Ratnayake, Ishara S.

Link to this page

Authority KeyName Variants
bbccb412-c5b7-45b0-b0ea-147572bbb0d6
  • Ratnayake, Ishara S. (1)
Projects

Author's Bibliography

Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions

Davidović, Slađana; Lazić, Vesna M.; Miljković, Miona; Gordić, Milan V.; Sekulić, Milica; Marinović-Cincović, Milena; Ratnayake, Ishara S.; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(Elsevier Sci Ltd, Oxford, 2019)

TY  - JOUR
AU  - Davidović, Slađana
AU  - Lazić, Vesna M.
AU  - Miljković, Miona
AU  - Gordić, Milan V.
AU  - Sekulić, Milica
AU  - Marinović-Cincović, Milena
AU  - Ratnayake, Ishara S.
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4081
AB  - The antibacterial ability of in situ prepared nanometer-sized silver particles, immobilized in agar-agar films, was studied as a function of the concentration of co-dopant, magnesium ions. Content of inorganic components in hybrid films was determined using inductively coupled plasma optic emission spectroscopy, and found to be low (  lt  2 wt.-%). Morphology of prepared hybrid films, studied by transmission electron microscopy, revealed the presence of non-agglomerated and randomly distributed 10-20 nm silver nanoparticles (Ag NPs) within the agar-agar matrices. Fourier-transform infrared spectroscopy indicated the distinct chemical interaction between Ag NPs and polymer chains. Thermogravimetric analysis, as well as the determination of tensile strength, Young's modulus, and elongation at break showed improvement of thermal stability and mechanical properties of agar-agar matrices upon the incorporation of Ag NPs due to high compatibility between the hydrophilic organic component and inorganic components. The complete microbial reduction of Gram-positive bacteria Staphylococcus aureus was observed for all agar-silver films, while satisfactory results were observed for Gram-negative bacteria Pseudomonas aeruginosa (  gt = 99.6%). The release of Ag+ ions is suppressed by the increase of the concentration of Mg2+ ions and it was found to be significantly smaller (  lt = 0.24 ppm) than the harmful ecological level (1 ppm).
PB  - Elsevier Sci Ltd, Oxford
T2  - Carbohydrate Polymers
T1  - Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions
VL  - 224
DO  - 10.1016/j.carbpol.2019.115187
ER  - 
@article{
author = "Davidović, Slađana and Lazić, Vesna M. and Miljković, Miona and Gordić, Milan V. and Sekulić, Milica and Marinović-Cincović, Milena and Ratnayake, Ishara S. and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2019",
abstract = "The antibacterial ability of in situ prepared nanometer-sized silver particles, immobilized in agar-agar films, was studied as a function of the concentration of co-dopant, magnesium ions. Content of inorganic components in hybrid films was determined using inductively coupled plasma optic emission spectroscopy, and found to be low (  lt  2 wt.-%). Morphology of prepared hybrid films, studied by transmission electron microscopy, revealed the presence of non-agglomerated and randomly distributed 10-20 nm silver nanoparticles (Ag NPs) within the agar-agar matrices. Fourier-transform infrared spectroscopy indicated the distinct chemical interaction between Ag NPs and polymer chains. Thermogravimetric analysis, as well as the determination of tensile strength, Young's modulus, and elongation at break showed improvement of thermal stability and mechanical properties of agar-agar matrices upon the incorporation of Ag NPs due to high compatibility between the hydrophilic organic component and inorganic components. The complete microbial reduction of Gram-positive bacteria Staphylococcus aureus was observed for all agar-silver films, while satisfactory results were observed for Gram-negative bacteria Pseudomonas aeruginosa (  gt = 99.6%). The release of Ag+ ions is suppressed by the increase of the concentration of Mg2+ ions and it was found to be significantly smaller (  lt = 0.24 ppm) than the harmful ecological level (1 ppm).",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Carbohydrate Polymers",
title = "Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions",
volume = "224",
doi = "10.1016/j.carbpol.2019.115187"
}
Davidović, S., Lazić, V. M., Miljković, M., Gordić, M. V., Sekulić, M., Marinović-Cincović, M., Ratnayake, I. S., Ahrenkiel, S. P.,& Nedeljković, J.. (2019). Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions. in Carbohydrate Polymers
Elsevier Sci Ltd, Oxford., 224.
https://doi.org/10.1016/j.carbpol.2019.115187
Davidović S, Lazić VM, Miljković M, Gordić MV, Sekulić M, Marinović-Cincović M, Ratnayake IS, Ahrenkiel SP, Nedeljković J. Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions. in Carbohydrate Polymers. 2019;224.
doi:10.1016/j.carbpol.2019.115187 .
Davidović, Slađana, Lazić, Vesna M., Miljković, Miona, Gordić, Milan V., Sekulić, Milica, Marinović-Cincović, Milena, Ratnayake, Ishara S., Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions" in Carbohydrate Polymers, 224 (2019),
https://doi.org/10.1016/j.carbpol.2019.115187 . .
1
30
8
28