Đokić, Lidija

Link to this page

Authority KeyName Variants
orcid::0000-0003-4723-0527
  • Đokić, Lidija (2)
Projects

Author's Bibliography

Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil

Mandić, Mina; Spasić, Jelena; Ponjavić, Marijana; Nikolić, Marija; Ćosović, Vladan; O'Connor, Kevin E.; Nikodinović-Runić, Jasmina; Đokić, Lidija; Jeremić, Sanja

(Elsevier Sci Ltd, Oxford, 2019)

TY  - JOUR
AU  - Mandić, Mina
AU  - Spasić, Jelena
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija
AU  - Ćosović, Vladan
AU  - O'Connor, Kevin E.
AU  - Nikodinović-Runić, Jasmina
AU  - Đokić, Lidija
AU  - Jeremić, Sanja
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4250
AB  - Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(epsilon-caprolactone) (PCL) or poly-hydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 mu m) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 mu m) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chiororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis13-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.
PB  - Elsevier Sci Ltd, Oxford
T2  - Polymer Degradation and Stability
T1  - Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil
EP  - 168
SP  - 160
VL  - 162
DO  - 10.1016/j.polymdegradstab.2019.02.012
ER  - 
@article{
author = "Mandić, Mina and Spasić, Jelena and Ponjavić, Marijana and Nikolić, Marija and Ćosović, Vladan and O'Connor, Kevin E. and Nikodinović-Runić, Jasmina and Đokić, Lidija and Jeremić, Sanja",
year = "2019",
abstract = "Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(epsilon-caprolactone) (PCL) or poly-hydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 mu m) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 mu m) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chiororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis13-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Polymer Degradation and Stability",
title = "Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil",
pages = "168-160",
volume = "162",
doi = "10.1016/j.polymdegradstab.2019.02.012"
}
Mandić, M., Spasić, J., Ponjavić, M., Nikolić, M., Ćosović, V., O'Connor, K. E., Nikodinović-Runić, J., Đokić, L.,& Jeremić, S.. (2019). Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability
Elsevier Sci Ltd, Oxford., 162, 160-168.
https://doi.org/10.1016/j.polymdegradstab.2019.02.012
Mandić M, Spasić J, Ponjavić M, Nikolić M, Ćosović V, O'Connor KE, Nikodinović-Runić J, Đokić L, Jeremić S. Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability. 2019;162:160-168.
doi:10.1016/j.polymdegradstab.2019.02.012 .
Mandić, Mina, Spasić, Jelena, Ponjavić, Marijana, Nikolić, Marija, Ćosović, Vladan, O'Connor, Kevin E., Nikodinović-Runić, Jasmina, Đokić, Lidija, Jeremić, Sanja, "Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil" in Polymer Degradation and Stability, 162 (2019):160-168,
https://doi.org/10.1016/j.polymdegradstab.2019.02.012 . .
21
6
21

Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers

Ponjavić, Marijana; Nikolić, Marija; Jeremić, Sanja; Đokić, Lidija; Nikodinović-Runić, Jasmina; Ćosović, Vladan; Đonlagić, Jasna

(Springer/Plenum Publishers, New York, 2018)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Nikodinović-Runić, Jasmina
AU  - Ćosović, Vladan
AU  - Đonlagić, Jasna
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4002
AB  - Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M (n) 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of epsilon-caprolactone, were characterized by H-1 NMR, quantitative C-13 NMR, GPC, DSC and WAXS. The introduction of the PEO central segment ( lt  2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 A degrees C resulted in significant degradation of the all synthesized block copolymers.
PB  - Springer/Plenum Publishers, New York
T2  - Journal of Polymers and the Environment
T1  - Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers
EP  - 2359
IS  - 6
SP  - 2346
VL  - 26
DO  - 10.1007/s10924-017-1130-2
ER  - 
@article{
author = "Ponjavić, Marijana and Nikolić, Marija and Jeremić, Sanja and Đokić, Lidija and Nikodinović-Runić, Jasmina and Ćosović, Vladan and Đonlagić, Jasna",
year = "2018",
abstract = "Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M (n) 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of epsilon-caprolactone, were characterized by H-1 NMR, quantitative C-13 NMR, GPC, DSC and WAXS. The introduction of the PEO central segment ( lt  2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 A degrees C resulted in significant degradation of the all synthesized block copolymers.",
publisher = "Springer/Plenum Publishers, New York",
journal = "Journal of Polymers and the Environment",
title = "Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers",
pages = "2359-2346",
number = "6",
volume = "26",
doi = "10.1007/s10924-017-1130-2"
}
Ponjavić, M., Nikolić, M., Jeremić, S., Đokić, L., Nikodinović-Runić, J., Ćosović, V.,& Đonlagić, J.. (2018). Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers. in Journal of Polymers and the Environment
Springer/Plenum Publishers, New York., 26(6), 2346-2359.
https://doi.org/10.1007/s10924-017-1130-2
Ponjavić M, Nikolić M, Jeremić S, Đokić L, Nikodinović-Runić J, Ćosović V, Đonlagić J. Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers. in Journal of Polymers and the Environment. 2018;26(6):2346-2359.
doi:10.1007/s10924-017-1130-2 .
Ponjavić, Marijana, Nikolić, Marija, Jeremić, Sanja, Đokić, Lidija, Nikodinović-Runić, Jasmina, Ćosović, Vladan, Đonlagić, Jasna, "Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers" in Journal of Polymers and the Environment, 26, no. 6 (2018):2346-2359,
https://doi.org/10.1007/s10924-017-1130-2 . .
9
4
9