Božić, Dragana

Link to this page

Authority KeyName Variants
00c9a0dd-5d14-457a-863b-4452cd3befa3
  • Božić, Dragana (1)
  • Božić, Dragana D. (1)

Author's Bibliography

Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety

Vukašinović, Mila; Pantelić, Ivana; Savić, Sanela; Cekić, Nebojša; Vukašinović Sekulić, Maja; Antić Stanković, Jelena; Božić, Dragana D.; Tošić, Anđela; Tamburić, Slobodanka; Savić, Snežana D.

(MDPI, 2023)

TY  - JOUR
AU  - Vukašinović, Mila
AU  - Pantelić, Ivana
AU  - Savić, Sanela
AU  - Cekić, Nebojša
AU  - Vukašinović Sekulić, Maja
AU  - Antić Stanković, Jelena
AU  - Božić, Dragana D.
AU  - Tošić, Anđela
AU  - Tamburić, Slobodanka
AU  - Savić, Snežana D.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7071
AB  - Bioactive peptides are promising cosmetic active ingredients that can improve skin healthand appearance. They exhibit a broad spectrum of activity, including anti-aging, antioxidant, an-timicrobial, and anti-inflammatory effects. The aim of this study was to develop a safe, stable, andefficacious environmentally friendly (“green”) emulsion using a milk protein hydrolysate as a modelactive ingredient. Potential emulsions were formulated with biodegradable emollients, stabilizedwith naturally derived mixed emulsifier, and prepared by cold process. They were evaluated forrheological behavior (continuous rotation and oscillation tests), physical stability (dynamic me-chanical thermal analysis—DMTA test), and texture profiles, as well as cytotoxic, antioxidant, andantimicrobial effects. Rheological characterization revealed shear-thinning flow behavior with yieldpoint from continuous rotation tests and predominantly elastic character from oscillation (amplitudeand frequency sweep) tests, with small structural change detected in the DMTA test. These resultsimplied satisfactory rheological properties and good stability. Texture analysis revealed acceptablespreadability and substantivity of the emulsions. The protein hydrolysate showed antioxidant activity.The developed emulsions showed low antibacterial activity against selected microorganisms, butthis was due to the action of preservatives, not peptides. All potential emulsions showed a desirablesafety profile. The results obtained provide the basis for the next stage of formulation development,i.e., in vivo efficacy tests.
PB  - MDPI
T2  - Cosmetics
T1  - Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety
IS  - 6
SP  - 162
VL  - 10
DO  - 10.3390/cosmetics10060162
ER  - 
@article{
author = "Vukašinović, Mila and Pantelić, Ivana and Savić, Sanela and Cekić, Nebojša and Vukašinović Sekulić, Maja and Antić Stanković, Jelena and Božić, Dragana D. and Tošić, Anđela and Tamburić, Slobodanka and Savić, Snežana D.",
year = "2023",
abstract = "Bioactive peptides are promising cosmetic active ingredients that can improve skin healthand appearance. They exhibit a broad spectrum of activity, including anti-aging, antioxidant, an-timicrobial, and anti-inflammatory effects. The aim of this study was to develop a safe, stable, andefficacious environmentally friendly (“green”) emulsion using a milk protein hydrolysate as a modelactive ingredient. Potential emulsions were formulated with biodegradable emollients, stabilizedwith naturally derived mixed emulsifier, and prepared by cold process. They were evaluated forrheological behavior (continuous rotation and oscillation tests), physical stability (dynamic me-chanical thermal analysis—DMTA test), and texture profiles, as well as cytotoxic, antioxidant, andantimicrobial effects. Rheological characterization revealed shear-thinning flow behavior with yieldpoint from continuous rotation tests and predominantly elastic character from oscillation (amplitudeand frequency sweep) tests, with small structural change detected in the DMTA test. These resultsimplied satisfactory rheological properties and good stability. Texture analysis revealed acceptablespreadability and substantivity of the emulsions. The protein hydrolysate showed antioxidant activity.The developed emulsions showed low antibacterial activity against selected microorganisms, butthis was due to the action of preservatives, not peptides. All potential emulsions showed a desirablesafety profile. The results obtained provide the basis for the next stage of formulation development,i.e., in vivo efficacy tests.",
publisher = "MDPI",
journal = "Cosmetics",
title = "Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety",
number = "6",
pages = "162",
volume = "10",
doi = "10.3390/cosmetics10060162"
}
Vukašinović, M., Pantelić, I., Savić, S., Cekić, N., Vukašinović Sekulić, M., Antić Stanković, J., Božić, D. D., Tošić, A., Tamburić, S.,& Savić, S. D.. (2023). Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety. in Cosmetics
MDPI., 10(6), 162.
https://doi.org/10.3390/cosmetics10060162
Vukašinović M, Pantelić I, Savić S, Cekić N, Vukašinović Sekulić M, Antić Stanković J, Božić DD, Tošić A, Tamburić S, Savić SD. Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety. in Cosmetics. 2023;10(6):162.
doi:10.3390/cosmetics10060162 .
Vukašinović, Mila, Pantelić, Ivana, Savić, Sanela, Cekić, Nebojša, Vukašinović Sekulić, Maja, Antić Stanković, Jelena, Božić, Dragana D., Tošić, Anđela, Tamburić, Slobodanka, Savić, Snežana D., "Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety" in Cosmetics, 10, no. 6 (2023):162,
https://doi.org/10.3390/cosmetics10060162 . .
1
1
1

Indium Recovery from Jarosite Pb–Ag Tailings Waste (Part 1)

Janošević, Miloš; Conić, Vesna; Božić, Dragana; Avramović, Ljiljana; Jovanović, Ivana; Kamberović, Željko; Marjanović, Saša

(MDPI, 2023)

TY  - JOUR
AU  - Janošević, Miloš
AU  - Conić, Vesna
AU  - Božić, Dragana
AU  - Avramović, Ljiljana
AU  - Jovanović, Ivana
AU  - Kamberović, Željko
AU  - Marjanović, Saša
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6376
AB  - The processing of zinc ore using hydrometallurgical methods leads to the formation and accumulation of a by-product called jarosite, which contains concentrated precious metals. In this study, we propose the recovery of In and its separation from Cu, Zn, Fe, Pb, and Ag. This study also presents a proposal for a new technological procedure for jarosite treatment. First we roasted the jarosite, and then the calcine collected was leached in water. The leaching extraction values obtained for Cu, Zn, Fe, and In were 91.07%, 91.97%, 9.60%, and 100.0%, respectively. Following the leaching of the roasted material in water, Pb, Ag, and most of the Fe obtained remained in the solid residue. The leaching solution was treated further by a precipitation process using NaOH, where In and Fe were precipitated and consequently separated from Cu and Zn. The In (OH)3 and Fe(OH)3 precipitates were dissolved further in a diluted H2SO4 solution, and then the cementation of In with Al was performed. We used HCl acid to remove Al from the In, after which unwrought In was obtained.
PB  - MDPI
T2  - Minerals
T1  - Indium Recovery from Jarosite Pb–Ag Tailings Waste (Part 1)
IS  - 4
SP  - 540
VL  - 13
DO  - 10.3390/min13040540
ER  - 
@article{
author = "Janošević, Miloš and Conić, Vesna and Božić, Dragana and Avramović, Ljiljana and Jovanović, Ivana and Kamberović, Željko and Marjanović, Saša",
year = "2023",
abstract = "The processing of zinc ore using hydrometallurgical methods leads to the formation and accumulation of a by-product called jarosite, which contains concentrated precious metals. In this study, we propose the recovery of In and its separation from Cu, Zn, Fe, Pb, and Ag. This study also presents a proposal for a new technological procedure for jarosite treatment. First we roasted the jarosite, and then the calcine collected was leached in water. The leaching extraction values obtained for Cu, Zn, Fe, and In were 91.07%, 91.97%, 9.60%, and 100.0%, respectively. Following the leaching of the roasted material in water, Pb, Ag, and most of the Fe obtained remained in the solid residue. The leaching solution was treated further by a precipitation process using NaOH, where In and Fe were precipitated and consequently separated from Cu and Zn. The In (OH)3 and Fe(OH)3 precipitates were dissolved further in a diluted H2SO4 solution, and then the cementation of In with Al was performed. We used HCl acid to remove Al from the In, after which unwrought In was obtained.",
publisher = "MDPI",
journal = "Minerals",
title = "Indium Recovery from Jarosite Pb–Ag Tailings Waste (Part 1)",
number = "4",
pages = "540",
volume = "13",
doi = "10.3390/min13040540"
}
Janošević, M., Conić, V., Božić, D., Avramović, L., Jovanović, I., Kamberović, Ž.,& Marjanović, S.. (2023). Indium Recovery from Jarosite Pb–Ag Tailings Waste (Part 1). in Minerals
MDPI., 13(4), 540.
https://doi.org/10.3390/min13040540
Janošević M, Conić V, Božić D, Avramović L, Jovanović I, Kamberović Ž, Marjanović S. Indium Recovery from Jarosite Pb–Ag Tailings Waste (Part 1). in Minerals. 2023;13(4):540.
doi:10.3390/min13040540 .
Janošević, Miloš, Conić, Vesna, Božić, Dragana, Avramović, Ljiljana, Jovanović, Ivana, Kamberović, Željko, Marjanović, Saša, "Indium Recovery from Jarosite Pb–Ag Tailings Waste (Part 1)" in Minerals, 13, no. 4 (2023):540,
https://doi.org/10.3390/min13040540 . .
1
1