Zivanić, Ljiljana

Link to this page

Authority KeyName Variants
a27b7a1e-ba0e-4c19-90f6-f8c8a7bab41d
  • Zivanić, Ljiljana (2)
Projects

Author's Bibliography

Comparison of cubic-plus-association and soave-redlich-kwong equations of state for prediction of vapor-liquid equilibrium of fischer-tropsch reaction mixture

Zivanić, Ljiljana; Stamenić, Marko; Todić, Branislav; Bukur, Dragomir B.; Nikačević, Nikola

(Savez hemijskih inženjera, Beograd, 2019)

TY  - JOUR
AU  - Zivanić, Ljiljana
AU  - Stamenić, Marko
AU  - Todić, Branislav
AU  - Bukur, Dragomir B.
AU  - Nikačević, Nikola
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4246
AB  - Predictions of vapor liquid equilibrium for Fischer-Tropsch mixtures were com-pared using the classical Soave-Redlich-Kwong (SRK) and cubic-plus-asso-ciation (CPA) equations of state. The performance of the two equations of state was evaluated based on comparison with results from eight sets of exp-erimental runs in which different process conditions (pressure, reactants feed ratio, space velocity) were used. Flash calculations were used to determine the phase split at defined process conditions, whereas the phase equilibrium was defined utilizing the concept of equal fugacities in the vapor and the liquid phase for all components. A total of 75 components were considered in the reaction mixture: CO, H-2, H2O, CO2, C-1-C-57 paraffins and C-2-C-15 olefins. All calculations were performed in MATLAB. The results showed that both equat-ions of state had similar performance regarding the hydrocarbons, whereas CPA gave better results with inorganic components and SRK with prediction of the composition of the liquid phase. Computational time for CPA was sub-stantially (100 times with the CPU used) higher than that for SRK. Overall, the use of CPA did not improve VLE prediction for FTS systems significantly enough to be recommended for use in FTS reactor models.
PB  - Savez hemijskih inženjera, Beograd
T2  - Chemical Industry & Chemical Engineering Quarterly
T1  - Comparison of cubic-plus-association and soave-redlich-kwong equations of state for prediction of vapor-liquid equilibrium of fischer-tropsch reaction mixture
EP  - 76
IS  - 1
SP  - 67
VL  - 25
DO  - 10.2298/CICEQ180403018Z
ER  - 
@article{
author = "Zivanić, Ljiljana and Stamenić, Marko and Todić, Branislav and Bukur, Dragomir B. and Nikačević, Nikola",
year = "2019",
abstract = "Predictions of vapor liquid equilibrium for Fischer-Tropsch mixtures were com-pared using the classical Soave-Redlich-Kwong (SRK) and cubic-plus-asso-ciation (CPA) equations of state. The performance of the two equations of state was evaluated based on comparison with results from eight sets of exp-erimental runs in which different process conditions (pressure, reactants feed ratio, space velocity) were used. Flash calculations were used to determine the phase split at defined process conditions, whereas the phase equilibrium was defined utilizing the concept of equal fugacities in the vapor and the liquid phase for all components. A total of 75 components were considered in the reaction mixture: CO, H-2, H2O, CO2, C-1-C-57 paraffins and C-2-C-15 olefins. All calculations were performed in MATLAB. The results showed that both equat-ions of state had similar performance regarding the hydrocarbons, whereas CPA gave better results with inorganic components and SRK with prediction of the composition of the liquid phase. Computational time for CPA was sub-stantially (100 times with the CPU used) higher than that for SRK. Overall, the use of CPA did not improve VLE prediction for FTS systems significantly enough to be recommended for use in FTS reactor models.",
publisher = "Savez hemijskih inženjera, Beograd",
journal = "Chemical Industry & Chemical Engineering Quarterly",
title = "Comparison of cubic-plus-association and soave-redlich-kwong equations of state for prediction of vapor-liquid equilibrium of fischer-tropsch reaction mixture",
pages = "76-67",
number = "1",
volume = "25",
doi = "10.2298/CICEQ180403018Z"
}
Zivanić, L., Stamenić, M., Todić, B., Bukur, D. B.,& Nikačević, N.. (2019). Comparison of cubic-plus-association and soave-redlich-kwong equations of state for prediction of vapor-liquid equilibrium of fischer-tropsch reaction mixture. in Chemical Industry & Chemical Engineering Quarterly
Savez hemijskih inženjera, Beograd., 25(1), 67-76.
https://doi.org/10.2298/CICEQ180403018Z
Zivanić L, Stamenić M, Todić B, Bukur DB, Nikačević N. Comparison of cubic-plus-association and soave-redlich-kwong equations of state for prediction of vapor-liquid equilibrium of fischer-tropsch reaction mixture. in Chemical Industry & Chemical Engineering Quarterly. 2019;25(1):67-76.
doi:10.2298/CICEQ180403018Z .
Zivanić, Ljiljana, Stamenić, Marko, Todić, Branislav, Bukur, Dragomir B., Nikačević, Nikola, "Comparison of cubic-plus-association and soave-redlich-kwong equations of state for prediction of vapor-liquid equilibrium of fischer-tropsch reaction mixture" in Chemical Industry & Chemical Engineering Quarterly, 25, no. 1 (2019):67-76,
https://doi.org/10.2298/CICEQ180403018Z . .

Effects of Catalyst Activity, Particle Size and Shape, and Process Conditions on Catalyst Effectiveness and Methane Selectivity for Fischer-Tropsch Reaction: A Modeling Study

Mandić, Miloš; Todić, Branislav; Zivanić, Ljiljana; Nikačević, Nikola; Bukur, Dragomir B.

(Amer Chemical Soc, Washington, 2017)

TY  - JOUR
AU  - Mandić, Miloš
AU  - Todić, Branislav
AU  - Zivanić, Ljiljana
AU  - Nikačević, Nikola
AU  - Bukur, Dragomir B.
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3688
AB  - We investigate effects of catalyst activity, catalyst particle shape (sphere, slab, and hollow cylinder), size (i.e., diffusion length), catalyst distribution (uniform vs eggshell type distribution for a spherical particle), and process conditions (temperature, pressure, syngas composition, and conversion level) on catalyst effectiveness factor and methane selectivity inside the catalyst pellet. In numerical simulations we utilize kinetic parameters for CO consumption rate and CH4 formation rate determined from experiments with a highly active Co/Re/gamma-Al2O3 catalyst. It is found that the use of small spherical particles (0.2-0.5 mm) or eggshell distribution for larger spherical particles with catalyst layer thickness less than approximately 0.13 mm is needed to avoid negative impact of diffusional limitations on CH4 selectivity under typical Fischer Tropsch synthesis operating conditions. For monolith reactors with wash-coated catalyst, diffusional limitations can be avoided by using a catalyst layer thickness less than 0.11 nun at base case conditions (473 K, 25 bar, and H-2/CO molar ratio of 2).
PB  - Amer Chemical Soc, Washington
T2  - Industrial & Engineering Chemistry Research
T1  - Effects of Catalyst Activity, Particle Size and Shape, and Process Conditions on Catalyst Effectiveness and Methane Selectivity for Fischer-Tropsch Reaction: A Modeling Study
EP  - 2745
IS  - 10
SP  - 2733
VL  - 56
DO  - 10.1021/acs.iecr.7b00053
ER  - 
@article{
author = "Mandić, Miloš and Todić, Branislav and Zivanić, Ljiljana and Nikačević, Nikola and Bukur, Dragomir B.",
year = "2017",
abstract = "We investigate effects of catalyst activity, catalyst particle shape (sphere, slab, and hollow cylinder), size (i.e., diffusion length), catalyst distribution (uniform vs eggshell type distribution for a spherical particle), and process conditions (temperature, pressure, syngas composition, and conversion level) on catalyst effectiveness factor and methane selectivity inside the catalyst pellet. In numerical simulations we utilize kinetic parameters for CO consumption rate and CH4 formation rate determined from experiments with a highly active Co/Re/gamma-Al2O3 catalyst. It is found that the use of small spherical particles (0.2-0.5 mm) or eggshell distribution for larger spherical particles with catalyst layer thickness less than approximately 0.13 mm is needed to avoid negative impact of diffusional limitations on CH4 selectivity under typical Fischer Tropsch synthesis operating conditions. For monolith reactors with wash-coated catalyst, diffusional limitations can be avoided by using a catalyst layer thickness less than 0.11 nun at base case conditions (473 K, 25 bar, and H-2/CO molar ratio of 2).",
publisher = "Amer Chemical Soc, Washington",
journal = "Industrial & Engineering Chemistry Research",
title = "Effects of Catalyst Activity, Particle Size and Shape, and Process Conditions on Catalyst Effectiveness and Methane Selectivity for Fischer-Tropsch Reaction: A Modeling Study",
pages = "2745-2733",
number = "10",
volume = "56",
doi = "10.1021/acs.iecr.7b00053"
}
Mandić, M., Todić, B., Zivanić, L., Nikačević, N.,& Bukur, D. B.. (2017). Effects of Catalyst Activity, Particle Size and Shape, and Process Conditions on Catalyst Effectiveness and Methane Selectivity for Fischer-Tropsch Reaction: A Modeling Study. in Industrial & Engineering Chemistry Research
Amer Chemical Soc, Washington., 56(10), 2733-2745.
https://doi.org/10.1021/acs.iecr.7b00053
Mandić M, Todić B, Zivanić L, Nikačević N, Bukur DB. Effects of Catalyst Activity, Particle Size and Shape, and Process Conditions on Catalyst Effectiveness and Methane Selectivity for Fischer-Tropsch Reaction: A Modeling Study. in Industrial & Engineering Chemistry Research. 2017;56(10):2733-2745.
doi:10.1021/acs.iecr.7b00053 .
Mandić, Miloš, Todić, Branislav, Zivanić, Ljiljana, Nikačević, Nikola, Bukur, Dragomir B., "Effects of Catalyst Activity, Particle Size and Shape, and Process Conditions on Catalyst Effectiveness and Methane Selectivity for Fischer-Tropsch Reaction: A Modeling Study" in Industrial & Engineering Chemistry Research, 56, no. 10 (2017):2733-2745,
https://doi.org/10.1021/acs.iecr.7b00053 . .
1
52
32
52