Tripković, Dušan

Link to this page

Authority KeyName Variants
orcid::0000-0003-3330-9664
  • Tripković, Dušan (7)
Projects

Author's Bibliography

The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts

Tripković, Dušan; Stevanović, Sanja; Gavrilović, Aleksandra; Rogan, Jelena; Lačnjevac, Uroš; Kravić, Tamara; Jovanović, Vladislava M.

(Springer, New York, 2018)

TY  - JOUR
AU  - Tripković, Dušan
AU  - Stevanović, Sanja
AU  - Gavrilović, Aleksandra
AU  - Rogan, Jelena
AU  - Lačnjevac, Uroš
AU  - Kravić, Tamara
AU  - Jovanović, Vladislava M.
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3978
AB  - In our previous paper, we described in detail studies of Sn influence on electrocatalytic activity of PtSn catalyst for CO and formic acid oxidation (StevanoviAc et al., J. Phys. Chem. C, 118 (2014) 278-289). The catalyst was composed of a Pt phase, Pt3Sn alloy and very small SnO2 particles. Different electrochemical treatment enabled studies of PtSn/C having Sn both in surface and subsurface layers and skeleton structure of this catalyst with Sn only in subsurface layers. The results obtained revealed the promotional effect of surface Sn whether alloyed or as oxide above all in preventing accumulation of CO and blocking the surface Pt atoms. As a consequence, in formic acid oxidation, the currents are not entering the plateau but increasing constantly until reaching a maximum. It was concluded that at lower potentials the effect of Sn on formic acid oxidation was predominantly electronic but with increasing the potential bi-functional mechanism prevailed due to the leading role of SnO2. This role of SnO2 is restated in the present study. Therefore, CO and formic acid oxidation were examined at PtSnO2/C catalyst. The catalyst was synthesised by the same microwave-assisted polyol procedure. According to XRD analysis, the catalyst is composed of a Pt phase and SnO2 phase. The reactions were examined on PtSnO2/C catalyst treated on the same way as PtSn/C. Comparing the results obtained, the role of SnO2 is confirmed and at the same time the significance of alloyed Sn and its electronic effect is revealed.
PB  - Springer, New York
T2  - Electrocatalysis
T1  - The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts
EP  - 85
IS  - 1
SP  - 76
VL  - 9
DO  - 10.1007/s12678-017-0424-4
ER  - 
@article{
author = "Tripković, Dušan and Stevanović, Sanja and Gavrilović, Aleksandra and Rogan, Jelena and Lačnjevac, Uroš and Kravić, Tamara and Jovanović, Vladislava M.",
year = "2018",
abstract = "In our previous paper, we described in detail studies of Sn influence on electrocatalytic activity of PtSn catalyst for CO and formic acid oxidation (StevanoviAc et al., J. Phys. Chem. C, 118 (2014) 278-289). The catalyst was composed of a Pt phase, Pt3Sn alloy and very small SnO2 particles. Different electrochemical treatment enabled studies of PtSn/C having Sn both in surface and subsurface layers and skeleton structure of this catalyst with Sn only in subsurface layers. The results obtained revealed the promotional effect of surface Sn whether alloyed or as oxide above all in preventing accumulation of CO and blocking the surface Pt atoms. As a consequence, in formic acid oxidation, the currents are not entering the plateau but increasing constantly until reaching a maximum. It was concluded that at lower potentials the effect of Sn on formic acid oxidation was predominantly electronic but with increasing the potential bi-functional mechanism prevailed due to the leading role of SnO2. This role of SnO2 is restated in the present study. Therefore, CO and formic acid oxidation were examined at PtSnO2/C catalyst. The catalyst was synthesised by the same microwave-assisted polyol procedure. According to XRD analysis, the catalyst is composed of a Pt phase and SnO2 phase. The reactions were examined on PtSnO2/C catalyst treated on the same way as PtSn/C. Comparing the results obtained, the role of SnO2 is confirmed and at the same time the significance of alloyed Sn and its electronic effect is revealed.",
publisher = "Springer, New York",
journal = "Electrocatalysis",
title = "The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts",
pages = "85-76",
number = "1",
volume = "9",
doi = "10.1007/s12678-017-0424-4"
}
Tripković, D., Stevanović, S., Gavrilović, A., Rogan, J., Lačnjevac, U., Kravić, T.,& Jovanović, V. M.. (2018). The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts. in Electrocatalysis
Springer, New York., 9(1), 76-85.
https://doi.org/10.1007/s12678-017-0424-4
Tripković D, Stevanović S, Gavrilović A, Rogan J, Lačnjevac U, Kravić T, Jovanović VM. The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts. in Electrocatalysis. 2018;9(1):76-85.
doi:10.1007/s12678-017-0424-4 .
Tripković, Dušan, Stevanović, Sanja, Gavrilović, Aleksandra, Rogan, Jelena, Lačnjevac, Uroš, Kravić, Tamara, Jovanović, Vladislava M., "The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts" in Electrocatalysis, 9, no. 1 (2018):76-85,
https://doi.org/10.1007/s12678-017-0424-4 . .
11
8
11

High Activity and Stability of Pt2Bi Catalyst in Formic Acid Oxidation

Lović, Jelena; Obradović, Maja; Tripković, Dušan; Popović, Ksenija; Jovanović, Vladislava M.; Gojković, Snežana Lj.; Tripković, Amalija

(Springer, New York, 2012)

TY  - JOUR
AU  - Lović, Jelena
AU  - Obradović, Maja
AU  - Tripković, Dušan
AU  - Popović, Ksenija
AU  - Jovanović, Vladislava M.
AU  - Gojković, Snežana Lj.
AU  - Tripković, Amalija
PY  - 2012
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2148
AB  - Formic acid oxidation was studied on a new prepared Pt2Bi characterized by X-ray diffraction spectroscopy (phase composition), scanning tunneling microscopy (STM) (surface morphology), and COads stripping voltammetry (surface composition). Bulk composition of Pt2Bi revealed two phases-55% PtBi alloy and 45% Pt. Estimated contribution of pure Pt on the Pt2Bi surface (43.5%) determined by COads stripping voltammetry corresponds closely to bulk composition. Pt2Bi reveals high activity and stability in formic acid oxidation. High activity originates from the fact that formic acid oxidation proceeds completely through dehydrogenation path based on an ensemble effect. The high stability of Pt2Bi surface is induced by the suppression of Bi leaching as it was evidenced by insignificant changes of surface morphology and surface roughness shown by STM images before and after electrochemical treatment in formic acid containing solution. Pt2Bi is found to be powerful catalyst exhibiting up to two orders of magnitude larger current densities at 0.0 V and onset potential shifted for similar to 0.2 V to more negative value relative to Pt under steady-state condition.
PB  - Springer, New York
T2  - Electrocatalysis
T1  - High Activity and Stability of Pt2Bi Catalyst in Formic Acid Oxidation
EP  - 352
IS  - 3-4
SP  - 346
VL  - 3
DO  - 10.1007/s12678-012-0099-9
ER  - 
@article{
author = "Lović, Jelena and Obradović, Maja and Tripković, Dušan and Popović, Ksenija and Jovanović, Vladislava M. and Gojković, Snežana Lj. and Tripković, Amalija",
year = "2012",
abstract = "Formic acid oxidation was studied on a new prepared Pt2Bi characterized by X-ray diffraction spectroscopy (phase composition), scanning tunneling microscopy (STM) (surface morphology), and COads stripping voltammetry (surface composition). Bulk composition of Pt2Bi revealed two phases-55% PtBi alloy and 45% Pt. Estimated contribution of pure Pt on the Pt2Bi surface (43.5%) determined by COads stripping voltammetry corresponds closely to bulk composition. Pt2Bi reveals high activity and stability in formic acid oxidation. High activity originates from the fact that formic acid oxidation proceeds completely through dehydrogenation path based on an ensemble effect. The high stability of Pt2Bi surface is induced by the suppression of Bi leaching as it was evidenced by insignificant changes of surface morphology and surface roughness shown by STM images before and after electrochemical treatment in formic acid containing solution. Pt2Bi is found to be powerful catalyst exhibiting up to two orders of magnitude larger current densities at 0.0 V and onset potential shifted for similar to 0.2 V to more negative value relative to Pt under steady-state condition.",
publisher = "Springer, New York",
journal = "Electrocatalysis",
title = "High Activity and Stability of Pt2Bi Catalyst in Formic Acid Oxidation",
pages = "352-346",
number = "3-4",
volume = "3",
doi = "10.1007/s12678-012-0099-9"
}
Lović, J., Obradović, M., Tripković, D., Popović, K., Jovanović, V. M., Gojković, S. Lj.,& Tripković, A.. (2012). High Activity and Stability of Pt2Bi Catalyst in Formic Acid Oxidation. in Electrocatalysis
Springer, New York., 3(3-4), 346-352.
https://doi.org/10.1007/s12678-012-0099-9
Lović J, Obradović M, Tripković D, Popović K, Jovanović VM, Gojković SL, Tripković A. High Activity and Stability of Pt2Bi Catalyst in Formic Acid Oxidation. in Electrocatalysis. 2012;3(3-4):346-352.
doi:10.1007/s12678-012-0099-9 .
Lović, Jelena, Obradović, Maja, Tripković, Dušan, Popović, Ksenija, Jovanović, Vladislava M., Gojković, Snežana Lj., Tripković, Amalija, "High Activity and Stability of Pt2Bi Catalyst in Formic Acid Oxidation" in Electrocatalysis, 3, no. 3-4 (2012):346-352,
https://doi.org/10.1007/s12678-012-0099-9 . .
12
14
15

Microwave-assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation

Stevanović, Sanja; Tripković, Dušan; Rogan, Jelena; Popović, Ksenija; Lović, Jelena; Tripković, Amalija; Jovanović, Vladislava M.

(Springer, New York, 2012)

TY  - JOUR
AU  - Stevanović, Sanja
AU  - Tripković, Dušan
AU  - Rogan, Jelena
AU  - Popović, Ksenija
AU  - Lović, Jelena
AU  - Tripković, Amalija
AU  - Jovanović, Vladislava M.
PY  - 2012
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2173
AB  - High surface area carbon-supported Pt, PtRh, and PtSn catalysts were synthesized by microwave-assisted polyol procedure and tested for ethanol oxidation in perchloric acid. The catalysts were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning tunnelling microscopy (STM), TEM, and EDX techniques. STM analysis of unsupported catalysts shows that small particles (similar to 2 nm) with a narrow size distribution are obtained. TEM and XRD examinations of supported catalysts revealed an increase in particle size upon deposition on carbon support (diameter similar to aEuro parts per thousand 3 nm). The diffraction peaks of the bimetallic catalysts in X-ray diffraction patterns are slightly shifted to lower (PtSn/C) or higher (PtRh/C) 2 theta values with respect to the corresponding peaks at Pt/C catalyst as a consequence of alloy formation. Oxidation of ethanol is significantly improved at PtSn/C with the onset potential shifted for similar to aEuro parts per thousand 150 mV to more negative values and the increase of activity for approximately three times in comparison to Pt/C catalyst. This is the lowest onset potential found for ethanol oxidation at PtSn catalysts with a similar composition. Chronoamperometric measurements confirmed that PtSn/C is notably less poisoned than Pt/C catalyst. PtRh/C catalyst exhibited mild enhancement of overall electrochemical reaction in comparison to Pt/C.
PB  - Springer, New York
T2  - Journal of Solid State Electrochemistry
T1  - Microwave-assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation
EP  - 3157
IS  - 10
SP  - 3147
VL  - 16
DO  - 10.1007/s10008-012-1755-y
ER  - 
@article{
author = "Stevanović, Sanja and Tripković, Dušan and Rogan, Jelena and Popović, Ksenija and Lović, Jelena and Tripković, Amalija and Jovanović, Vladislava M.",
year = "2012",
abstract = "High surface area carbon-supported Pt, PtRh, and PtSn catalysts were synthesized by microwave-assisted polyol procedure and tested for ethanol oxidation in perchloric acid. The catalysts were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning tunnelling microscopy (STM), TEM, and EDX techniques. STM analysis of unsupported catalysts shows that small particles (similar to 2 nm) with a narrow size distribution are obtained. TEM and XRD examinations of supported catalysts revealed an increase in particle size upon deposition on carbon support (diameter similar to aEuro parts per thousand 3 nm). The diffraction peaks of the bimetallic catalysts in X-ray diffraction patterns are slightly shifted to lower (PtSn/C) or higher (PtRh/C) 2 theta values with respect to the corresponding peaks at Pt/C catalyst as a consequence of alloy formation. Oxidation of ethanol is significantly improved at PtSn/C with the onset potential shifted for similar to aEuro parts per thousand 150 mV to more negative values and the increase of activity for approximately three times in comparison to Pt/C catalyst. This is the lowest onset potential found for ethanol oxidation at PtSn catalysts with a similar composition. Chronoamperometric measurements confirmed that PtSn/C is notably less poisoned than Pt/C catalyst. PtRh/C catalyst exhibited mild enhancement of overall electrochemical reaction in comparison to Pt/C.",
publisher = "Springer, New York",
journal = "Journal of Solid State Electrochemistry",
title = "Microwave-assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation",
pages = "3157-3147",
number = "10",
volume = "16",
doi = "10.1007/s10008-012-1755-y"
}
Stevanović, S., Tripković, D., Rogan, J., Popović, K., Lović, J., Tripković, A.,& Jovanović, V. M.. (2012). Microwave-assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation. in Journal of Solid State Electrochemistry
Springer, New York., 16(10), 3147-3157.
https://doi.org/10.1007/s10008-012-1755-y
Stevanović S, Tripković D, Rogan J, Popović K, Lović J, Tripković A, Jovanović VM. Microwave-assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation. in Journal of Solid State Electrochemistry. 2012;16(10):3147-3157.
doi:10.1007/s10008-012-1755-y .
Stevanović, Sanja, Tripković, Dušan, Rogan, Jelena, Popović, Ksenija, Lović, Jelena, Tripković, Amalija, Jovanović, Vladislava M., "Microwave-assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation" in Journal of Solid State Electrochemistry, 16, no. 10 (2012):3147-3157,
https://doi.org/10.1007/s10008-012-1755-y . .
11
11
13

Microwave synthesis and characterization of Pt and Pt-Rh-Sn electrocatalysts for ethanol oxidation

Stevanović, Sanja; Tripković, Dušan; Poleti, Dejan; Rogan, Jelena; Tripković, Amalija; Jovanović, Vladislava M.

(Serbian Chemical Society, Belgrade, 2011)

TY  - JOUR
AU  - Stevanović, Sanja
AU  - Tripković, Dušan
AU  - Poleti, Dejan
AU  - Rogan, Jelena
AU  - Tripković, Amalija
AU  - Jovanović, Vladislava M.
PY  - 2011
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1798
AB  - Carbon-supported Pt and Pt-Rh-Sn catalysts were synthesized by the microwave-polyol method in ethylene glycol solution and were investigated in the ethanol electro-oxidation reaction. The catalysts were characterized in terms of structure, morphology and composition employing the X-ray diffraction (XRD), scanning tunneling microscopy and energy-dispersive X-ray spectroscopy techniques. The STM analysis indicated rather uniform particles and particle sizes below 2 nm for both catalysts. The XRD analysis of the Pt/C catalyst revealed two phases, one with the main characteristic peaks of the face-centered cubic crystal structure (fcc) of platinum and the other related to the graphite-like structure of the carbon support, Vulcan XC-72R. However, in the XRD pattern of the Pt-Rh-Sn/C catalyst, diffraction peaks for Pt, Rh or Sn could not be resolved, indicating extremely low crystallinity. The small particle sizes and homogeneous size distributions of both catalysts could be attributed to the advantages of the microwave-assisted modified polyol process in ethylene glycol solution. The Pt-Rh-Sn/C catalyst was highly active for ethanol oxidation with the onset potential shifted by more than 150 mV to more negative values and with currents nearly 5 times higher in comparison to the Pt/C catalyst. The stability tests of the catalysts, as studied by chronoamperometric experiments, revealed that the Pt-Rh-Sn/C catalyst was evidently less poisoned than the Pt/C catalyst. The increased activity of Pt-Rh-Sn/C in comparison to Pt/C catalyst was most probably promoted by the bi-functional mechanism and the electronic effect of the alloyed metals.
AB  - Pt i Pt-Rh-Sn katalizatori na ugljeniku razvijene površine su sintetizovani poliol-mikrotalasnim postupkom u rastvoru etilenglikola i ispitivani za reakciju eletrohemijske oksidacije etanola u kiseloj sredini. Katalizatori su okarakterisani strukturno, morfološki i po sastavu korišćenjem XRD, STM i EDX tehnika. STM analiza je potvrdila da su Pt i Pt-Rh-Sn čestice uniformne veličine i prečnika manjeg od 2 nm. XRD analiza Pt/C katalizatora pokazala je prisustvo dve faze, jedne sa glavnim karakterističnim pikovima za pljosno-centriranu kubnu kristalnu strukturu platine (111, 200, 220 i 311) i druge sa difrakcionim pikom na 2q oko 25° karakterističnim za heksagonalnu strukturu vulkana XC-72R (ugljeničnog nosača). XRD analiza Pt-Rh-Sn/C katalizatora nije pokazala karakteristične pikove, što je indikacija veoma male kristaličnosti katalizatora. Aktivnost katalizatora ispitivana je potenciodinamičkim i hronoamperometrijskim merenjima. Pt-Rh-Sn/C katalizator je veoma aktivan za oksidaciju etanola sa početkom reakcije na potencijalima za oko 150 mV pomerenim ka negativnijim vrednostima i strujama koje su oko pet puta veće u poređenju sa Pt/C katalizatorom. Stabilnost katalizatora ispitivana hronoamperometrijski pokazala je da se Pt-Rh-Sn/C katalizator manje truje od Pt/C katalizatora. Mala veličina i homogena distribucija čestica mogu se pripisati prednostima mikrotalasne sinteze i modifikovanog poliol postupka u rastvoru etilenglikola. Veća aktivnost Pt-Rh-Sn/C katalizatora u poređenju sa Pt/C katalizatorom posledica je bi-funkcionalnog mehanizma i elektronskog (ligand) efekta metala u sintetizovanoj leguri.
PB  - Serbian Chemical Society, Belgrade
T2  - Journal of the Serbian Chemical Society
T1  - Microwave synthesis and characterization of Pt and Pt-Rh-Sn electrocatalysts for ethanol oxidation
T1  - Mikrotalasna sinteza i karakterizacija Pt i Pt-Rh-Sn katalizatora za oksidaciju etanola
EP  - 1685
IS  - 12
SP  - 1673
VL  - 76
UR  - https://hdl.handle.net/21.15107/rcub_technorep_1798
ER  - 
@article{
author = "Stevanović, Sanja and Tripković, Dušan and Poleti, Dejan and Rogan, Jelena and Tripković, Amalija and Jovanović, Vladislava M.",
year = "2011",
abstract = "Carbon-supported Pt and Pt-Rh-Sn catalysts were synthesized by the microwave-polyol method in ethylene glycol solution and were investigated in the ethanol electro-oxidation reaction. The catalysts were characterized in terms of structure, morphology and composition employing the X-ray diffraction (XRD), scanning tunneling microscopy and energy-dispersive X-ray spectroscopy techniques. The STM analysis indicated rather uniform particles and particle sizes below 2 nm for both catalysts. The XRD analysis of the Pt/C catalyst revealed two phases, one with the main characteristic peaks of the face-centered cubic crystal structure (fcc) of platinum and the other related to the graphite-like structure of the carbon support, Vulcan XC-72R. However, in the XRD pattern of the Pt-Rh-Sn/C catalyst, diffraction peaks for Pt, Rh or Sn could not be resolved, indicating extremely low crystallinity. The small particle sizes and homogeneous size distributions of both catalysts could be attributed to the advantages of the microwave-assisted modified polyol process in ethylene glycol solution. The Pt-Rh-Sn/C catalyst was highly active for ethanol oxidation with the onset potential shifted by more than 150 mV to more negative values and with currents nearly 5 times higher in comparison to the Pt/C catalyst. The stability tests of the catalysts, as studied by chronoamperometric experiments, revealed that the Pt-Rh-Sn/C catalyst was evidently less poisoned than the Pt/C catalyst. The increased activity of Pt-Rh-Sn/C in comparison to Pt/C catalyst was most probably promoted by the bi-functional mechanism and the electronic effect of the alloyed metals., Pt i Pt-Rh-Sn katalizatori na ugljeniku razvijene površine su sintetizovani poliol-mikrotalasnim postupkom u rastvoru etilenglikola i ispitivani za reakciju eletrohemijske oksidacije etanola u kiseloj sredini. Katalizatori su okarakterisani strukturno, morfološki i po sastavu korišćenjem XRD, STM i EDX tehnika. STM analiza je potvrdila da su Pt i Pt-Rh-Sn čestice uniformne veličine i prečnika manjeg od 2 nm. XRD analiza Pt/C katalizatora pokazala je prisustvo dve faze, jedne sa glavnim karakterističnim pikovima za pljosno-centriranu kubnu kristalnu strukturu platine (111, 200, 220 i 311) i druge sa difrakcionim pikom na 2q oko 25° karakterističnim za heksagonalnu strukturu vulkana XC-72R (ugljeničnog nosača). XRD analiza Pt-Rh-Sn/C katalizatora nije pokazala karakteristične pikove, što je indikacija veoma male kristaličnosti katalizatora. Aktivnost katalizatora ispitivana je potenciodinamičkim i hronoamperometrijskim merenjima. Pt-Rh-Sn/C katalizator je veoma aktivan za oksidaciju etanola sa početkom reakcije na potencijalima za oko 150 mV pomerenim ka negativnijim vrednostima i strujama koje su oko pet puta veće u poređenju sa Pt/C katalizatorom. Stabilnost katalizatora ispitivana hronoamperometrijski pokazala je da se Pt-Rh-Sn/C katalizator manje truje od Pt/C katalizatora. Mala veličina i homogena distribucija čestica mogu se pripisati prednostima mikrotalasne sinteze i modifikovanog poliol postupka u rastvoru etilenglikola. Veća aktivnost Pt-Rh-Sn/C katalizatora u poređenju sa Pt/C katalizatorom posledica je bi-funkcionalnog mehanizma i elektronskog (ligand) efekta metala u sintetizovanoj leguri.",
publisher = "Serbian Chemical Society, Belgrade",
journal = "Journal of the Serbian Chemical Society",
title = "Microwave synthesis and characterization of Pt and Pt-Rh-Sn electrocatalysts for ethanol oxidation, Mikrotalasna sinteza i karakterizacija Pt i Pt-Rh-Sn katalizatora za oksidaciju etanola",
pages = "1685-1673",
number = "12",
volume = "76",
url = "https://hdl.handle.net/21.15107/rcub_technorep_1798"
}
Stevanović, S., Tripković, D., Poleti, D., Rogan, J., Tripković, A.,& Jovanović, V. M.. (2011). Microwave synthesis and characterization of Pt and Pt-Rh-Sn electrocatalysts for ethanol oxidation. in Journal of the Serbian Chemical Society
Serbian Chemical Society, Belgrade., 76(12), 1673-1685.
https://hdl.handle.net/21.15107/rcub_technorep_1798
Stevanović S, Tripković D, Poleti D, Rogan J, Tripković A, Jovanović VM. Microwave synthesis and characterization of Pt and Pt-Rh-Sn electrocatalysts for ethanol oxidation. in Journal of the Serbian Chemical Society. 2011;76(12):1673-1685.
https://hdl.handle.net/21.15107/rcub_technorep_1798 .
Stevanović, Sanja, Tripković, Dušan, Poleti, Dejan, Rogan, Jelena, Tripković, Amalija, Jovanović, Vladislava M., "Microwave synthesis and characterization of Pt and Pt-Rh-Sn electrocatalysts for ethanol oxidation" in Journal of the Serbian Chemical Society, 76, no. 12 (2011):1673-1685,
https://hdl.handle.net/21.15107/rcub_technorep_1798 .
2
1

Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation

Stevanović, Sanja; Tripković, Dušan; Rogan, Jelena; Minić, Dragica M.; Gavrilović, Aleksandra; Tripković, Amalija; Jovanović, Vladislava M.

(Maik Nauka/Interperiodica/Springer, New York, 2011)

TY  - JOUR
AU  - Stevanović, Sanja
AU  - Tripković, Dušan
AU  - Rogan, Jelena
AU  - Minić, Dragica M.
AU  - Gavrilović, Aleksandra
AU  - Tripković, Amalija
AU  - Jovanović, Vladislava M.
PY  - 2011
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1899
AB  - High surface area carbon supported Pt and Pt3Sn catalysts were synthesized by microwave irradiation and investigated in the ethanol electro-oxidation reaction. The catalysts were obtained using a modified polyol method in an ethylene glycol solution and were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. The diffraction peaks of Pt3Sn/C catalyst in XRD patterns are shifted to lower 2 theta values with respect to the corresponding peaks at Pt/C catalyst as a consequence of alloy formation between Pt and Sn. Particle size analysis from STM and XRD shows that Pt and Pt3Sn clusters are of a small diameter (similar to 2 nm) with a narrow size distribution. Pt3Sn/C catalyst is highly active in ethanol oxidation with the onset potential shifted for similar to 150 mV to more negative values and with similar to 2 times higher currents in comparison to Pt/C.
PB  - Maik Nauka/Interperiodica/Springer, New York
T2  - Russian Journal of Physical Chemistry A
T1  - Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation
EP  - 2304
IS  - 13
SP  - 2299
VL  - 85
DO  - 10.1134/S0036024411130309
ER  - 
@article{
author = "Stevanović, Sanja and Tripković, Dušan and Rogan, Jelena and Minić, Dragica M. and Gavrilović, Aleksandra and Tripković, Amalija and Jovanović, Vladislava M.",
year = "2011",
abstract = "High surface area carbon supported Pt and Pt3Sn catalysts were synthesized by microwave irradiation and investigated in the ethanol electro-oxidation reaction. The catalysts were obtained using a modified polyol method in an ethylene glycol solution and were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. The diffraction peaks of Pt3Sn/C catalyst in XRD patterns are shifted to lower 2 theta values with respect to the corresponding peaks at Pt/C catalyst as a consequence of alloy formation between Pt and Sn. Particle size analysis from STM and XRD shows that Pt and Pt3Sn clusters are of a small diameter (similar to 2 nm) with a narrow size distribution. Pt3Sn/C catalyst is highly active in ethanol oxidation with the onset potential shifted for similar to 150 mV to more negative values and with similar to 2 times higher currents in comparison to Pt/C.",
publisher = "Maik Nauka/Interperiodica/Springer, New York",
journal = "Russian Journal of Physical Chemistry A",
title = "Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation",
pages = "2304-2299",
number = "13",
volume = "85",
doi = "10.1134/S0036024411130309"
}
Stevanović, S., Tripković, D., Rogan, J., Minić, D. M., Gavrilović, A., Tripković, A.,& Jovanović, V. M.. (2011). Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation. in Russian Journal of Physical Chemistry A
Maik Nauka/Interperiodica/Springer, New York., 85(13), 2299-2304.
https://doi.org/10.1134/S0036024411130309
Stevanović S, Tripković D, Rogan J, Minić DM, Gavrilović A, Tripković A, Jovanović VM. Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation. in Russian Journal of Physical Chemistry A. 2011;85(13):2299-2304.
doi:10.1134/S0036024411130309 .
Stevanović, Sanja, Tripković, Dušan, Rogan, Jelena, Minić, Dragica M., Gavrilović, Aleksandra, Tripković, Amalija, Jovanović, Vladislava M., "Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation" in Russian Journal of Physical Chemistry A, 85, no. 13 (2011):2299-2304,
https://doi.org/10.1134/S0036024411130309 . .
3
2
3

Factors affecting the microstructure of porous ceramics

Tripković, Dušan; Radojević, Vesna; Aleksić, Radoslav

(Serbian Chemical Society, Belgrade, 2006)

TY  - JOUR
AU  - Tripković, Dušan
AU  - Radojević, Vesna
AU  - Aleksić, Radoslav
PY  - 2006
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1000
AB  - In this study, porous ceramics were produced by using two methods: the polymeric sponge and foam method. A study of the effect of viscosity on the characteristics of the final product produced using the polymeric sponge method revealed that the microstructure of porous ceramics is highly affected by the viscosity of the slurry. The optimal ratio between porosity and the strength of the porous material was achieved by subsequently repeating the immersing and drying processes. A study of the porous material obtained using the foam method revealed that the pore size and foam volume can be controlled by varying the amounts of anhydride and thermal blowing agent. The problem related to foam collapsing was solved by using a thermal blowing agent. The microstructure of the samples was characterized by SEM.
AB  - U ovom radu je porozna keramika dobijena na dva načina: metodom polimernog sunđera i metodom pene. Pokazano je da mikrostruktura finalnog proizvoda zavisi od načina izvođenja procesa i uzajamnog odnosa komponenata u keramičkoj smeši. Optimalni odnos između poroznosti i jačine keramičkog materijala dobijenog metodom polimernog sunđera je postignut variranjem viskoznosti smeše i ponavljanjem stupnjeva potapanja i sušenja sunđera. Stabilnost pene u procesu dobijanja porozne keramike metodom pene je postignuta variranjem supstanci koje uzrokuju stvaranje pene. Mikrostruktura uzoraka je okarakterisana SEM-om.
PB  - Serbian Chemical Society, Belgrade
T2  - Journal of the Serbian Chemical Society
T1  - Factors affecting the microstructure of porous ceramics
T1  - Faktori koji utiču na mikrostrukturu porozne keramike
EP  - 284
IS  - 3
SP  - 277
VL  - 71
UR  - https://hdl.handle.net/21.15107/rcub_technorep_1000
ER  - 
@article{
author = "Tripković, Dušan and Radojević, Vesna and Aleksić, Radoslav",
year = "2006",
abstract = "In this study, porous ceramics were produced by using two methods: the polymeric sponge and foam method. A study of the effect of viscosity on the characteristics of the final product produced using the polymeric sponge method revealed that the microstructure of porous ceramics is highly affected by the viscosity of the slurry. The optimal ratio between porosity and the strength of the porous material was achieved by subsequently repeating the immersing and drying processes. A study of the porous material obtained using the foam method revealed that the pore size and foam volume can be controlled by varying the amounts of anhydride and thermal blowing agent. The problem related to foam collapsing was solved by using a thermal blowing agent. The microstructure of the samples was characterized by SEM., U ovom radu je porozna keramika dobijena na dva načina: metodom polimernog sunđera i metodom pene. Pokazano je da mikrostruktura finalnog proizvoda zavisi od načina izvođenja procesa i uzajamnog odnosa komponenata u keramičkoj smeši. Optimalni odnos između poroznosti i jačine keramičkog materijala dobijenog metodom polimernog sunđera je postignut variranjem viskoznosti smeše i ponavljanjem stupnjeva potapanja i sušenja sunđera. Stabilnost pene u procesu dobijanja porozne keramike metodom pene je postignuta variranjem supstanci koje uzrokuju stvaranje pene. Mikrostruktura uzoraka je okarakterisana SEM-om.",
publisher = "Serbian Chemical Society, Belgrade",
journal = "Journal of the Serbian Chemical Society",
title = "Factors affecting the microstructure of porous ceramics, Faktori koji utiču na mikrostrukturu porozne keramike",
pages = "284-277",
number = "3",
volume = "71",
url = "https://hdl.handle.net/21.15107/rcub_technorep_1000"
}
Tripković, D., Radojević, V.,& Aleksić, R.. (2006). Factors affecting the microstructure of porous ceramics. in Journal of the Serbian Chemical Society
Serbian Chemical Society, Belgrade., 71(3), 277-284.
https://hdl.handle.net/21.15107/rcub_technorep_1000
Tripković D, Radojević V, Aleksić R. Factors affecting the microstructure of porous ceramics. in Journal of the Serbian Chemical Society. 2006;71(3):277-284.
https://hdl.handle.net/21.15107/rcub_technorep_1000 .
Tripković, Dušan, Radojević, Vesna, Aleksić, Radoslav, "Factors affecting the microstructure of porous ceramics" in Journal of the Serbian Chemical Society, 71, no. 3 (2006):277-284,
https://hdl.handle.net/21.15107/rcub_technorep_1000 .
6
6

Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst

Lović, Jelena; Tripković, Amalija; Gojković, Snežana Lj.; Popović, Ksenija; Tripković, Dušan; Olszewski, Piotr K.; Kowal, Andrzej

(Elsevier Science Sa, Lausanne, 2005)

TY  - JOUR
AU  - Lović, Jelena
AU  - Tripković, Amalija
AU  - Gojković, Snežana Lj.
AU  - Popović, Ksenija
AU  - Tripković, Dušan
AU  - Olszewski, Piotr K.
AU  - Kowal, Andrzej
PY  - 2005
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/781
AB  - Oxidation of formic acid on the platinum catalyst supported on high area carbon was investigated by potent iodynamic and quasi-steady-state polarization measurements. It was found that the poisoning of the reaction occurred both in the hydrogen region and in the double-layer region, but poisons were formed faster at lower potentials. Kinetics of the reaction was consistent with the dual path mechanism. At lower potentials HCOOH was oxidized to CO, at the Pt sites uncovered by COads. If high coverage by the poisoning species was attained, the reaction reached the limiting current plateau and further increase of the Current densities started at the potential of COads oxidation. Kinetic parameters of the HCOOH oxidation suggested that the rate determining step was the transfer of the first electron from HCOOHads, which was adsorbed under the Temkin conditions, Oxidation of formic acid became pH-dependent reaction in the electrolytes of pH  lt  1 with the reaction order with respect to H+ ions of about - 0.8.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Electroanalytical Chemistry
T1  - Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst
EP  - 302
IS  - 2
SP  - 294
VL  - 581
DO  - 10.1016/j.jelechem.2005.05.002
ER  - 
@article{
author = "Lović, Jelena and Tripković, Amalija and Gojković, Snežana Lj. and Popović, Ksenija and Tripković, Dušan and Olszewski, Piotr K. and Kowal, Andrzej",
year = "2005",
abstract = "Oxidation of formic acid on the platinum catalyst supported on high area carbon was investigated by potent iodynamic and quasi-steady-state polarization measurements. It was found that the poisoning of the reaction occurred both in the hydrogen region and in the double-layer region, but poisons were formed faster at lower potentials. Kinetics of the reaction was consistent with the dual path mechanism. At lower potentials HCOOH was oxidized to CO, at the Pt sites uncovered by COads. If high coverage by the poisoning species was attained, the reaction reached the limiting current plateau and further increase of the Current densities started at the potential of COads oxidation. Kinetic parameters of the HCOOH oxidation suggested that the rate determining step was the transfer of the first electron from HCOOHads, which was adsorbed under the Temkin conditions, Oxidation of formic acid became pH-dependent reaction in the electrolytes of pH  lt  1 with the reaction order with respect to H+ ions of about - 0.8.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Electroanalytical Chemistry",
title = "Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst",
pages = "302-294",
number = "2",
volume = "581",
doi = "10.1016/j.jelechem.2005.05.002"
}
Lović, J., Tripković, A., Gojković, S. Lj., Popović, K., Tripković, D., Olszewski, P. K.,& Kowal, A.. (2005). Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. in Journal of Electroanalytical Chemistry
Elsevier Science Sa, Lausanne., 581(2), 294-302.
https://doi.org/10.1016/j.jelechem.2005.05.002
Lović J, Tripković A, Gojković SL, Popović K, Tripković D, Olszewski PK, Kowal A. Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. in Journal of Electroanalytical Chemistry. 2005;581(2):294-302.
doi:10.1016/j.jelechem.2005.05.002 .
Lović, Jelena, Tripković, Amalija, Gojković, Snežana Lj., Popović, Ksenija, Tripković, Dušan, Olszewski, Piotr K., Kowal, Andrzej, "Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst" in Journal of Electroanalytical Chemistry, 581, no. 2 (2005):294-302,
https://doi.org/10.1016/j.jelechem.2005.05.002 . .
3
173
173
189