Đonlagić, Jasna

Link to this page

Authority KeyName Variants
99d37963-da82-45bf-99e9-9866602015d2
  • Đonlagić, Jasna (5)
Projects

Author's Bibliography

Synthesis and Characterization of Novel Urethane-Siloxane Copolymers with a High Content of PCL-PDMS-PCL Segments

Pergal, Marija; Antić, Vesna; Govedarica, Milutin; Gođevac, Dejan; Ostojić, Sanja; Đonlagić, Jasna

(Wiley-Blackwell, Malden, 2011)

TY  - JOUR
AU  - Pergal, Marija
AU  - Antić, Vesna
AU  - Govedarica, Milutin
AU  - Gođevac, Dejan
AU  - Ostojić, Sanja
AU  - Đonlagić, Jasna
PY  - 2011
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5658
AB  - Novel polyurethane copolymers derived from 4,4'-methylenediphenyl diisocyanate (MDI), 1,4-butanediol (BD) and alpha, omega-dihydroxy-[poly(caprolactone)-poly (dimethylsiloxane)-poly(caprolactone)] (a, x-dihydroxy( PCL-PDMS-PCL); (M) over bar (n) 6100 g mol(-1)) were synthesized by a two-step polyaddition reaction in solution. In the synthesis of the polyurethanes, the PCL blocks served as a compatibilizer between the nonpolar PDMS blocks and the polar comonomers, MDI and BD. The synthesis of thermoplastic polyurethanes (TPU) with high soft segment contents was optimized in terms of the concentrations of the reactants, the molar ratio of the NCO/OH groups, and the time and temperature of the polyaddition reaction. The structure, composition, and hard MDI/BD segment length of the synthesized polyurethane copolymers were determined by H-1, C-13-NMR, and two-dimensional correlation (COSY, HSQC, and HMBC) spectroscopy, while the hydrogen bonding interactions in the copolymers were analyzed by FT-IR spectroscopy. The influence of the reaction conditions on the structure, molecular weight, thermal, and some physical properties was studied at constant composition of the reaction mixture. A change in the molar ratio of the NCO/OH groups and the reaction conditions modified not only the molecular weight of the synthesized polyurethanes, but also the microstructure and therefore the thermal and physical properties of the copolymers. It was demonstrated that only PCL segments with high soft segment contents crystallize, thereby showing spherulitic morphology.
PB  - Wiley-Blackwell, Malden
T2  - Journal of Applied Polymer Science
T1  - Synthesis and Characterization of Novel Urethane-Siloxane Copolymers with a High Content of PCL-PDMS-PCL Segments
EP  - 2730
IS  - 4
SP  - 2715
VL  - 122
DO  - 10.1002/app.33926
ER  - 
@article{
author = "Pergal, Marija and Antić, Vesna and Govedarica, Milutin and Gođevac, Dejan and Ostojić, Sanja and Đonlagić, Jasna",
year = "2011",
abstract = "Novel polyurethane copolymers derived from 4,4'-methylenediphenyl diisocyanate (MDI), 1,4-butanediol (BD) and alpha, omega-dihydroxy-[poly(caprolactone)-poly (dimethylsiloxane)-poly(caprolactone)] (a, x-dihydroxy( PCL-PDMS-PCL); (M) over bar (n) 6100 g mol(-1)) were synthesized by a two-step polyaddition reaction in solution. In the synthesis of the polyurethanes, the PCL blocks served as a compatibilizer between the nonpolar PDMS blocks and the polar comonomers, MDI and BD. The synthesis of thermoplastic polyurethanes (TPU) with high soft segment contents was optimized in terms of the concentrations of the reactants, the molar ratio of the NCO/OH groups, and the time and temperature of the polyaddition reaction. The structure, composition, and hard MDI/BD segment length of the synthesized polyurethane copolymers were determined by H-1, C-13-NMR, and two-dimensional correlation (COSY, HSQC, and HMBC) spectroscopy, while the hydrogen bonding interactions in the copolymers were analyzed by FT-IR spectroscopy. The influence of the reaction conditions on the structure, molecular weight, thermal, and some physical properties was studied at constant composition of the reaction mixture. A change in the molar ratio of the NCO/OH groups and the reaction conditions modified not only the molecular weight of the synthesized polyurethanes, but also the microstructure and therefore the thermal and physical properties of the copolymers. It was demonstrated that only PCL segments with high soft segment contents crystallize, thereby showing spherulitic morphology.",
publisher = "Wiley-Blackwell, Malden",
journal = "Journal of Applied Polymer Science",
title = "Synthesis and Characterization of Novel Urethane-Siloxane Copolymers with a High Content of PCL-PDMS-PCL Segments",
pages = "2730-2715",
number = "4",
volume = "122",
doi = "10.1002/app.33926"
}
Pergal, M., Antić, V., Govedarica, M., Gođevac, D., Ostojić, S.,& Đonlagić, J.. (2011). Synthesis and Characterization of Novel Urethane-Siloxane Copolymers with a High Content of PCL-PDMS-PCL Segments. in Journal of Applied Polymer Science
Wiley-Blackwell, Malden., 122(4), 2715-2730.
https://doi.org/10.1002/app.33926
Pergal M, Antić V, Govedarica M, Gođevac D, Ostojić S, Đonlagić J. Synthesis and Characterization of Novel Urethane-Siloxane Copolymers with a High Content of PCL-PDMS-PCL Segments. in Journal of Applied Polymer Science. 2011;122(4):2715-2730.
doi:10.1002/app.33926 .
Pergal, Marija, Antić, Vesna, Govedarica, Milutin, Gođevac, Dejan, Ostojić, Sanja, Đonlagić, Jasna, "Synthesis and Characterization of Novel Urethane-Siloxane Copolymers with a High Content of PCL-PDMS-PCL Segments" in Journal of Applied Polymer Science, 122, no. 4 (2011):2715-2730,
https://doi.org/10.1002/app.33926 . .
3
46
49
59

Influence of the content of hard segments on the properties of novel urethane-siloxane copolymers based on a poly(ε-caprolactone)-b-poly(dimethylsiloxane)-b-poly(ε-caprolactone) triblock copolymer

Pergal, Marija; Antić, Vesna; Ostojić, Sanja; Marinović-Cincović, Milena; Đonlagić, Jasna

(Serbian Chemical Society, 2011)

TY  - JOUR
AU  - Pergal, Marija
AU  - Antić, Vesna
AU  - Ostojić, Sanja
AU  - Marinović-Cincović, Milena
AU  - Đonlagić, Jasna
PY  - 2011
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5644
AB  - A series of novel thermoplastic urethane-siloxane copolymers (TPUSs) based on a α,ω-dihydroxy-[poly(ε-caprolactone)-b-poly(dimethylsiloxane)-b- -poly(ε-caprolactone)] (α,ω-dihydroxy-PCL-PDMS-PCL) triblock copolymer, 4,4'-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BD) was synthesized. The effects of the content (9-63 mass %) of hard urethane segments and their degree of polymerization on the properties of the segmented TPUSs were investigated. The structure, composition and hard segment degree of polymerization of the hard segments were examined using 1H- and quantitative 13C-NMR spectroscopy. The degree of crystallinity of the synthesized copolymers was determined using wide-angle X-ray scattering (WAXS). The surface properties were evaluated by measuring the water contact angle and water absorption. In the series of the TPUSs, the average degree of polymerization of the hard segments was varied from 1.2 to 14.4 MDI-BD units. It was found that average values from 3.8 to 14.4 MDI-BD units were effective segment lengths for crystallization of hard segments, which resulted in an increase in the degree of microphase separation of the copolymers. Spherulite-like superstructures were observed in copolymer films by scanning electron microscopy (SEM), which are believed to arise from the crystallization of the hard segments and/or PCL segments, depending on the content of the hard segments. The surface of the copolymers became more hydrophobic with increasing weight fraction of PDMS. The synthesized copolymers based on a PCL-PDMS-PCL segment showed good thermal stability, which increased with increasing content of soft PDMS segments, as was confirmed by the value of the starting temperature of thermal degradation.
AB  - U ovom radu prikazana je struktura i neka svojstva serije novih termoplastičnih uretan-siloksanskih kopolimera (TPUSs) na bazi α,ω-dihidroksi-[poli(ε-kaprolakton)-b-poli(dimetilsiloksan)-b-poli(ε-kaprolakton)] triblok kopolimera (α,ω-dihidroksi-PCL-PDMS-PCL), 4,4'-metilendifenildiizocijanata (MDI) i 1,4-butandiola (BD). Ispitan je uticaj sadržaja uretanskog tvrdog segmenta (9-63 mas. %) i njegove dužine, tj. stepena polimerizacije, izražene preko broja MDI-BD ostataka, na svojstva segmentiranih TPUSs. Struktura, sastav i stepen polimerizacije tvrdog segmenta su ispitani pomoću 1H- i kvantitativne 13C-NMR spektroskopije. Stepen kristaliničnosti kopolimera je određen metodom difrakcije X-zraka na velikim uglovima (WAXS). Površinska svojstva kopolimera su ispitana određivanjem kontaktnih uglova sa vodom i merenjem apsorpcije vode. U seriji kopolimera dužina tvrdog segmenta izražena preko broja ponavljajućih MDI-BD jedinica je varirana od 1,2 do 14,4. Utvrđeno je da tvrdi segmenti sa 3,8 do 14,4 ponavljajućih MDI-BD jedinica efikasno kristališu, što je rezultovalo u povećanju stepena mikrofazne separacije kopolimera. SEM analiza je pokazala prisustvo sferulitne strukture u kopolimernim filmovima, koja najverovatnije potiče od kristalizacije tvrdih i/ili PCL segmenata, zavisno od sadržaja tvrdih segmenata. Hidrofobnost površine kopolimera je rasla sa povećanjem masenog udela PDMS-a u odgovarajućem uzorku. Sintetisani poliuretani na bazi PCL-PDMS-PCL pokazuju povećanje termičke stabilnosti sa povećanjem sadržaja mekih PDMS segmenata, što je potvrđeno porastom početne temperature degradacije, određene TG analizom.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Influence of the content of hard segments on the properties of novel urethane-siloxane copolymers based on a poly(ε-caprolactone)-b-poly(dimethylsiloxane)-b-poly(ε-caprolactone) triblock copolymer
T1  - Uticaj sadržaja tvrdog segmenta na svojstva novih uretan-siloksanskih kopolimera na bazi poli(e-kaprolakton)-b-poli(dimetilsiloksan)-b-poli(e-kaprolaktona)
EP  - 1723
IS  - 12
SP  - 1703
VL  - 76
DO  - 10.2298/JSC110307146P
ER  - 
@article{
author = "Pergal, Marija and Antić, Vesna and Ostojić, Sanja and Marinović-Cincović, Milena and Đonlagić, Jasna",
year = "2011",
abstract = "A series of novel thermoplastic urethane-siloxane copolymers (TPUSs) based on a α,ω-dihydroxy-[poly(ε-caprolactone)-b-poly(dimethylsiloxane)-b- -poly(ε-caprolactone)] (α,ω-dihydroxy-PCL-PDMS-PCL) triblock copolymer, 4,4'-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BD) was synthesized. The effects of the content (9-63 mass %) of hard urethane segments and their degree of polymerization on the properties of the segmented TPUSs were investigated. The structure, composition and hard segment degree of polymerization of the hard segments were examined using 1H- and quantitative 13C-NMR spectroscopy. The degree of crystallinity of the synthesized copolymers was determined using wide-angle X-ray scattering (WAXS). The surface properties were evaluated by measuring the water contact angle and water absorption. In the series of the TPUSs, the average degree of polymerization of the hard segments was varied from 1.2 to 14.4 MDI-BD units. It was found that average values from 3.8 to 14.4 MDI-BD units were effective segment lengths for crystallization of hard segments, which resulted in an increase in the degree of microphase separation of the copolymers. Spherulite-like superstructures were observed in copolymer films by scanning electron microscopy (SEM), which are believed to arise from the crystallization of the hard segments and/or PCL segments, depending on the content of the hard segments. The surface of the copolymers became more hydrophobic with increasing weight fraction of PDMS. The synthesized copolymers based on a PCL-PDMS-PCL segment showed good thermal stability, which increased with increasing content of soft PDMS segments, as was confirmed by the value of the starting temperature of thermal degradation., U ovom radu prikazana je struktura i neka svojstva serije novih termoplastičnih uretan-siloksanskih kopolimera (TPUSs) na bazi α,ω-dihidroksi-[poli(ε-kaprolakton)-b-poli(dimetilsiloksan)-b-poli(ε-kaprolakton)] triblok kopolimera (α,ω-dihidroksi-PCL-PDMS-PCL), 4,4'-metilendifenildiizocijanata (MDI) i 1,4-butandiola (BD). Ispitan je uticaj sadržaja uretanskog tvrdog segmenta (9-63 mas. %) i njegove dužine, tj. stepena polimerizacije, izražene preko broja MDI-BD ostataka, na svojstva segmentiranih TPUSs. Struktura, sastav i stepen polimerizacije tvrdog segmenta su ispitani pomoću 1H- i kvantitativne 13C-NMR spektroskopije. Stepen kristaliničnosti kopolimera je određen metodom difrakcije X-zraka na velikim uglovima (WAXS). Površinska svojstva kopolimera su ispitana određivanjem kontaktnih uglova sa vodom i merenjem apsorpcije vode. U seriji kopolimera dužina tvrdog segmenta izražena preko broja ponavljajućih MDI-BD jedinica je varirana od 1,2 do 14,4. Utvrđeno je da tvrdi segmenti sa 3,8 do 14,4 ponavljajućih MDI-BD jedinica efikasno kristališu, što je rezultovalo u povećanju stepena mikrofazne separacije kopolimera. SEM analiza je pokazala prisustvo sferulitne strukture u kopolimernim filmovima, koja najverovatnije potiče od kristalizacije tvrdih i/ili PCL segmenata, zavisno od sadržaja tvrdih segmenata. Hidrofobnost površine kopolimera je rasla sa povećanjem masenog udela PDMS-a u odgovarajućem uzorku. Sintetisani poliuretani na bazi PCL-PDMS-PCL pokazuju povećanje termičke stabilnosti sa povećanjem sadržaja mekih PDMS segmenata, što je potvrđeno porastom početne temperature degradacije, određene TG analizom.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Influence of the content of hard segments on the properties of novel urethane-siloxane copolymers based on a poly(ε-caprolactone)-b-poly(dimethylsiloxane)-b-poly(ε-caprolactone) triblock copolymer, Uticaj sadržaja tvrdog segmenta na svojstva novih uretan-siloksanskih kopolimera na bazi poli(e-kaprolakton)-b-poli(dimetilsiloksan)-b-poli(e-kaprolaktona)",
pages = "1723-1703",
number = "12",
volume = "76",
doi = "10.2298/JSC110307146P"
}
Pergal, M., Antić, V., Ostojić, S., Marinović-Cincović, M.,& Đonlagić, J.. (2011). Influence of the content of hard segments on the properties of novel urethane-siloxane copolymers based on a poly(ε-caprolactone)-b-poly(dimethylsiloxane)-b-poly(ε-caprolactone) triblock copolymer. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 76(12), 1703-1723.
https://doi.org/10.2298/JSC110307146P
Pergal M, Antić V, Ostojić S, Marinović-Cincović M, Đonlagić J. Influence of the content of hard segments on the properties of novel urethane-siloxane copolymers based on a poly(ε-caprolactone)-b-poly(dimethylsiloxane)-b-poly(ε-caprolactone) triblock copolymer. in Journal of the Serbian Chemical Society. 2011;76(12):1703-1723.
doi:10.2298/JSC110307146P .
Pergal, Marija, Antić, Vesna, Ostojić, Sanja, Marinović-Cincović, Milena, Đonlagić, Jasna, "Influence of the content of hard segments on the properties of novel urethane-siloxane copolymers based on a poly(ε-caprolactone)-b-poly(dimethylsiloxane)-b-poly(ε-caprolactone) triblock copolymer" in Journal of the Serbian Chemical Society, 76, no. 12 (2011):1703-1723,
https://doi.org/10.2298/JSC110307146P . .
13
15
23

Synthesis and characterization of copolymers based on poly(butylene terephthalate) and ethylene oxide-poly(dimethylsiloxane)-ethylene oxide

Vučković, Marija V.; Antić, Vesna; Govedarica, Milutin; Đonlagić, Jasna

(Wiley, 2010)

TY  - JOUR
AU  - Vučković, Marija V.
AU  - Antić, Vesna
AU  - Govedarica, Milutin
AU  - Đonlagić, Jasna
PY  - 2010
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5615
AB  - A series of thermoplastic elastomers based on ethylene oxide- poly(dimethylsiloxane)-ethylene oxide (EO-PDMS-EO), as the soft segment, and poly(butylene terephthalate) (PBT), as the hard segment, were synthesized by catalyzed two-step, melt transesterification reaction of dimethyl terephthalate (DMT) with 1, 4-butanediol (BD) and α, ω-dihydroxy-(EO-PDMS-EO). Copolymers with a content of hard PBT segments between 40 and 90 mass % and a constant length of the soft EO-PDMS-EO segments were prepared. The siloxane prepolymer with hydrophilic terminal EO units was used to improve the miscibility between the polar comonomers, DMT and BD, and the nonpolar PDMS. The molecular structure and composition of the copolymers were determined by 1HNMR spectroscopy, whereas the effectiveness of the incorporation of α, ω-dihydroxy-(EO-PDMS-EO) into the copolymer chains was verified by chloroform extraction. The effects of the structure and composition of the copolymers on the melting temperatures and the degree of crystallinity, as well as on the thermal degradation stability and some rheological properties, were studied. It was demonstrated that the degree of crystallinity, the melting and crystallization temperatures of the copolymers increased with increasing mass fraction of the PBT segments. The thermal stability of the copolymers was lower than that of PBT homopolymer, because of the presence of thermoliable ether bonds in the soft segments.
PB  - Wiley
T2  - Journal of Applied Polymer Science
T1  - Synthesis and characterization of copolymers based on poly(butylene terephthalate) and ethylene oxide-poly(dimethylsiloxane)-ethylene oxide
EP  - 3216
IS  - 6
SP  - 3205
VL  - 115
DO  - 10.1002/app.31416
ER  - 
@article{
author = "Vučković, Marija V. and Antić, Vesna and Govedarica, Milutin and Đonlagić, Jasna",
year = "2010",
abstract = "A series of thermoplastic elastomers based on ethylene oxide- poly(dimethylsiloxane)-ethylene oxide (EO-PDMS-EO), as the soft segment, and poly(butylene terephthalate) (PBT), as the hard segment, were synthesized by catalyzed two-step, melt transesterification reaction of dimethyl terephthalate (DMT) with 1, 4-butanediol (BD) and α, ω-dihydroxy-(EO-PDMS-EO). Copolymers with a content of hard PBT segments between 40 and 90 mass % and a constant length of the soft EO-PDMS-EO segments were prepared. The siloxane prepolymer with hydrophilic terminal EO units was used to improve the miscibility between the polar comonomers, DMT and BD, and the nonpolar PDMS. The molecular structure and composition of the copolymers were determined by 1HNMR spectroscopy, whereas the effectiveness of the incorporation of α, ω-dihydroxy-(EO-PDMS-EO) into the copolymer chains was verified by chloroform extraction. The effects of the structure and composition of the copolymers on the melting temperatures and the degree of crystallinity, as well as on the thermal degradation stability and some rheological properties, were studied. It was demonstrated that the degree of crystallinity, the melting and crystallization temperatures of the copolymers increased with increasing mass fraction of the PBT segments. The thermal stability of the copolymers was lower than that of PBT homopolymer, because of the presence of thermoliable ether bonds in the soft segments.",
publisher = "Wiley",
journal = "Journal of Applied Polymer Science",
title = "Synthesis and characterization of copolymers based on poly(butylene terephthalate) and ethylene oxide-poly(dimethylsiloxane)-ethylene oxide",
pages = "3216-3205",
number = "6",
volume = "115",
doi = "10.1002/app.31416"
}
Vučković, M. V., Antić, V., Govedarica, M.,& Đonlagić, J.. (2010). Synthesis and characterization of copolymers based on poly(butylene terephthalate) and ethylene oxide-poly(dimethylsiloxane)-ethylene oxide. in Journal of Applied Polymer Science
Wiley., 115(6), 3205-3216.
https://doi.org/10.1002/app.31416
Vučković MV, Antić V, Govedarica M, Đonlagić J. Synthesis and characterization of copolymers based on poly(butylene terephthalate) and ethylene oxide-poly(dimethylsiloxane)-ethylene oxide. in Journal of Applied Polymer Science. 2010;115(6):3205-3216.
doi:10.1002/app.31416 .
Vučković, Marija V., Antić, Vesna, Govedarica, Milutin, Đonlagić, Jasna, "Synthesis and characterization of copolymers based on poly(butylene terephthalate) and ethylene oxide-poly(dimethylsiloxane)-ethylene oxide" in Journal of Applied Polymer Science, 115, no. 6 (2010):3205-3216,
https://doi.org/10.1002/app.31416 . .
11
14
19

Rheological behaviour of thermoplastic poly(ester-siloxane)s

Antić, Vesna; Pergal, Marija; Antić, Mališa; Đonlagić, Jasna

(Association of Chemical Engineers of Serbia, 2010)

TY  - JOUR
AU  - Antić, Vesna
AU  - Pergal, Marija
AU  - Antić, Mališa
AU  - Đonlagić, Jasna
PY  - 2010
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5613
AB  - Two series of thermoplastic elastomers (TPES), based on poly(dimethylsiloxane) (PDMS) as the soft segment and poly(butylene terephthalate) (PBT) as the hard segment, were analyzed by dynamic mechanical spectroscopy. In the first TPES series the lengths of both hard and soft segments were varied while the mass ratio of the hard to soft segments was nearly constant (about 60 mass%). In the second series, the mass ratio of hard and soft segments was varied in the range from 60/40 to 40/60, with a constant length of soft PDMS segments. The influence of the structure and composition of TPESs on the rheological properties, such as complex dynamic viscosity, μ*, the storage, G', and loss, G', shear modulus as well as the microphase separation transition temperature, TMST, was examined. The obtained results showed that the storage modulus of the TPESs increased in a rubbery plateau region with increase in degree of crystallinity. The rheological measurements of TPESs also showed that a microphase reorganization occurred during the melting process. The microphase separation transition temperatures were in the range from 220 to 234°C. In the isotropic molten state, the complex dynamic viscosity increased with increasing both the content and length of hard PBT segments.
AB  - Dve serije termoplastičnih elastomera (TPES) na bazi poli(dimetilsiloksana) kao mekog segmenta i poli(butilentereftalata) kao tvrdog segmenta su analizirane dinamičko-mehaničkom spektroskopijom. U prvoj TPES seriji varirane su dužine tvrdih i mekih segmenata dok je njihov maseni odnos bio skoro konstantan (oko 60 mas%). U drugoj seriji, odnos tvrdih i mekih segmenata je variran u opsegu od 60/40 do 40/60, dok je dužina mekih PDMS segmenata bila konstantna. Ispitan je uticaj strukture i sastava TPES kopolimera na reološka svojstva, kao što su kompleksni dinamički viskozitet, μ*, moduli sačuvane, G', i izgubljene energije, G', i temperatura mikrofaznog razdvajanja, TMST. Dobijeni rezultati su pokazali da su uzorci sa većim stepenom kristaliničnosti imali i veće module sačuvane energije u gumolikom platou. Reološka merenja su takođe pokazala da svi TPES uzorci ispoljavaju mikrofaznu reorganizaciju u procesu topljenja. Temperature mikrofaznog razdvajanja su bile u opsegu od 220 do 234°C. U izotropskom rastopu, kompleksni dinamički viskoziteti su rasli sa povećanjem sadržaja i dužine PBT segmenata.
PB  - Association of Chemical Engineers of Serbia
T2  - Hemijska industrija
T1  - Rheological behaviour of thermoplastic poly(ester-siloxane)s
T1  - Reološko ponašanje termoplastičnih poli(estar-siloksana)
EP  - 545
IS  - 6
SP  - 537
VL  - 64
DO  - 10.2298/HEMIND101015067A
ER  - 
@article{
author = "Antić, Vesna and Pergal, Marija and Antić, Mališa and Đonlagić, Jasna",
year = "2010",
abstract = "Two series of thermoplastic elastomers (TPES), based on poly(dimethylsiloxane) (PDMS) as the soft segment and poly(butylene terephthalate) (PBT) as the hard segment, were analyzed by dynamic mechanical spectroscopy. In the first TPES series the lengths of both hard and soft segments were varied while the mass ratio of the hard to soft segments was nearly constant (about 60 mass%). In the second series, the mass ratio of hard and soft segments was varied in the range from 60/40 to 40/60, with a constant length of soft PDMS segments. The influence of the structure and composition of TPESs on the rheological properties, such as complex dynamic viscosity, μ*, the storage, G', and loss, G', shear modulus as well as the microphase separation transition temperature, TMST, was examined. The obtained results showed that the storage modulus of the TPESs increased in a rubbery plateau region with increase in degree of crystallinity. The rheological measurements of TPESs also showed that a microphase reorganization occurred during the melting process. The microphase separation transition temperatures were in the range from 220 to 234°C. In the isotropic molten state, the complex dynamic viscosity increased with increasing both the content and length of hard PBT segments., Dve serije termoplastičnih elastomera (TPES) na bazi poli(dimetilsiloksana) kao mekog segmenta i poli(butilentereftalata) kao tvrdog segmenta su analizirane dinamičko-mehaničkom spektroskopijom. U prvoj TPES seriji varirane su dužine tvrdih i mekih segmenata dok je njihov maseni odnos bio skoro konstantan (oko 60 mas%). U drugoj seriji, odnos tvrdih i mekih segmenata je variran u opsegu od 60/40 do 40/60, dok je dužina mekih PDMS segmenata bila konstantna. Ispitan je uticaj strukture i sastava TPES kopolimera na reološka svojstva, kao što su kompleksni dinamički viskozitet, μ*, moduli sačuvane, G', i izgubljene energije, G', i temperatura mikrofaznog razdvajanja, TMST. Dobijeni rezultati su pokazali da su uzorci sa većim stepenom kristaliničnosti imali i veće module sačuvane energije u gumolikom platou. Reološka merenja su takođe pokazala da svi TPES uzorci ispoljavaju mikrofaznu reorganizaciju u procesu topljenja. Temperature mikrofaznog razdvajanja su bile u opsegu od 220 do 234°C. U izotropskom rastopu, kompleksni dinamički viskoziteti su rasli sa povećanjem sadržaja i dužine PBT segmenata.",
publisher = "Association of Chemical Engineers of Serbia",
journal = "Hemijska industrija",
title = "Rheological behaviour of thermoplastic poly(ester-siloxane)s, Reološko ponašanje termoplastičnih poli(estar-siloksana)",
pages = "545-537",
number = "6",
volume = "64",
doi = "10.2298/HEMIND101015067A"
}
Antić, V., Pergal, M., Antić, M.,& Đonlagić, J.. (2010). Rheological behaviour of thermoplastic poly(ester-siloxane)s. in Hemijska industrija
Association of Chemical Engineers of Serbia., 64(6), 537-545.
https://doi.org/10.2298/HEMIND101015067A
Antić V, Pergal M, Antić M, Đonlagić J. Rheological behaviour of thermoplastic poly(ester-siloxane)s. in Hemijska industrija. 2010;64(6):537-545.
doi:10.2298/HEMIND101015067A .
Antić, Vesna, Pergal, Marija, Antić, Mališa, Đonlagić, Jasna, "Rheological behaviour of thermoplastic poly(ester-siloxane)s" in Hemijska industrija, 64, no. 6 (2010):537-545,
https://doi.org/10.2298/HEMIND101015067A . .
3
2
4

Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments

Pepić, Dragana; Žagar, Ema; Žigon, Majda; Kržan, Andrej; Kunaver, Matjaz; Đonlagić, Jasna

(Elsevier Ltd, 2008)

TY  - JOUR
AU  - Pepić, Dragana
AU  - Žagar, Ema
AU  - Žigon, Majda
AU  - Kržan, Andrej
AU  - Kunaver, Matjaz
AU  - Đonlagić, Jasna
PY  - 2008
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5576
AB  - A series of multiblock poly(ether-ester)s based on poly(butylene succinate) (PBS) as the hard segments and hydrophilic poly(ethylene oxide) (PEO) as the soft segments was synthesized with the aim of developing degradable polymers which could combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic poly(ether-ester)s were synthesized by the catalyzed two-step transesterification reaction of dimethyl succinate, 1,4-butanediol and α,ω-hydroxyl terminated poly(ethylene oxide) (PEO, over(M, -)n = 1000 g/mol) in bulk. The content of soft PEO segments in the polymer chains was varied from about 10 to 50 mass%. The effect of the introduction of the soft PEO segments on the structure, thermal and physical properties, as well as on the biodegradation properties was investigated. The composition and structure of these aliphatic segmented copolyesters were determined by 1H NMR spectroscopy. The molecular weights of the polyesters were verified by gel permeation chromatography (GPC), as well as by viscometry of dilute solutions and polymer melts. The thermal properties were investigated using differential scanning calorimetry (DSC). The degree of crystallinity was determined by means of DSC and wide-angle X-ray scattering. A depression of melting temperature and a reduction of crystallinity of the hard segments with increasing content of PEO segments were observed. Biodegradation of the synthesized copolyesters, estimated in enzymatic degradation tests in phosphate buffer solution with Candida rugosa lipase at 37 °C was compared with hydrolytic degradation in the buffer solution. The weight losses of the samples were in the range from 2 to 10 mass%. GPC analysis confirmed that there were significant changes in molecular weight of copolyesters with higher content of PEO segments, up to 40% of initial values. This leads to conclusion that degradation mechanism of the poly(ether-ester)s based on PEO segments occurs through bulk degradation in addition to surface erosion.
PB  - Elsevier Ltd
T2  - European Polymer Journal
T1  - Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments
EP  - 917
IS  - 3
SP  - 904
VL  - 44
DO  - 10.1016/j.eurpolymj.2007.11.035
ER  - 
@article{
author = "Pepić, Dragana and Žagar, Ema and Žigon, Majda and Kržan, Andrej and Kunaver, Matjaz and Đonlagić, Jasna",
year = "2008",
abstract = "A series of multiblock poly(ether-ester)s based on poly(butylene succinate) (PBS) as the hard segments and hydrophilic poly(ethylene oxide) (PEO) as the soft segments was synthesized with the aim of developing degradable polymers which could combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic poly(ether-ester)s were synthesized by the catalyzed two-step transesterification reaction of dimethyl succinate, 1,4-butanediol and α,ω-hydroxyl terminated poly(ethylene oxide) (PEO, over(M, -)n = 1000 g/mol) in bulk. The content of soft PEO segments in the polymer chains was varied from about 10 to 50 mass%. The effect of the introduction of the soft PEO segments on the structure, thermal and physical properties, as well as on the biodegradation properties was investigated. The composition and structure of these aliphatic segmented copolyesters were determined by 1H NMR spectroscopy. The molecular weights of the polyesters were verified by gel permeation chromatography (GPC), as well as by viscometry of dilute solutions and polymer melts. The thermal properties were investigated using differential scanning calorimetry (DSC). The degree of crystallinity was determined by means of DSC and wide-angle X-ray scattering. A depression of melting temperature and a reduction of crystallinity of the hard segments with increasing content of PEO segments were observed. Biodegradation of the synthesized copolyesters, estimated in enzymatic degradation tests in phosphate buffer solution with Candida rugosa lipase at 37 °C was compared with hydrolytic degradation in the buffer solution. The weight losses of the samples were in the range from 2 to 10 mass%. GPC analysis confirmed that there were significant changes in molecular weight of copolyesters with higher content of PEO segments, up to 40% of initial values. This leads to conclusion that degradation mechanism of the poly(ether-ester)s based on PEO segments occurs through bulk degradation in addition to surface erosion.",
publisher = "Elsevier Ltd",
journal = "European Polymer Journal",
title = "Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments",
pages = "917-904",
number = "3",
volume = "44",
doi = "10.1016/j.eurpolymj.2007.11.035"
}
Pepić, D., Žagar, E., Žigon, M., Kržan, A., Kunaver, M.,& Đonlagić, J.. (2008). Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments. in European Polymer Journal
Elsevier Ltd., 44(3), 904-917.
https://doi.org/10.1016/j.eurpolymj.2007.11.035
Pepić D, Žagar E, Žigon M, Kržan A, Kunaver M, Đonlagić J. Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments. in European Polymer Journal. 2008;44(3):904-917.
doi:10.1016/j.eurpolymj.2007.11.035 .
Pepić, Dragana, Žagar, Ema, Žigon, Majda, Kržan, Andrej, Kunaver, Matjaz, Đonlagić, Jasna, "Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments" in European Polymer Journal, 44, no. 3 (2008):904-917,
https://doi.org/10.1016/j.eurpolymj.2007.11.035 . .
3
50
39
52