Marković, Branislav

Link to this page

Authority KeyName Variants
ce737be3-5f27-48db-8e1b-da986e6a8cc2
  • Marković, Branislav (3)

Author's Bibliography

Determining the Role of Acicular Ferrite Carbides in Cleavage Fracture Crack Initiation for Two Medium Carbon Microalloyed Steels

Jovanović, Gvozden; Glišić, Dragomir; Dikić, Stefan; Međo, Bojan; Marković, Branislav; Vuković, Nikola; Radović, Nenad

(MDPI, 2023)

TY  - JOUR
AU  - Jovanović, Gvozden
AU  - Glišić, Dragomir
AU  - Dikić, Stefan
AU  - Međo, Bojan
AU  - Marković, Branislav
AU  - Vuković, Nikola
AU  - Radović, Nenad
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6938
AB  - Two medium-carbon microalloyed steels with a predominant acicular ferrite microstructure were investigated in this study in order to determine the initial micro-crack formation mechanism and the role of acicular ferrite structure in cleavage fracture. In order to ensure cleavage fracture, samples were investigated at −196 °C for uniaxial tension and four point bending fracture. Previous investigations have shown that cleavage fracture for steels with a predominant acicular ferrite microstructure has not been initiated by the fracture of coarse TiN particles as in ferrite-pearlite, bainite, or martensitic microalloyed steels. The average maximal thickness of cementite plates measured in this work is 0.798 µm and 0.966 µm, for V and TiV steel, respectively. The corresponding stress values required for their fracture according to Griffith’s equation are 1970 MPa and 1791 MPa, respectively. Estimated values of the effective surface energy for the V steel with an average cementite volume fraction of 3.8% range from 40 Jm−2 to 86 Jm−2, and for the TiV steel with an average cementite volume fraction of 18.3% range from 55 Jm−2 to 82 Jm−2. The fracture of coarse cementite plates was found to not to be responsible for the cleavage fracture initiation in case of both steels.
PB  - MDPI
T2  - Materials
T1  - Determining the Role of Acicular Ferrite Carbides in Cleavage Fracture Crack Initiation for Two Medium Carbon Microalloyed Steels
IS  - 22
SP  - 7192
VL  - 16
DO  - 10.3390/ma16227192
ER  - 
@article{
author = "Jovanović, Gvozden and Glišić, Dragomir and Dikić, Stefan and Međo, Bojan and Marković, Branislav and Vuković, Nikola and Radović, Nenad",
year = "2023",
abstract = "Two medium-carbon microalloyed steels with a predominant acicular ferrite microstructure were investigated in this study in order to determine the initial micro-crack formation mechanism and the role of acicular ferrite structure in cleavage fracture. In order to ensure cleavage fracture, samples were investigated at −196 °C for uniaxial tension and four point bending fracture. Previous investigations have shown that cleavage fracture for steels with a predominant acicular ferrite microstructure has not been initiated by the fracture of coarse TiN particles as in ferrite-pearlite, bainite, or martensitic microalloyed steels. The average maximal thickness of cementite plates measured in this work is 0.798 µm and 0.966 µm, for V and TiV steel, respectively. The corresponding stress values required for their fracture according to Griffith’s equation are 1970 MPa and 1791 MPa, respectively. Estimated values of the effective surface energy for the V steel with an average cementite volume fraction of 3.8% range from 40 Jm−2 to 86 Jm−2, and for the TiV steel with an average cementite volume fraction of 18.3% range from 55 Jm−2 to 82 Jm−2. The fracture of coarse cementite plates was found to not to be responsible for the cleavage fracture initiation in case of both steels.",
publisher = "MDPI",
journal = "Materials",
title = "Determining the Role of Acicular Ferrite Carbides in Cleavage Fracture Crack Initiation for Two Medium Carbon Microalloyed Steels",
number = "22",
pages = "7192",
volume = "16",
doi = "10.3390/ma16227192"
}
Jovanović, G., Glišić, D., Dikić, S., Međo, B., Marković, B., Vuković, N.,& Radović, N.. (2023). Determining the Role of Acicular Ferrite Carbides in Cleavage Fracture Crack Initiation for Two Medium Carbon Microalloyed Steels. in Materials
MDPI., 16(22), 7192.
https://doi.org/10.3390/ma16227192
Jovanović G, Glišić D, Dikić S, Međo B, Marković B, Vuković N, Radović N. Determining the Role of Acicular Ferrite Carbides in Cleavage Fracture Crack Initiation for Two Medium Carbon Microalloyed Steels. in Materials. 2023;16(22):7192.
doi:10.3390/ma16227192 .
Jovanović, Gvozden, Glišić, Dragomir, Dikić, Stefan, Međo, Bojan, Marković, Branislav, Vuković, Nikola, Radović, Nenad, "Determining the Role of Acicular Ferrite Carbides in Cleavage Fracture Crack Initiation for Two Medium Carbon Microalloyed Steels" in Materials, 16, no. 22 (2023):7192,
https://doi.org/10.3390/ma16227192 . .

Options for Hydrometallurgical Treatment of Ni-Co Lateritic Ores for Sustainable Supply of Nickel and Cobalt for European Battery Industry from South-Eastern Europe and Turkey

Stanković, Srđan; Kamberović, Željko; Friedrich, Bernd; Stopić, Srećko R.; Sokić, Miroslav; Marković, Branislav; Schippers, Axel

(MDPI, 2022)

TY  - JOUR
AU  - Stanković, Srđan
AU  - Kamberović, Željko
AU  - Friedrich, Bernd
AU  - Stopić, Srećko R.
AU  - Sokić, Miroslav
AU  - Marković, Branislav
AU  - Schippers, Axel
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5132
AB  - The automotive industry is in the process of transformation from the traditional production of vehicles with engines powered by the combustion of fossil fuels to vehicles powered by electric energy. This revolutionary transformation will generate a growing demand for metallic raw materials that are a crucial part of batteries—nickel and cobalt, among others. Providing enough raw materials for e-mobility in a sustainable way will be a challenge in the years to come. The region of South-Eastern Europe (SEE) and Turkey is relatively rich in lateritic Ni-Co deposits, and this region has the potential to partially replace the import of nickel and cobalt intermediates to the European Union from distant overseas locations. Possibilities for the sustainable sourcing of nickel and cobalt from the SEE region are reviewed in this paper, with an overview of the global demand and production of these metals, lateritic mineral resources of SEE, the current status of production, and the prospective development of nickel and cobalt production in this region.
PB  - MDPI
T2  - Metals
T1  - Options for Hydrometallurgical Treatment of Ni-Co Lateritic Ores for Sustainable Supply of Nickel and Cobalt for European Battery Industry from South-Eastern Europe and Turkey
IS  - 5
SP  - 807
VL  - 12
DO  - 10.3390/met12050807
ER  - 
@article{
author = "Stanković, Srđan and Kamberović, Željko and Friedrich, Bernd and Stopić, Srećko R. and Sokić, Miroslav and Marković, Branislav and Schippers, Axel",
year = "2022",
abstract = "The automotive industry is in the process of transformation from the traditional production of vehicles with engines powered by the combustion of fossil fuels to vehicles powered by electric energy. This revolutionary transformation will generate a growing demand for metallic raw materials that are a crucial part of batteries—nickel and cobalt, among others. Providing enough raw materials for e-mobility in a sustainable way will be a challenge in the years to come. The region of South-Eastern Europe (SEE) and Turkey is relatively rich in lateritic Ni-Co deposits, and this region has the potential to partially replace the import of nickel and cobalt intermediates to the European Union from distant overseas locations. Possibilities for the sustainable sourcing of nickel and cobalt from the SEE region are reviewed in this paper, with an overview of the global demand and production of these metals, lateritic mineral resources of SEE, the current status of production, and the prospective development of nickel and cobalt production in this region.",
publisher = "MDPI",
journal = "Metals",
title = "Options for Hydrometallurgical Treatment of Ni-Co Lateritic Ores for Sustainable Supply of Nickel and Cobalt for European Battery Industry from South-Eastern Europe and Turkey",
number = "5",
pages = "807",
volume = "12",
doi = "10.3390/met12050807"
}
Stanković, S., Kamberović, Ž., Friedrich, B., Stopić, S. R., Sokić, M., Marković, B.,& Schippers, A.. (2022). Options for Hydrometallurgical Treatment of Ni-Co Lateritic Ores for Sustainable Supply of Nickel and Cobalt for European Battery Industry from South-Eastern Europe and Turkey. in Metals
MDPI., 12(5), 807.
https://doi.org/10.3390/met12050807
Stanković S, Kamberović Ž, Friedrich B, Stopić SR, Sokić M, Marković B, Schippers A. Options for Hydrometallurgical Treatment of Ni-Co Lateritic Ores for Sustainable Supply of Nickel and Cobalt for European Battery Industry from South-Eastern Europe and Turkey. in Metals. 2022;12(5):807.
doi:10.3390/met12050807 .
Stanković, Srđan, Kamberović, Željko, Friedrich, Bernd, Stopić, Srećko R., Sokić, Miroslav, Marković, Branislav, Schippers, Axel, "Options for Hydrometallurgical Treatment of Ni-Co Lateritic Ores for Sustainable Supply of Nickel and Cobalt for European Battery Industry from South-Eastern Europe and Turkey" in Metals, 12, no. 5 (2022):807,
https://doi.org/10.3390/met12050807 . .
1
4
3

Complex sulphide-barite ore leaching in ferric chloride solution

Sokić, Miroslav; Matković, Vladislav; Marković, Branislav; Manojlović, Vaso; Štrbac, Nada; Živković, Dragana; Kamberović, Željko

(Association of Metallurgical Engineers of Serbia, 2016)

TY  - JOUR
AU  - Sokić, Miroslav
AU  - Matković, Vladislav
AU  - Marković, Branislav
AU  - Manojlović, Vaso
AU  - Štrbac, Nada
AU  - Živković, Dragana
AU  - Kamberović, Željko
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3206
AB  - The results of research on the leaching process of complex sulphide-barite ore were presented in this paper. The leaching process was carried out in a laboratory autoclave by ferric chloride solution. Considering that those minerals are represented in complex structural-textural relationships, it is not possible to extract lead, zinc and copper minerals from ore by flotation methods. The obtained results confirmed possibility of the ore processing directly, by chemical methods. The effect of temperature, time and oxygen partial pressure on the lead, zinc and copper dissolution was studied. The maximal leaching degree was achieved at 100 °C and amount of 91.5 % for Pb, 96.1 % for Zn and 60.7 % for Cu). Leaching at temperatures above 100 °C is impractical.
PB  - Association of Metallurgical Engineers of Serbia
T2  - Metallurgical & Materials Engineering
T1  - Complex sulphide-barite ore leaching in ferric chloride solution
EP  - 89
IS  - 2
SP  - 81
VL  - 22
UR  - https://hdl.handle.net/21.15107/rcub_technorep_3206
ER  - 
@article{
author = "Sokić, Miroslav and Matković, Vladislav and Marković, Branislav and Manojlović, Vaso and Štrbac, Nada and Živković, Dragana and Kamberović, Željko",
year = "2016",
abstract = "The results of research on the leaching process of complex sulphide-barite ore were presented in this paper. The leaching process was carried out in a laboratory autoclave by ferric chloride solution. Considering that those minerals are represented in complex structural-textural relationships, it is not possible to extract lead, zinc and copper minerals from ore by flotation methods. The obtained results confirmed possibility of the ore processing directly, by chemical methods. The effect of temperature, time and oxygen partial pressure on the lead, zinc and copper dissolution was studied. The maximal leaching degree was achieved at 100 °C and amount of 91.5 % for Pb, 96.1 % for Zn and 60.7 % for Cu). Leaching at temperatures above 100 °C is impractical.",
publisher = "Association of Metallurgical Engineers of Serbia",
journal = "Metallurgical & Materials Engineering",
title = "Complex sulphide-barite ore leaching in ferric chloride solution",
pages = "89-81",
number = "2",
volume = "22",
url = "https://hdl.handle.net/21.15107/rcub_technorep_3206"
}
Sokić, M., Matković, V., Marković, B., Manojlović, V., Štrbac, N., Živković, D.,& Kamberović, Ž.. (2016). Complex sulphide-barite ore leaching in ferric chloride solution. in Metallurgical & Materials Engineering
Association of Metallurgical Engineers of Serbia., 22(2), 81-89.
https://hdl.handle.net/21.15107/rcub_technorep_3206
Sokić M, Matković V, Marković B, Manojlović V, Štrbac N, Živković D, Kamberović Ž. Complex sulphide-barite ore leaching in ferric chloride solution. in Metallurgical & Materials Engineering. 2016;22(2):81-89.
https://hdl.handle.net/21.15107/rcub_technorep_3206 .
Sokić, Miroslav, Matković, Vladislav, Marković, Branislav, Manojlović, Vaso, Štrbac, Nada, Živković, Dragana, Kamberović, Željko, "Complex sulphide-barite ore leaching in ferric chloride solution" in Metallurgical & Materials Engineering, 22, no. 2 (2016):81-89,
https://hdl.handle.net/21.15107/rcub_technorep_3206 .
2