Pocuca-Nesic, M.

Link to this page

Authority KeyName Variants
ba0c5479-7759-482a-86b9-b40e2c12d26b
  • Pocuca-Nesic, M. (1)
Projects

Author's Bibliography

Fast Oxide-Ion Conductors in Bi2O3-V2O5 System: Bi108-xVxO162+x(x=4-9) with 3 x 3 x 3 Superstructure

Dapčević, Aleksandra; Radojkovic, A.; Zunic, M.; Pocuca-Nesic, M.; Milosevic, O.; Brankovic, G.

(2021)

TY  - JOUR
AU  - Dapčević, Aleksandra
AU  - Radojkovic, A.
AU  - Zunic, M.
AU  - Pocuca-Nesic, M.
AU  - Milosevic, O.
AU  - Brankovic, G.
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4939
AB  - In this study, the possibility to stabilize O-2 ion conductors in Bi2O3-V2O5 system was investigated. Six pseudo-binary Bi2O3-V2O5 mixtures [3.50   lt x(V2O5)   lt 8.50 mol%] were thermally treated at 1000 degrees C for 1 h. The samples were characterized by XRD, HRTEM/SAED, DTA and EIS techniques. The high-temperature reaction between alpha Bi2O3 and V2O5 resulted in formation of microcrystalline single-phase specimens containing the phase based on delta-Bi2O3 if V2O5 content was >= 4.63 mol%. The obtained phases exhibited main diffraction peaks corresponding to the simple cubic delta-Bi2O3 (space group Fm-3m) but Rietveld refinement showed a threefold repeat on a simple cubic sublattice indicating that the true unit cell is 3x3x3 supercell. Within proposed supercell, the octahedrally coordinated V5+ ions fully occupy 4a Wyckoff position and partially occupy 32f. The Bi3+ ions are placed at the rest of 32f and at 24e and 48h with full occupation. In total, 22 % of anionic sites are vacant. The ionic conductivity of phase with the lowest dopant content, i.e. Bi103V5O167, amounts 0.283 S cm(-1) at 800 degrees C with the activation energy of 0.64(5) eV, which is comparable to the undoped delta-Bi2O3 known as the fastest ion conductor.
T2  - Science of Sintering
T1  - Fast Oxide-Ion Conductors in Bi2O3-V2O5 System: Bi108-xVxO162+x(x=4-9) with 3 x 3 x 3 Superstructure
EP  - 66
IS  - 1
SP  - 55
VL  - 53
DO  - 10.2298/SOS2101055D
ER  - 
@article{
author = "Dapčević, Aleksandra and Radojkovic, A. and Zunic, M. and Pocuca-Nesic, M. and Milosevic, O. and Brankovic, G.",
year = "2021",
abstract = "In this study, the possibility to stabilize O-2 ion conductors in Bi2O3-V2O5 system was investigated. Six pseudo-binary Bi2O3-V2O5 mixtures [3.50   lt x(V2O5)   lt 8.50 mol%] were thermally treated at 1000 degrees C for 1 h. The samples were characterized by XRD, HRTEM/SAED, DTA and EIS techniques. The high-temperature reaction between alpha Bi2O3 and V2O5 resulted in formation of microcrystalline single-phase specimens containing the phase based on delta-Bi2O3 if V2O5 content was >= 4.63 mol%. The obtained phases exhibited main diffraction peaks corresponding to the simple cubic delta-Bi2O3 (space group Fm-3m) but Rietveld refinement showed a threefold repeat on a simple cubic sublattice indicating that the true unit cell is 3x3x3 supercell. Within proposed supercell, the octahedrally coordinated V5+ ions fully occupy 4a Wyckoff position and partially occupy 32f. The Bi3+ ions are placed at the rest of 32f and at 24e and 48h with full occupation. In total, 22 % of anionic sites are vacant. The ionic conductivity of phase with the lowest dopant content, i.e. Bi103V5O167, amounts 0.283 S cm(-1) at 800 degrees C with the activation energy of 0.64(5) eV, which is comparable to the undoped delta-Bi2O3 known as the fastest ion conductor.",
journal = "Science of Sintering",
title = "Fast Oxide-Ion Conductors in Bi2O3-V2O5 System: Bi108-xVxO162+x(x=4-9) with 3 x 3 x 3 Superstructure",
pages = "66-55",
number = "1",
volume = "53",
doi = "10.2298/SOS2101055D"
}
Dapčević, A., Radojkovic, A., Zunic, M., Pocuca-Nesic, M., Milosevic, O.,& Brankovic, G.. (2021). Fast Oxide-Ion Conductors in Bi2O3-V2O5 System: Bi108-xVxO162+x(x=4-9) with 3 x 3 x 3 Superstructure. in Science of Sintering, 53(1), 55-66.
https://doi.org/10.2298/SOS2101055D
Dapčević A, Radojkovic A, Zunic M, Pocuca-Nesic M, Milosevic O, Brankovic G. Fast Oxide-Ion Conductors in Bi2O3-V2O5 System: Bi108-xVxO162+x(x=4-9) with 3 x 3 x 3 Superstructure. in Science of Sintering. 2021;53(1):55-66.
doi:10.2298/SOS2101055D .
Dapčević, Aleksandra, Radojkovic, A., Zunic, M., Pocuca-Nesic, M., Milosevic, O., Brankovic, G., "Fast Oxide-Ion Conductors in Bi2O3-V2O5 System: Bi108-xVxO162+x(x=4-9) with 3 x 3 x 3 Superstructure" in Science of Sintering, 53, no. 1 (2021):55-66,
https://doi.org/10.2298/SOS2101055D . .
2
3