Zagorac, Dejan

Link to this page

Authority KeyName Variants
328799b3-cf26-486d-95cf-643ad96cc835
  • Zagorac, Dejan (4)

Author's Bibliography

Multicomponent solid solution with pyrochlore structure

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Dimitrijević, Stevan P.; Todorović, Bratislav; Pejić, Milan; Zagorac, Dejan; Zagorac, Jelena; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(Sociedad Espanola de Ceramica y Vidrio, 2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Stevan P.
AU  - Todorović, Bratislav
AU  - Pejić, Milan
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5959
AB  - Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.
PB  - Sociedad Espanola de Ceramica y Vidrio
T2  - Boletin de la Sociedad Espanola de Ceramica y Vidrio
T1  - Multicomponent solid solution with pyrochlore structure
T1  - Solución sólida multicomponente con estructura de pirocloro
DO  - 10.1016/j.bsecv.2023.01.005
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Stevan P. and Todorović, Bratislav and Pejić, Milan and Zagorac, Dejan and Zagorac, Jelena and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.",
publisher = "Sociedad Espanola de Ceramica y Vidrio",
journal = "Boletin de la Sociedad Espanola de Ceramica y Vidrio",
title = "Multicomponent solid solution with pyrochlore structure, Solución sólida multicomponente con estructura de pirocloro",
doi = "10.1016/j.bsecv.2023.01.005"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S. P., Todorović, B., Pejić, M., Zagorac, D., Zagorac, J., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio
Sociedad Espanola de Ceramica y Vidrio..
https://doi.org/10.1016/j.bsecv.2023.01.005
Matović B, Maletaškić J, Maksimović V, Dimitrijević SP, Todorović B, Pejić M, Zagorac D, Zagorac J, Zeng Y, Cvijović-Alagić I. Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2023;.
doi:10.1016/j.bsecv.2023.01.005 .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Stevan P., Todorović, Bratislav, Pejić, Milan, Zagorac, Dejan, Zagorac, Jelena, Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Multicomponent solid solution with pyrochlore structure" in Boletin de la Sociedad Espanola de Ceramica y Vidrio (2023),
https://doi.org/10.1016/j.bsecv.2023.01.005 . .
1
2

Structure prediction, high pressure effect and properties investigation of superhard B6O

Zagorac, Jelena B.; Jovanović, D.; Volkov-Husović, Tatjana; Matović, Branko; Zagorac, Dejan

(IOP Publishing Ltd, Bristol, 2020)

TY  - JOUR
AU  - Zagorac, Jelena B.
AU  - Jovanović, D.
AU  - Volkov-Husović, Tatjana
AU  - Matović, Branko
AU  - Zagorac, Dejan
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4537
AB  - Ab initio data mining approach has been used in order to investigate B6O system and discover new possible modifications, besides experimentally known R-3m (alpha-B6O) structure and theoretically predicted Cmcm (beta-B6O) structure. DFT calculations were performed by two different functionals, LDA and PBE. In this work, we focus on the structure, mechanical, and electronic properties of the experimentally known alpha-B6O structure and newly predicted modifications with the B6O stoichiometry. Moreover, mechanical properties including elastic constants, bulk, shear and elastic moduli, Poisson's ratio, Pugh's criterion, and hardness are given for the investigated modifications of B6O. In particular, we have investigated the influence of the high pressure on the electronic and mechanical properties. Results of our study provide more insight in the B6O superhard material and open new possibilities for various device applications.
PB  - IOP Publishing Ltd, Bristol
T2  - Modelling and Simulation in Materials Science and Engineering
T1  - Structure prediction, high pressure effect and properties investigation of superhard B6O
IS  - 3
VL  - 28
DO  - 10.1088/1361-651X/ab6ec8
ER  - 
@article{
author = "Zagorac, Jelena B. and Jovanović, D. and Volkov-Husović, Tatjana and Matović, Branko and Zagorac, Dejan",
year = "2020",
abstract = "Ab initio data mining approach has been used in order to investigate B6O system and discover new possible modifications, besides experimentally known R-3m (alpha-B6O) structure and theoretically predicted Cmcm (beta-B6O) structure. DFT calculations were performed by two different functionals, LDA and PBE. In this work, we focus on the structure, mechanical, and electronic properties of the experimentally known alpha-B6O structure and newly predicted modifications with the B6O stoichiometry. Moreover, mechanical properties including elastic constants, bulk, shear and elastic moduli, Poisson's ratio, Pugh's criterion, and hardness are given for the investigated modifications of B6O. In particular, we have investigated the influence of the high pressure on the electronic and mechanical properties. Results of our study provide more insight in the B6O superhard material and open new possibilities for various device applications.",
publisher = "IOP Publishing Ltd, Bristol",
journal = "Modelling and Simulation in Materials Science and Engineering",
title = "Structure prediction, high pressure effect and properties investigation of superhard B6O",
number = "3",
volume = "28",
doi = "10.1088/1361-651X/ab6ec8"
}
Zagorac, J. B., Jovanović, D., Volkov-Husović, T., Matović, B.,& Zagorac, D.. (2020). Structure prediction, high pressure effect and properties investigation of superhard B6O. in Modelling and Simulation in Materials Science and Engineering
IOP Publishing Ltd, Bristol., 28(3).
https://doi.org/10.1088/1361-651X/ab6ec8
Zagorac JB, Jovanović D, Volkov-Husović T, Matović B, Zagorac D. Structure prediction, high pressure effect and properties investigation of superhard B6O. in Modelling and Simulation in Materials Science and Engineering. 2020;28(3).
doi:10.1088/1361-651X/ab6ec8 .
Zagorac, Jelena B., Jovanović, D., Volkov-Husović, Tatjana, Matović, Branko, Zagorac, Dejan, "Structure prediction, high pressure effect and properties investigation of superhard B6O" in Modelling and Simulation in Materials Science and Engineering, 28, no. 3 (2020),
https://doi.org/10.1088/1361-651X/ab6ec8 . .
9
6
12

Cyclic oxidation of Ti3Al-based materials

Cvijović-Alagić, Ivana; Cvijović, Zorica M.; Zagorac, Dejan; Jovanović, Milan T.

(2019)

TY  - JOUR
AU  - Cvijović-Alagić, Ivana
AU  - Cvijović, Zorica M.
AU  - Zagorac, Dejan
AU  - Jovanović, Milan T.
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5884
AB  - The microstructure variation and oxidation behavior of a hot-rolled and quenched Ti-24Al-11Nb (at%) intermetallic alloy with and without protective Ni-20Cr (at%) coating were studied in the air at a cyclic annealing temperature of 600 °C and 900 °C. The phase transformations monitored up to 120 h of alloy oxidation and oxidation products were examined using different experimental techniques. The oxidation kinetics was determined by recording the mass gain vs. time data and oxidation activation energy was evaluated. It was found that the annealing temperature and deposited coating significantly affect the scale formation and growth. The alloy showed better oxidation resistance at 600 °C, irrespective of the protective coating application. The higher temperature promoted the formation of thicker and multi-layered scale predominantly composed of Nb-doped TiO2 and Al2O3 oxides, which cracked and spalled causing oxidation rate for an order of magnitude higher than that at 600 °C. The presence of AlN decelerated the oxide scale growth, which obeyed a parabolic rate law. It was also noted that a two-phase α2+β microstructure changed to a greater extent. With increasing temperature, the α2→β phase transformation occurred more intensive and new α2′′ and O-Ti2AlNb phase appeared. The Ni-20Cr coating reduced the oxidation rate at both temperatures and improved the scale-spallation resistance. The compact Cr2O3 layer formed on the coated alloy led to the preferential Al2O3 formation, increasing its amount in mixture with Nb-enriched TiO2 oxide. Thin TiN layer detected beneath the oxide scale also supported the formation of slow-growing Al2O3, leading to a decrease in the oxidation rate. The external scale suppression contributed to the greater diffusion zone enrichment, resulting in the faster O-Ti2AlNb formation. The experimentally observed O-Ti2AlNb formation was confirmed by ab initio modeling. Furthermore, additional structures were predicted and studied using first-principles calculations in the O-Ti2AlNb compound. © 2018
T2  - Ceramics International
T1  - Cyclic oxidation of Ti3Al-based materials
EP  - 9438
IS  - 7
SP  - 9423
VL  - 45
DO  - 10.1016/j.ceramint.2018.08.287
ER  - 
@article{
author = "Cvijović-Alagić, Ivana and Cvijović, Zorica M. and Zagorac, Dejan and Jovanović, Milan T.",
year = "2019",
abstract = "The microstructure variation and oxidation behavior of a hot-rolled and quenched Ti-24Al-11Nb (at%) intermetallic alloy with and without protective Ni-20Cr (at%) coating were studied in the air at a cyclic annealing temperature of 600 °C and 900 °C. The phase transformations monitored up to 120 h of alloy oxidation and oxidation products were examined using different experimental techniques. The oxidation kinetics was determined by recording the mass gain vs. time data and oxidation activation energy was evaluated. It was found that the annealing temperature and deposited coating significantly affect the scale formation and growth. The alloy showed better oxidation resistance at 600 °C, irrespective of the protective coating application. The higher temperature promoted the formation of thicker and multi-layered scale predominantly composed of Nb-doped TiO2 and Al2O3 oxides, which cracked and spalled causing oxidation rate for an order of magnitude higher than that at 600 °C. The presence of AlN decelerated the oxide scale growth, which obeyed a parabolic rate law. It was also noted that a two-phase α2+β microstructure changed to a greater extent. With increasing temperature, the α2→β phase transformation occurred more intensive and new α2′′ and O-Ti2AlNb phase appeared. The Ni-20Cr coating reduced the oxidation rate at both temperatures and improved the scale-spallation resistance. The compact Cr2O3 layer formed on the coated alloy led to the preferential Al2O3 formation, increasing its amount in mixture with Nb-enriched TiO2 oxide. Thin TiN layer detected beneath the oxide scale also supported the formation of slow-growing Al2O3, leading to a decrease in the oxidation rate. The external scale suppression contributed to the greater diffusion zone enrichment, resulting in the faster O-Ti2AlNb formation. The experimentally observed O-Ti2AlNb formation was confirmed by ab initio modeling. Furthermore, additional structures were predicted and studied using first-principles calculations in the O-Ti2AlNb compound. © 2018",
journal = "Ceramics International",
title = "Cyclic oxidation of Ti3Al-based materials",
pages = "9438-9423",
number = "7",
volume = "45",
doi = "10.1016/j.ceramint.2018.08.287"
}
Cvijović-Alagić, I., Cvijović, Z. M., Zagorac, D.,& Jovanović, M. T.. (2019). Cyclic oxidation of Ti3Al-based materials. in Ceramics International, 45(7), 9423-9438.
https://doi.org/10.1016/j.ceramint.2018.08.287
Cvijović-Alagić I, Cvijović ZM, Zagorac D, Jovanović MT. Cyclic oxidation of Ti3Al-based materials. in Ceramics International. 2019;45(7):9423-9438.
doi:10.1016/j.ceramint.2018.08.287 .
Cvijović-Alagić, Ivana, Cvijović, Zorica M., Zagorac, Dejan, Jovanović, Milan T., "Cyclic oxidation of Ti3Al-based materials" in Ceramics International, 45, no. 7 (2019):9423-9438,
https://doi.org/10.1016/j.ceramint.2018.08.287 . .
9
5
11

Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures

Luković, Jelena M.; Zagorac, Dejan; Schoen, J. Christian; Zagorac, Jelena B.; Jordanov, Dragana; Volkov-Husović, Tatjana; Matović, Branko

(Wiley-VCH Verlag Gmbh, Weinheim, 2017)

TY  - JOUR
AU  - Luković, Jelena M.
AU  - Zagorac, Dejan
AU  - Schoen, J. Christian
AU  - Zagorac, Jelena B.
AU  - Jordanov, Dragana
AU  - Volkov-Husović, Tatjana
AU  - Matović, Branko
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3599
AB  - Transition metal silicides have attracted great attention due to their potential applications in microelectronics, ceramics, and the aerospace industry. In this study, experimental and theoretical investigations of tungsten based silicides were performed. Tungsten disilicide (WSi2) was synthesized by simple thermal treatment at 1350 degrees C for 4 h in an argon atmosphere. These optimal synthesis conditions were obtained by variation of temperatures and times of heating, and the structure of the final synthesized compound was determined by XRPD analysis. In addition, new modifications for WSi2 were proposed and investigated using first-principles calculations within density-functional theory (DFT). Both LDA and PBE calculations show excellent agreement with experimental observations and previous calculations for the existing modifications, where available.
PB  - Wiley-VCH Verlag Gmbh, Weinheim
T2  - Zeitschrift Fur Anorganische Und Allgemeine Chemie
T1  - Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures
EP  - 2094
IS  - 23
SP  - 2088
VL  - 643
DO  - 10.1002/zaac.201700329
ER  - 
@article{
author = "Luković, Jelena M. and Zagorac, Dejan and Schoen, J. Christian and Zagorac, Jelena B. and Jordanov, Dragana and Volkov-Husović, Tatjana and Matović, Branko",
year = "2017",
abstract = "Transition metal silicides have attracted great attention due to their potential applications in microelectronics, ceramics, and the aerospace industry. In this study, experimental and theoretical investigations of tungsten based silicides were performed. Tungsten disilicide (WSi2) was synthesized by simple thermal treatment at 1350 degrees C for 4 h in an argon atmosphere. These optimal synthesis conditions were obtained by variation of temperatures and times of heating, and the structure of the final synthesized compound was determined by XRPD analysis. In addition, new modifications for WSi2 were proposed and investigated using first-principles calculations within density-functional theory (DFT). Both LDA and PBE calculations show excellent agreement with experimental observations and previous calculations for the existing modifications, where available.",
publisher = "Wiley-VCH Verlag Gmbh, Weinheim",
journal = "Zeitschrift Fur Anorganische Und Allgemeine Chemie",
title = "Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures",
pages = "2094-2088",
number = "23",
volume = "643",
doi = "10.1002/zaac.201700329"
}
Luković, J. M., Zagorac, D., Schoen, J. C., Zagorac, J. B., Jordanov, D., Volkov-Husović, T.,& Matović, B.. (2017). Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures. in Zeitschrift Fur Anorganische Und Allgemeine Chemie
Wiley-VCH Verlag Gmbh, Weinheim., 643(23), 2088-2094.
https://doi.org/10.1002/zaac.201700329
Luković JM, Zagorac D, Schoen JC, Zagorac JB, Jordanov D, Volkov-Husović T, Matović B. Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures. in Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2017;643(23):2088-2094.
doi:10.1002/zaac.201700329 .
Luković, Jelena M., Zagorac, Dejan, Schoen, J. Christian, Zagorac, Jelena B., Jordanov, Dragana, Volkov-Husović, Tatjana, Matović, Branko, "Tungsten Disilicide (WSi2): Synthesis, Characterization, and Prediction of New Crystal Structures" in Zeitschrift Fur Anorganische Und Allgemeine Chemie, 643, no. 23 (2017):2088-2094,
https://doi.org/10.1002/zaac.201700329 . .
17
12
18