Filipović, Nenad

Link to this page

Authority KeyName Variants
orcid::0000-0001-9964-5615
  • Filipović, Nenad (2)

Author's Bibliography

Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties

Tomić, Nina; Matić, Tamara; Filipović, Nenad; Mitić Ćulafić, Dragana; Boccacccini, Aldo R.; Stevanović, Magdalena M.

(SAGE Publications Ltd., 2023)

TY  - JOUR
AU  - Tomić, Nina
AU  - Matić, Tamara
AU  - Filipović, Nenad
AU  - Mitić Ćulafić, Dragana
AU  - Boccacccini, Aldo R.
AU  - Stevanović, Magdalena M.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6505
AB  - Recently, many studies have shown various beneficial effects of polyphenol resveratrol (Res) on human health. The most important of these effects include cardioprotective, neuroprotective, anti-cancer, anti-inflammatory, osteoinductive, and anti-microbial effects. Resveratrol has cis and trans isoforms, with the trans isoform being more stable and biologically active. Despite the results of in vitro experiments, resveratrol has limited potential for application in vivo due to its poor water solubility, sensitivity to oxygen, light, and heat, rapid metabolism, and therefore low bioavailability. The possible solution to overcome these limitations could be the synthesis of resveratrol in nanoparticle form. Accordingly, in this study, we have developed a simple, green solvent/non-solvent physicochemical method to synthesize stable, uniform, carrier-free resveratrol nanobelt-like particles (ResNPs) for applications in tissue engineering. UV–visible spectroscopy (UV-Vis) was used to identify the trans isoform of ResNPs which remained stable for at least 63 days. The additional qualitative analysis was performed by Fourier transform infrared spectroscopy (FTIR), while X-ray diffraction (XRD) determined the monoclinic structure of resveratrol with a significant difference in the intensity of diffraction peaks between commercial and nano-belt form. The morphology of ResNPs was evaluated by optical microscopy and field-emission scanning electron microscope (FE-SEM) that revealed a uniform nanobelt-like structure with an individual thickness of less than 1 μm. Bioactivity was confirmed using Artemia salina in vivo toxicity assay, while 2,2–diphenyl-1-picrylhydrazylhydrate (DPPH) reduction assay showed the good antioxidative potential of concentrations of 100 μg/ml and lower. Microdilution assay on several reference strains and clinical isolates showed promising antibacterial potential on Staphylococci, with minimal inhibitory concentration (MIC) being 800 μg/ml. Bioactive glass-based scaffolds were coated with ResNPs and characterized to confirm coating potential. All of the above make these particles a promising bioactive, easy-to-handle component in various biomaterial formulations.
PB  - SAGE Publications Ltd.
T2  - Journal of Biomaterials Applications
T1  - Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties
EP  - 133
IS  - 1
SP  - 122
VL  - 38
DO  - 10.1177/08853282231183109
ER  - 
@article{
author = "Tomić, Nina and Matić, Tamara and Filipović, Nenad and Mitić Ćulafić, Dragana and Boccacccini, Aldo R. and Stevanović, Magdalena M.",
year = "2023",
abstract = "Recently, many studies have shown various beneficial effects of polyphenol resveratrol (Res) on human health. The most important of these effects include cardioprotective, neuroprotective, anti-cancer, anti-inflammatory, osteoinductive, and anti-microbial effects. Resveratrol has cis and trans isoforms, with the trans isoform being more stable and biologically active. Despite the results of in vitro experiments, resveratrol has limited potential for application in vivo due to its poor water solubility, sensitivity to oxygen, light, and heat, rapid metabolism, and therefore low bioavailability. The possible solution to overcome these limitations could be the synthesis of resveratrol in nanoparticle form. Accordingly, in this study, we have developed a simple, green solvent/non-solvent physicochemical method to synthesize stable, uniform, carrier-free resveratrol nanobelt-like particles (ResNPs) for applications in tissue engineering. UV–visible spectroscopy (UV-Vis) was used to identify the trans isoform of ResNPs which remained stable for at least 63 days. The additional qualitative analysis was performed by Fourier transform infrared spectroscopy (FTIR), while X-ray diffraction (XRD) determined the monoclinic structure of resveratrol with a significant difference in the intensity of diffraction peaks between commercial and nano-belt form. The morphology of ResNPs was evaluated by optical microscopy and field-emission scanning electron microscope (FE-SEM) that revealed a uniform nanobelt-like structure with an individual thickness of less than 1 μm. Bioactivity was confirmed using Artemia salina in vivo toxicity assay, while 2,2–diphenyl-1-picrylhydrazylhydrate (DPPH) reduction assay showed the good antioxidative potential of concentrations of 100 μg/ml and lower. Microdilution assay on several reference strains and clinical isolates showed promising antibacterial potential on Staphylococci, with minimal inhibitory concentration (MIC) being 800 μg/ml. Bioactive glass-based scaffolds were coated with ResNPs and characterized to confirm coating potential. All of the above make these particles a promising bioactive, easy-to-handle component in various biomaterial formulations.",
publisher = "SAGE Publications Ltd.",
journal = "Journal of Biomaterials Applications",
title = "Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties",
pages = "133-122",
number = "1",
volume = "38",
doi = "10.1177/08853282231183109"
}
Tomić, N., Matić, T., Filipović, N., Mitić Ćulafić, D., Boccacccini, A. R.,& Stevanović, M. M.. (2023). Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties. in Journal of Biomaterials Applications
SAGE Publications Ltd.., 38(1), 122-133.
https://doi.org/10.1177/08853282231183109
Tomić N, Matić T, Filipović N, Mitić Ćulafić D, Boccacccini AR, Stevanović MM. Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties. in Journal of Biomaterials Applications. 2023;38(1):122-133.
doi:10.1177/08853282231183109 .
Tomić, Nina, Matić, Tamara, Filipović, Nenad, Mitić Ćulafić, Dragana, Boccacccini, Aldo R., Stevanović, Magdalena M., "Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties" in Journal of Biomaterials Applications, 38, no. 1 (2023):122-133,
https://doi.org/10.1177/08853282231183109 . .
4
3

Numerical simulation of electrospinning process in commercial and in-house software PAK

Sustersić, Tijana; Liverani, Liliana; Boccaccini, Aldo R.; Savić, Slobodan; Janićijević, Aco; Filipović, Nenad

(IOP Publishing Ltd, Bristol, 2019)

TY  - JOUR
AU  - Sustersić, Tijana
AU  - Liverani, Liliana
AU  - Boccaccini, Aldo R.
AU  - Savić, Slobodan
AU  - Janićijević, Aco
AU  - Filipović, Nenad
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4338
AB  - The aim of this research was to investigate if it is possible to implicitly determine the homogeneity of the obtained electrospun fibers based on jet shape during electrospinning. Experiments were performed with 10 wt% PVA solution, and four variations in process parameters were investigated in order to examine their effect on fiber structure. Data obtained during experiments were used as input for computational simulation. The simulation results, both using commercial ANSYS and in-house software PAK, show good agreement with experiments in terms of outcome-no fiber differences in experiments were present when different voltage pairs were used, and similar jet shapes were obtained during simulations. Shapes of the electric field potential for all the used voltage pairs were very similar, due to the uniformity of the field, which is in agreement with the experiment, as no differences in fiber structure are observed in these cases. This confirms the hypothesis that based on jet shape during electrospinning, it is possible to implicitly determine the homogeneity of the obtained electrospun fibers. Differences that may occur between experiments and simulation can be a result of simplifications in simulations, influence of uniform and non-uniform electric field etc. This kind of two-phase simulation could be useful in reducing the trial-and-error approach and maintenance costs in electrospinning experiments.
PB  - IOP Publishing Ltd, Bristol
T2  - Materials Research Express
T1  - Numerical simulation of electrospinning process in commercial and in-house software PAK
IS  - 2
VL  - 6
DO  - 10.1088/2053-1591/aaeb08
ER  - 
@article{
author = "Sustersić, Tijana and Liverani, Liliana and Boccaccini, Aldo R. and Savić, Slobodan and Janićijević, Aco and Filipović, Nenad",
year = "2019",
abstract = "The aim of this research was to investigate if it is possible to implicitly determine the homogeneity of the obtained electrospun fibers based on jet shape during electrospinning. Experiments were performed with 10 wt% PVA solution, and four variations in process parameters were investigated in order to examine their effect on fiber structure. Data obtained during experiments were used as input for computational simulation. The simulation results, both using commercial ANSYS and in-house software PAK, show good agreement with experiments in terms of outcome-no fiber differences in experiments were present when different voltage pairs were used, and similar jet shapes were obtained during simulations. Shapes of the electric field potential for all the used voltage pairs were very similar, due to the uniformity of the field, which is in agreement with the experiment, as no differences in fiber structure are observed in these cases. This confirms the hypothesis that based on jet shape during electrospinning, it is possible to implicitly determine the homogeneity of the obtained electrospun fibers. Differences that may occur between experiments and simulation can be a result of simplifications in simulations, influence of uniform and non-uniform electric field etc. This kind of two-phase simulation could be useful in reducing the trial-and-error approach and maintenance costs in electrospinning experiments.",
publisher = "IOP Publishing Ltd, Bristol",
journal = "Materials Research Express",
title = "Numerical simulation of electrospinning process in commercial and in-house software PAK",
number = "2",
volume = "6",
doi = "10.1088/2053-1591/aaeb08"
}
Sustersić, T., Liverani, L., Boccaccini, A. R., Savić, S., Janićijević, A.,& Filipović, N.. (2019). Numerical simulation of electrospinning process in commercial and in-house software PAK. in Materials Research Express
IOP Publishing Ltd, Bristol., 6(2).
https://doi.org/10.1088/2053-1591/aaeb08
Sustersić T, Liverani L, Boccaccini AR, Savić S, Janićijević A, Filipović N. Numerical simulation of electrospinning process in commercial and in-house software PAK. in Materials Research Express. 2019;6(2).
doi:10.1088/2053-1591/aaeb08 .
Sustersić, Tijana, Liverani, Liliana, Boccaccini, Aldo R., Savić, Slobodan, Janićijević, Aco, Filipović, Nenad, "Numerical simulation of electrospinning process in commercial and in-house software PAK" in Materials Research Express, 6, no. 2 (2019),
https://doi.org/10.1088/2053-1591/aaeb08 . .
2
9
4
6