methyl methacrylate) (PMMA) were reinforced with alumina particles and made by "hot pressing" method. Alumina-based particles were made by sol-gel technique. The particles were characterized by the X-ray diffraction (XRD). The resulting alumina particles were modified with (3mercaptopropyl) trimethoxysilane (MPTMS), in order to obtain better mechanical properties of the composite relative to the composite with unmodified alumina particles. The aim of this work was to study the influence of composite structure and the moisture absorption on bending and the impact properties of the hybrid composite. The bending and impact tests revealed that modulus of elasticity and absorbed energy of deformation increased with modification of alumina and slightly decrease after moisture absorption.",
publisher = "Međunarodni Institut za nauku o sinterovanju, Beograd",
journal = "Science of Sintering",
title = "Impact of Alumina Particles on the Morphology and Mechanics of Hybrid Wood Plastic Composite Materials",
pages = "124-115",
number = "1",
volume = "51",
doi = "10.2298/SOS1901115P"
}
Perišić, S., Vuksanović, M. M., Petrović, M., Radisavljević, A., Grujić, A., Jančić-Heinemann, R.,& Radojević, V.. (2019). Impact of Alumina Particles on the Morphology and Mechanics of Hybrid Wood Plastic Composite Materials. in Science of Sintering
Međunarodni Institut za nauku o sinterovanju, Beograd., 51(1), 115-124.
https://doi.org/10.2298/SOS1901115P
Perišić S, Vuksanović MM, Petrović M, Radisavljević A, Grujić A, Jančić-Heinemann R, Radojević V. Impact of Alumina Particles on the Morphology and Mechanics of Hybrid Wood Plastic Composite Materials. in Science of Sintering. 2019;51(1):115-124.
doi:10.2298/SOS1901115P .
Perišić, Srđan, Vuksanović, Marija M., Petrović, Miloš, Radisavljević, Anđela, Grujić, Aleksandar, Jančić-Heinemann, Radmila, Radojević, Vesna, "Impact of Alumina Particles on the Morphology and Mechanics of Hybrid Wood Plastic Composite Materials" in Science of Sintering, 51, no. 1 (2019):115-124,
https://doi.org/10.2298/SOS1901115P . .
4
3
6

Dimethyl Itaconate Modified PMMA - Alumina Fillers Composites With Improved Mechanical Properties

Lazouzi, Gamal; Vuksanović, Marija M.; Tomić, Nataša; Petrović, Miloš; Spasojević, Pavle; Radojević, Vesna; Jančić-Heinemann, Radmila

(Wiley, Hoboken, 2019)

TY  - JOUR
AU  - Lazouzi, Gamal
AU  - Vuksanović, Marija M.
AU  - Tomić, Nataša
AU  - Petrović, Miloš
AU  - Spasojević, Pavle
AU  - Radojević, Vesna
AU  - Jančić-Heinemann, Radmila
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4241
AB  - PMMA poly(methyl methacrylate) has a large spectrum of uses as bone cements, in dentistry as denture base materials and other industrial applications. One of the main drawbacks of these materials is the residual monomer that is proven allergen and irritant. It was shown that addition of dimethyl itaconate (DMI) to the PMMA denture base systems decrease the quantity of residual monomer but, also deteriorate mechanical properties. The addition of alumina fillers in the PMMA/DMI produced composite materials results in improved mechanical properties compared with pure PMMA and additionally reduces the level of residual monomer in the composition. POLYM. COMPOS., 40:1691-1701, 2019.
PB  - Wiley, Hoboken
T2  - Polymer Composites
T1  - Dimethyl Itaconate Modified PMMA - Alumina Fillers Composites With Improved Mechanical Properties
EP  - 1701
IS  - 5
SP  - 1691
VL  - 40
DO  - 10.1002/pc.24952
ER  - 
@article{
author = "Lazouzi, Gamal and Vuksanović, Marija M. and Tomić, Nataša and Petrović, Miloš and Spasojević, Pavle and Radojević, Vesna and Jančić-Heinemann, Radmila",
year = "2019",
abstract = "PMMA poly(methyl methacrylate) has a large spectrum of uses as bone cements, in dentistry as denture base materials and other industrial applications. One of the main drawbacks of these materials is the residual monomer that is proven allergen and irritant. It was shown that addition of dimethyl itaconate (DMI) to the PMMA denture base systems decrease the quantity of residual monomer but, also deteriorate mechanical properties. The addition of alumina fillers in the PMMA/DMI produced composite materials results in improved mechanical properties compared with pure PMMA and additionally reduces the level of residual monomer in the composition. POLYM. COMPOS., 40:1691-1701, 2019.",
publisher = "Wiley, Hoboken",
journal = "Polymer Composites",
title = "Dimethyl Itaconate Modified PMMA - Alumina Fillers Composites With Improved Mechanical Properties",
pages = "1701-1691",
number = "5",
volume = "40",
doi = "10.1002/pc.24952"
}
Lazouzi, G., Vuksanović, M. M., Tomić, N., Petrović, M., Spasojević, P., Radojević, V.,& Jančić-Heinemann, R.. (2019). Dimethyl Itaconate Modified PMMA - Alumina Fillers Composites With Improved Mechanical Properties. in Polymer Composites
Wiley, Hoboken., 40(5), 1691-1701.
https://doi.org/10.1002/pc.24952
Lazouzi G, Vuksanović MM, Tomić N, Petrović M, Spasojević P, Radojević V, Jančić-Heinemann R. Dimethyl Itaconate Modified PMMA - Alumina Fillers Composites With Improved Mechanical Properties. in Polymer Composites. 2019;40(5):1691-1701.
doi:10.1002/pc.24952 .
Lazouzi, Gamal, Vuksanović, Marija M., Tomić, Nataša, Petrović, Miloš, Spasojević, Pavle, Radojević, Vesna, Jančić-Heinemann, Radmila, "Dimethyl Itaconate Modified PMMA - Alumina Fillers Composites With Improved Mechanical Properties" in Polymer Composites, 40, no. 5 (2019):1691-1701,
https://doi.org/10.1002/pc.24952 . .
18
11
17

Hybrid denture acrylic composites with nanozirconia and electrospun polystyrene fibers

Elmadani, A. A.; Radović, Ivana; Tomić, Nataša; Petrović, Miloš; Stojanović, Dušica; Jančić-Heinemann, Radmila; Radojević, Vesna

(Public Library Science, San Francisco, 2019)

TY  - JOUR
AU  - Elmadani, A. A.
AU  - Radović, Ivana
AU  - Tomić, Nataša
AU  - Petrović, Miloš
AU  - Stojanović, Dušica
AU  - Jančić-Heinemann, Radmila
AU  - Radojević, Vesna
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4125
AB  - The processing and characterization of hybrid PMMA resin composites with nano-zirconia (ZrO2) and electrospun polystyrene (PS) polymer fibers were presented in this study. Reinforcement was selected with the intention to tune the physical and mechanical properties of the hybrid composite. Surface modification of inorganic particles was performed in order to improve the adhesion of reinforcement to the matrix. Fourier transform infrared spectroscopy (FTIR) provided successful modification of zirconia nanoparticles with 3-Methacryloxypropyltrimethoxysilane (MEMO) and bonding improvement between incompatible inorganic nanoparticles and PMMA matrix. Considerable deagglomeration of nanoparticles in the matrix occurred after the modification has been revealed by scanning electron microscopy (SEM). Microhardness increased with the concentration of modified nanoparticles, while the fibers were the modifier that lowers hardness and promotes toughness of hybrid composites. Impact test displayed increased absorbed energy after the PS electrospun fibers had been embedded. The optimized composition of the hybrid was determined and a good balance of thermal and mechanical properties was achieved.
PB  - Public Library Science, San Francisco
T2  - PLoS One
T1  - Hybrid denture acrylic composites with nanozirconia and electrospun polystyrene fibers
IS  - 12
VL  - 14
DO  - 10.1371/journal.pone.0226528
ER  - 
@article{
author = "Elmadani, A. A. and Radović, Ivana and Tomić, Nataša and Petrović, Miloš and Stojanović, Dušica and Jančić-Heinemann, Radmila and Radojević, Vesna",
year = "2019",
abstract = "The processing and characterization of hybrid PMMA resin composites with nano-zirconia (ZrO2) and electrospun polystyrene (PS) polymer fibers were presented in this study. Reinforcement was selected with the intention to tune the physical and mechanical properties of the hybrid composite. Surface modification of inorganic particles was performed in order to improve the adhesion of reinforcement to the matrix. Fourier transform infrared spectroscopy (FTIR) provided successful modification of zirconia nanoparticles with 3-Methacryloxypropyltrimethoxysilane (MEMO) and bonding improvement between incompatible inorganic nanoparticles and PMMA matrix. Considerable deagglomeration of nanoparticles in the matrix occurred after the modification has been revealed by scanning electron microscopy (SEM). Microhardness increased with the concentration of modified nanoparticles, while the fibers were the modifier that lowers hardness and promotes toughness of hybrid composites. Impact test displayed increased absorbed energy after the PS electrospun fibers had been embedded. The optimized composition of the hybrid was determined and a good balance of thermal and mechanical properties was achieved.",
publisher = "Public Library Science, San Francisco",
journal = "PLoS One",
title = "Hybrid denture acrylic composites with nanozirconia and electrospun polystyrene fibers",
number = "12",
volume = "14",
doi = "10.1371/journal.pone.0226528"
}
Elmadani, A. A., Radović, I., Tomić, N., Petrović, M., Stojanović, D., Jančić-Heinemann, R.,& Radojević, V.. (2019). Hybrid denture acrylic composites with nanozirconia and electrospun polystyrene fibers. in PLoS One
Public Library Science, San Francisco., 14(12).
https://doi.org/10.1371/journal.pone.0226528
Elmadani AA, Radović I, Tomić N, Petrović M, Stojanović D, Jančić-Heinemann R, Radojević V. Hybrid denture acrylic composites with nanozirconia and electrospun polystyrene fibers. in PLoS One. 2019;14(12).
doi:10.1371/journal.pone.0226528 .
Elmadani, A. A., Radović, Ivana, Tomić, Nataša, Petrović, Miloš, Stojanović, Dušica, Jančić-Heinemann, Radmila, Radojević, Vesna, "Hybrid denture acrylic composites with nanozirconia and electrospun polystyrene fibers" in PLoS One, 14, no. 12 (2019),
https://doi.org/10.1371/journal.pone.0226528 . .
21
9
22

Processing of hybrid wood plastic composite reinforced with short PET fibers

Perišić, Srđan; Radović, Ivana; Petrović, Miloš; Marinković, Aleksandar; Stojanović, Dušica; Uskoković, Petar; Radojević, Vesna

(Taylor & Francis Inc, Philadelphia, 2018)

TY  - JOUR
AU  - Perišić, Srđan
AU  - Radović, Ivana
AU  - Petrović, Miloš
AU  - Marinković, Aleksandar
AU  - Stojanović, Dušica
AU  - Uskoković, Petar
AU  - Radojević, Vesna
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3991
AB  - Poly(ethylene terephthalate) (PET) fibers (virgin, waste, and mixed) were incorporated in the composite poly(methyl methacrylate) (PMMA)-wood. Hybrid composite panels were prepared by pressure molding. Toluene-2,4-diisocyanate (TDI) and (3-mercaptopropyl)trimethoxysilane (MPTMS) were used as cross-linking bonding agents for modification of wood fibers. Influence of cross-linking bonding agents, structure, and composition of PET fibers was examined by studying thermomechanical properties as well as moisture absorption. Moisture absorption was lower for composites with bonding agents. Mechanical testing revealed that the addition of PET fibers drastically enhances properties of the composites. Covalent and hydrogen bonds formed with the addition of bonding agents have also improved mechanical properties compared to the untreated composites.
PB  - Taylor & Francis Inc, Philadelphia
T2  - Materials and Manufacturing Processes
T1  - Processing of hybrid wood plastic composite reinforced with short PET fibers
EP  - 579
IS  - 5
SP  - 572
VL  - 33
DO  - 10.1080/10426914.2017.1364854
ER  - 
@article{
author = "Perišić, Srđan and Radović, Ivana and Petrović, Miloš and Marinković, Aleksandar and Stojanović, Dušica and Uskoković, Petar and Radojević, Vesna",
year = "2018",
abstract = "Poly(ethylene terephthalate) (PET) fibers (virgin, waste, and mixed) were incorporated in the composite poly(methyl methacrylate) (PMMA)-wood. Hybrid composite panels were prepared by pressure molding. Toluene-2,4-diisocyanate (TDI) and (3-mercaptopropyl)trimethoxysilane (MPTMS) were used as cross-linking bonding agents for modification of wood fibers. Influence of cross-linking bonding agents, structure, and composition of PET fibers was examined by studying thermomechanical properties as well as moisture absorption. Moisture absorption was lower for composites with bonding agents. Mechanical testing revealed that the addition of PET fibers drastically enhances properties of the composites. Covalent and hydrogen bonds formed with the addition of bonding agents have also improved mechanical properties compared to the untreated composites.",
publisher = "Taylor & Francis Inc, Philadelphia",
journal = "Materials and Manufacturing Processes",
title = "Processing of hybrid wood plastic composite reinforced with short PET fibers",
pages = "579-572",
number = "5",
volume = "33",
doi = "10.1080/10426914.2017.1364854"
}
Perišić, S., Radović, I., Petrović, M., Marinković, A., Stojanović, D., Uskoković, P.,& Radojević, V.. (2018). Processing of hybrid wood plastic composite reinforced with short PET fibers. in Materials and Manufacturing Processes
Taylor & Francis Inc, Philadelphia., 33(5), 572-579.
https://doi.org/10.1080/10426914.2017.1364854
Perišić S, Radović I, Petrović M, Marinković A, Stojanović D, Uskoković P, Radojević V. Processing of hybrid wood plastic composite reinforced with short PET fibers. in Materials and Manufacturing Processes. 2018;33(5):572-579.
doi:10.1080/10426914.2017.1364854 .
Perišić, Srđan, Radović, Ivana, Petrović, Miloš, Marinković, Aleksandar, Stojanović, Dušica, Uskoković, Petar, Radojević, Vesna, "Processing of hybrid wood plastic composite reinforced with short PET fibers" in Materials and Manufacturing Processes, 33, no. 5 (2018):572-579,
https://doi.org/10.1080/10426914.2017.1364854 . .
19
13
16