Bundaleski, Nenad

Link to this page

Authority KeyName Variants
orcid::0000-0002-5958-2282
  • Bundaleski, Nenad (2)
Projects

Author's Bibliography

Absorption boost of TiO2 nanotubes by doping with N and sensitization with CdS quantum dots

Bjelajac, Anđelika; Đokić, Veljko; Petrović, Rada; Bundaleski, Nenad; Socol, Gabriel; Mihailescu, Ion N.; Rakočević, Zlatko Lj.; Janaćković, Đorđe

(Elsevier Sci Ltd, Oxford, 2017)

TY  - JOUR
AU  - Bjelajac, Anđelika
AU  - Đokić, Veljko
AU  - Petrović, Rada
AU  - Bundaleski, Nenad
AU  - Socol, Gabriel
AU  - Mihailescu, Ion N.
AU  - Rakočević, Zlatko Lj.
AU  - Janaćković, Đorđe
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3631
AB  - A process of obtaining N-doped TiO2 nanotubes sensitized by CdS nanoparticles is presented, including detailed characterizations performed along the synthesis. Transparent TiO2 films consisting of nanotubes, 2.5 mu m long and of similar to 60 nm inner diameter, were obtained after anodization of a titanium film deposited onto FTO glass substrate. N-doping was achieved by annealing of TiO2 film in ammonia. X-ray Photoelectron Spectroscopy measurements showed that nitrogen was substitutionally incorporated in the TiO2 matrix, with the N:Ti concentration ratio of 1:100. The doping changed the optical properties of the material in such a way that the absorption edge was shifted from 380 nm to 507 nm, as observed from diffuse reflectance spectra. The influence of the microwave (MW) irradiation on the synthesized CdS quantum dots and their optical properties was investigated. It was shown that the diameter of CdS nanoparticles was increased due to releasing of S-2-ions from dimethyl sulfoxide (DMSO) as a consequence of the MW treatment. The (N)TiO2 films were then used as substrates for matrix assisted pulsed laser deposition of the CdS quantum dots with DMSO as a matrix. The laser parameters for the deposition were optimized in order to preserve the nanotubular structure open, the latter being an important feature of this type of photoanode. The structure obtained under optimized conditions has an additional absorption edge shift, reaching 603 nm.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Absorption boost of TiO2 nanotubes by doping with N and sensitization with CdS quantum dots
EP  - 15046
IS  - 17
SP  - 15040
VL  - 43
DO  - 10.1016/j.ceramint.2017.08.029
ER  - 
@article{
author = "Bjelajac, Anđelika and Đokić, Veljko and Petrović, Rada and Bundaleski, Nenad and Socol, Gabriel and Mihailescu, Ion N. and Rakočević, Zlatko Lj. and Janaćković, Đorđe",
year = "2017",
abstract = "A process of obtaining N-doped TiO2 nanotubes sensitized by CdS nanoparticles is presented, including detailed characterizations performed along the synthesis. Transparent TiO2 films consisting of nanotubes, 2.5 mu m long and of similar to 60 nm inner diameter, were obtained after anodization of a titanium film deposited onto FTO glass substrate. N-doping was achieved by annealing of TiO2 film in ammonia. X-ray Photoelectron Spectroscopy measurements showed that nitrogen was substitutionally incorporated in the TiO2 matrix, with the N:Ti concentration ratio of 1:100. The doping changed the optical properties of the material in such a way that the absorption edge was shifted from 380 nm to 507 nm, as observed from diffuse reflectance spectra. The influence of the microwave (MW) irradiation on the synthesized CdS quantum dots and their optical properties was investigated. It was shown that the diameter of CdS nanoparticles was increased due to releasing of S-2-ions from dimethyl sulfoxide (DMSO) as a consequence of the MW treatment. The (N)TiO2 films were then used as substrates for matrix assisted pulsed laser deposition of the CdS quantum dots with DMSO as a matrix. The laser parameters for the deposition were optimized in order to preserve the nanotubular structure open, the latter being an important feature of this type of photoanode. The structure obtained under optimized conditions has an additional absorption edge shift, reaching 603 nm.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Absorption boost of TiO2 nanotubes by doping with N and sensitization with CdS quantum dots",
pages = "15046-15040",
number = "17",
volume = "43",
doi = "10.1016/j.ceramint.2017.08.029"
}
Bjelajac, A., Đokić, V., Petrović, R., Bundaleski, N., Socol, G., Mihailescu, I. N., Rakočević, Z. Lj.,& Janaćković, Đ.. (2017). Absorption boost of TiO2 nanotubes by doping with N and sensitization with CdS quantum dots. in Ceramics International
Elsevier Sci Ltd, Oxford., 43(17), 15040-15046.
https://doi.org/10.1016/j.ceramint.2017.08.029
Bjelajac A, Đokić V, Petrović R, Bundaleski N, Socol G, Mihailescu IN, Rakočević ZL, Janaćković Đ. Absorption boost of TiO2 nanotubes by doping with N and sensitization with CdS quantum dots. in Ceramics International. 2017;43(17):15040-15046.
doi:10.1016/j.ceramint.2017.08.029 .
Bjelajac, Anđelika, Đokić, Veljko, Petrović, Rada, Bundaleski, Nenad, Socol, Gabriel, Mihailescu, Ion N., Rakočević, Zlatko Lj., Janaćković, Đorđe, "Absorption boost of TiO2 nanotubes by doping with N and sensitization with CdS quantum dots" in Ceramics International, 43, no. 17 (2017):15040-15046,
https://doi.org/10.1016/j.ceramint.2017.08.029 . .
12
10
12

The role of different minerals from red mud assemblage in Co(II) sorption mechanism

Milenković, A.; Smičiklas, Ivana D.; Bundaleski, Nenad; Teodoro, Orlando M. N. D.; Veljović, Đorđe; Vukelić, Nikola

(Elsevier Science Bv, Amsterdam, 2016)

TY  - JOUR
AU  - Milenković, A.
AU  - Smičiklas, Ivana D.
AU  - Bundaleski, Nenad
AU  - Teodoro, Orlando M. N. D.
AU  - Veljović, Đorđe
AU  - Vukelić, Nikola
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3339
AB  - A range of industrial by-products are currently under the consideration as cost-effective alternatives to conventional sorbent materials for environmental clean-up and remediation applications. Bauxite residue (red mud) has demonstrated exceptionally high potential for the immobilization of cationic pollutants. Due to heterogeneity of such material, determination of the role of individual mineral phases in the overall sorption mechanism is a challenging task. To enlighten the mechanism of Co(II) sorption by mineral assemblage of the red mud, sequential extraction analysis of Co-loaded sample was combined with the microscopic and spectroscopic studies performed by Scanning Field Emission Electron Microscope (FE-SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS). Sorbed Co(II) ions were found associated with operationally defined Fe,Mn-oxide and carbonate/acid soluble fractions. Binding of Co(II) by the red mud was achieved primarily by means of chemisorption/surface precipitation on Fe- and Ti-oxides. In coexistence with these highly selective surfaces, gibbsite and silica appeared to be low affinity sites for Co(II). Incongruent dissolution of sodalite phase was detected, indicating that its function was not to ensure sorption centers, but to increase the solution pH creating favorable environment for Co(II) binding by Fe- and Ti-oxides. The results demonstrate high stability of sorbed Co(II) and synergistic action of mineral constituents as essentially important property for red mud implementation as a purifying and remediation agent.
PB  - Elsevier Science Bv, Amsterdam
T2  - Colloids and Surfaces A-Physicochemical and Engineering Aspects
T1  - The role of different minerals from red mud assemblage in Co(II) sorption mechanism
EP  - 20
SP  - 8
VL  - 508
DO  - 10.1016/j.colsurfa.2016.08.011
ER  - 
@article{
author = "Milenković, A. and Smičiklas, Ivana D. and Bundaleski, Nenad and Teodoro, Orlando M. N. D. and Veljović, Đorđe and Vukelić, Nikola",
year = "2016",
abstract = "A range of industrial by-products are currently under the consideration as cost-effective alternatives to conventional sorbent materials for environmental clean-up and remediation applications. Bauxite residue (red mud) has demonstrated exceptionally high potential for the immobilization of cationic pollutants. Due to heterogeneity of such material, determination of the role of individual mineral phases in the overall sorption mechanism is a challenging task. To enlighten the mechanism of Co(II) sorption by mineral assemblage of the red mud, sequential extraction analysis of Co-loaded sample was combined with the microscopic and spectroscopic studies performed by Scanning Field Emission Electron Microscope (FE-SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS). Sorbed Co(II) ions were found associated with operationally defined Fe,Mn-oxide and carbonate/acid soluble fractions. Binding of Co(II) by the red mud was achieved primarily by means of chemisorption/surface precipitation on Fe- and Ti-oxides. In coexistence with these highly selective surfaces, gibbsite and silica appeared to be low affinity sites for Co(II). Incongruent dissolution of sodalite phase was detected, indicating that its function was not to ensure sorption centers, but to increase the solution pH creating favorable environment for Co(II) binding by Fe- and Ti-oxides. The results demonstrate high stability of sorbed Co(II) and synergistic action of mineral constituents as essentially important property for red mud implementation as a purifying and remediation agent.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Colloids and Surfaces A-Physicochemical and Engineering Aspects",
title = "The role of different minerals from red mud assemblage in Co(II) sorption mechanism",
pages = "20-8",
volume = "508",
doi = "10.1016/j.colsurfa.2016.08.011"
}
Milenković, A., Smičiklas, I. D., Bundaleski, N., Teodoro, O. M. N. D., Veljović, Đ.,& Vukelić, N.. (2016). The role of different minerals from red mud assemblage in Co(II) sorption mechanism. in Colloids and Surfaces A-Physicochemical and Engineering Aspects
Elsevier Science Bv, Amsterdam., 508, 8-20.
https://doi.org/10.1016/j.colsurfa.2016.08.011
Milenković A, Smičiklas ID, Bundaleski N, Teodoro OMND, Veljović Đ, Vukelić N. The role of different minerals from red mud assemblage in Co(II) sorption mechanism. in Colloids and Surfaces A-Physicochemical and Engineering Aspects. 2016;508:8-20.
doi:10.1016/j.colsurfa.2016.08.011 .
Milenković, A., Smičiklas, Ivana D., Bundaleski, Nenad, Teodoro, Orlando M. N. D., Veljović, Đorđe, Vukelić, Nikola, "The role of different minerals from red mud assemblage in Co(II) sorption mechanism" in Colloids and Surfaces A-Physicochemical and Engineering Aspects, 508 (2016):8-20,
https://doi.org/10.1016/j.colsurfa.2016.08.011 . .
18
10
17