Bogdanov, Jovica

Link to this page

Authority KeyName Variants
66930eed-f62c-4cd1-b2f2-ff3d7bb47050
  • Bogdanov, Jovica (2)
Projects

Author's Bibliography

Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent

Popović, Mina; Veličković, Zlate S.; Bogdanov, Jovica; Marinković, Aleksandar D.; Luna, Mariano Casas; Trajković, Isaak; Obradović, Nina; Pavlović, Vladimir

(International Institute for the Science of Sintering (IISS), 2022)

TY  - JOUR
AU  - Popović, Mina
AU  - Veličković, Zlate S.
AU  - Bogdanov, Jovica
AU  - Marinković, Aleksandar D.
AU  - Luna, Mariano Casas
AU  - Trajković, Isaak
AU  - Obradović, Nina
AU  - Pavlović, Vladimir
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5106
AB  - In this study, the structure, morphology and composition of the synthesized magnetite/3D-printed wollastonite (3D_W/M) composite were characterized, and its adsorption performance with respect to As(V) and Cr(VI) were studied. Magnetite (MG) modified 3D printed wollastonite was obtained by two step procedure: modification of 3D_W with 3-aminoproylsilane (APTES) followed by controlled magnetite (MG) deposition to obtain 3D_W/M adsorbent. The structure/properties of 3D_W/M were confirmed by applying FTIR, XRD, TGD/DTA, and SEM analysis. The adsorption properties of hybrid adsorbents were carried out for As(V) and Cr(VI) removal-one relative to the initial pH value, the adsorbent mass, the temperature, and the adsorption time. Time-dependent adsorption study was best described by pseudo-second order equation, while Weber Morris analysis showed that intraparticle diffusion controled diffusional transport. Similar activation energy, 17.44 and 14.49 kJ•mol-1 for adsorption As(V) and Cr(VI) on 3D_W/M, respectively, indicated main contribution of physical adsorption. Determination of adsorption parameters was performed by applying different adsorption isotherm models, and the best fit was obtained using Freundlich model. The adsorption capacity of 24.16 and 29.6 mg g-1 for As(V) and Cr(VI) at 2o C, Co = 5.5 and 5.3 mg L-1, respectively, were obtained. Thermodynamic study indicated favourable process at a higher temperature. Preliminary fixed-bed column study and results fitting with Bohart-Adams, Yoon-Nelson, Thomas, and Modified dose-response model showed good agreement with results from the batch study.
PB  - International Institute for the Science of Sintering (IISS)
T2  - Science of Sintering
T1  - Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent
EP  - 124
IS  - 1
SP  - 105
VL  - 54
DO  - 10.2298/SOS2201105P
ER  - 
@article{
author = "Popović, Mina and Veličković, Zlate S. and Bogdanov, Jovica and Marinković, Aleksandar D. and Luna, Mariano Casas and Trajković, Isaak and Obradović, Nina and Pavlović, Vladimir",
year = "2022",
abstract = "In this study, the structure, morphology and composition of the synthesized magnetite/3D-printed wollastonite (3D_W/M) composite were characterized, and its adsorption performance with respect to As(V) and Cr(VI) were studied. Magnetite (MG) modified 3D printed wollastonite was obtained by two step procedure: modification of 3D_W with 3-aminoproylsilane (APTES) followed by controlled magnetite (MG) deposition to obtain 3D_W/M adsorbent. The structure/properties of 3D_W/M were confirmed by applying FTIR, XRD, TGD/DTA, and SEM analysis. The adsorption properties of hybrid adsorbents were carried out for As(V) and Cr(VI) removal-one relative to the initial pH value, the adsorbent mass, the temperature, and the adsorption time. Time-dependent adsorption study was best described by pseudo-second order equation, while Weber Morris analysis showed that intraparticle diffusion controled diffusional transport. Similar activation energy, 17.44 and 14.49 kJ•mol-1 for adsorption As(V) and Cr(VI) on 3D_W/M, respectively, indicated main contribution of physical adsorption. Determination of adsorption parameters was performed by applying different adsorption isotherm models, and the best fit was obtained using Freundlich model. The adsorption capacity of 24.16 and 29.6 mg g-1 for As(V) and Cr(VI) at 2o C, Co = 5.5 and 5.3 mg L-1, respectively, were obtained. Thermodynamic study indicated favourable process at a higher temperature. Preliminary fixed-bed column study and results fitting with Bohart-Adams, Yoon-Nelson, Thomas, and Modified dose-response model showed good agreement with results from the batch study.",
publisher = "International Institute for the Science of Sintering (IISS)",
journal = "Science of Sintering",
title = "Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent",
pages = "124-105",
number = "1",
volume = "54",
doi = "10.2298/SOS2201105P"
}
Popović, M., Veličković, Z. S., Bogdanov, J., Marinković, A. D., Luna, M. C., Trajković, I., Obradović, N.,& Pavlović, V.. (2022). Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent. in Science of Sintering
International Institute for the Science of Sintering (IISS)., 54(1), 105-124.
https://doi.org/10.2298/SOS2201105P
Popović M, Veličković ZS, Bogdanov J, Marinković AD, Luna MC, Trajković I, Obradović N, Pavlović V. Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent. in Science of Sintering. 2022;54(1):105-124.
doi:10.2298/SOS2201105P .
Popović, Mina, Veličković, Zlate S., Bogdanov, Jovica, Marinković, Aleksandar D., Luna, Mariano Casas, Trajković, Isaak, Obradović, Nina, Pavlović, Vladimir, "Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent" in Science of Sintering, 54, no. 1 (2022):105-124,
https://doi.org/10.2298/SOS2201105P . .
3
2

Synthesis and Characterization of Azido Esters as Green Energetic Plasticizers

Nesic, Jovica; Cvijetić, Ilija; Bogdanov, Jovica; Marinković, Aleksandar

(2021)

TY  - JOUR
AU  - Nesic, Jovica
AU  - Cvijetić, Ilija
AU  - Bogdanov, Jovica
AU  - Marinković, Aleksandar
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4847
AB  - Three azido-esters based green energetic plasticizers were synthesized from their chlorides including DEGBAA (diethyleneglycol bis(azidoacetate)), DPGBAA (dipropyleneglycol bis(azidoacetate)) and HETTAA (hexanetriol tris(azidoacetate)). The syntheses were carried out in a two-step process: the first step was esterification of glycol or triol using chloroacetyl chloride, and the second step was substitution of chloracetate with sodium azide that yields corresponding azido derivatives. The parameters of synthesis such as molar ratio of hydroxyl and acyl groups, and amount and type of solvent (dimethyl sulfoxide and dimethyl formamide) were optimized to achieve maximal conversion and purity of the products. The obtained products were characterized by elemental analysis, nuclear magnetic resonance (NMR), and infrared vibrational spectroscopy (IR). Thermal and rheological properties were determined using DSC and Modular Compact Rheometer. Condensed phase heat of formation and several properties important for high-energy materials were predicted from quantum chemical calculations using CBS-4M method. Detonation and combustion performance of energetic compounds were calculated with the thermochemical computer code EXPLO5V06.05. using the predicted heats of formation and experimentally determined densities as input. The energetic and physical properties of the synthesized compounds were compared to the literature data for common plasticizers.
T2  - Propellants Explosives Pyrotechnics
T1  - Synthesis and Characterization of Azido Esters as Green Energetic Plasticizers
EP  - 1546
IS  - 10
SP  - 1537
VL  - 46
DO  - 10.1002/prep.202100105
ER  - 
@article{
author = "Nesic, Jovica and Cvijetić, Ilija and Bogdanov, Jovica and Marinković, Aleksandar",
year = "2021",
abstract = "Three azido-esters based green energetic plasticizers were synthesized from their chlorides including DEGBAA (diethyleneglycol bis(azidoacetate)), DPGBAA (dipropyleneglycol bis(azidoacetate)) and HETTAA (hexanetriol tris(azidoacetate)). The syntheses were carried out in a two-step process: the first step was esterification of glycol or triol using chloroacetyl chloride, and the second step was substitution of chloracetate with sodium azide that yields corresponding azido derivatives. The parameters of synthesis such as molar ratio of hydroxyl and acyl groups, and amount and type of solvent (dimethyl sulfoxide and dimethyl formamide) were optimized to achieve maximal conversion and purity of the products. The obtained products were characterized by elemental analysis, nuclear magnetic resonance (NMR), and infrared vibrational spectroscopy (IR). Thermal and rheological properties were determined using DSC and Modular Compact Rheometer. Condensed phase heat of formation and several properties important for high-energy materials were predicted from quantum chemical calculations using CBS-4M method. Detonation and combustion performance of energetic compounds were calculated with the thermochemical computer code EXPLO5V06.05. using the predicted heats of formation and experimentally determined densities as input. The energetic and physical properties of the synthesized compounds were compared to the literature data for common plasticizers.",
journal = "Propellants Explosives Pyrotechnics",
title = "Synthesis and Characterization of Azido Esters as Green Energetic Plasticizers",
pages = "1546-1537",
number = "10",
volume = "46",
doi = "10.1002/prep.202100105"
}
Nesic, J., Cvijetić, I., Bogdanov, J.,& Marinković, A.. (2021). Synthesis and Characterization of Azido Esters as Green Energetic Plasticizers. in Propellants Explosives Pyrotechnics, 46(10), 1537-1546.
https://doi.org/10.1002/prep.202100105
Nesic J, Cvijetić I, Bogdanov J, Marinković A. Synthesis and Characterization of Azido Esters as Green Energetic Plasticizers. in Propellants Explosives Pyrotechnics. 2021;46(10):1537-1546.
doi:10.1002/prep.202100105 .
Nesic, Jovica, Cvijetić, Ilija, Bogdanov, Jovica, Marinković, Aleksandar, "Synthesis and Characterization of Azido Esters as Green Energetic Plasticizers" in Propellants Explosives Pyrotechnics, 46, no. 10 (2021):1537-1546,
https://doi.org/10.1002/prep.202100105 . .
4
6