Hristara, Veroniki

Link to this page

Authority KeyName Variants
99e5606e-4b6e-4041-b4b6-106dcc4946ab
  • Hristara, Veroniki (1)
Projects

Author's Bibliography

Composite hydrogels based on gelatin, hydroxypropyl methylcellulose and Mg-doped biphasic calcium phosphate for biomedical applications

Ugrinović, Vukašin; Hristara, Veroniki; Marković, Maja; Petrović, Predrag; Petrović, Rada; Janaćković, Đorđe; Veljović, Đorđe

(Materials Research Society of Serbia, Belgrade, Serbia, 2022)

TY  - CONF
AU  - Ugrinović, Vukašin
AU  - Hristara, Veroniki
AU  - Marković, Maja
AU  - Petrović, Predrag
AU  - Petrović, Rada
AU  - Janaćković, Đorđe
AU  - Veljović, Đorđe
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5240
AB  - Hydrogels are three-dimensional hydrophilic networks of polymers capable of retaining large
amounts of water or biological fluids, which makes them attractive for biomedical and
pharmaceutical applications. Although various types of polymers have been investigated as
hydrogels for biomedical purposes, those obtained from natural polymers have intrinsic
advantages as they are abundant, cheap, biocompatible and biodegradable. Gelatin is a natural
polymer that has been applied in biomedicine due to its low price, biocompatibility, and
biodegradability. HPMC, a derivative of cellulose, is a hydrophilic, biodegradable, and
biocompatible polymer. However, natural polymer-based hydrogels have low mechanical
properties and are relatively soluble in physiological conditions, which requires creative crosslinking strategies to improve the functionality of the hydrogels. The citric acid (CA) is an
inexpensive and non-toxic compound that has been proven to be an effective crosslinker for
natural polymers. In addition, the incorporation of bioactive calcium phosphate particles could
further improve mechanical properties and add new functionalities to the hydrogels.
In this work, we present novel composite hydrogels for biomedical applications, based on CAcrosslinked gelatin/HPMC (HPMC-G) matrix and Mg-doped biphasic calcium phosphate filler
(BCP). Firstly, the HPMC-G hydrogels crosslinking conditions were optimized. Different CA
concentrations, curing temperatures (140-180°C) and times (3-9 min) were applied. During the
second step, the optimaly crosslinked HPMC-G hydrogel was incorporated with different amounts
of BCP. BCP was obtained by calcination of Mg-doped hydroxyapatite (HA) powder synthesized
by the hydrothermal method. XRD analysis confirmed that powder was constituted only of HA
and beta-tricalcium phosphate. The obtained composite hydrogels were characterized by
mechanical testing, FTIR, SEM, swelling behavior and drug deliverability.
PB  - Materials Research Society of Serbia, Belgrade, Serbia
C3  - TWENTY THIRD ANNUAL CONFERENCE - YUCOMAT 2022, Herceg Novi, Montenegro
T1  - Composite hydrogels based on gelatin, hydroxypropyl methylcellulose and Mg-doped biphasic calcium phosphate for biomedical applications
UR  - https://hdl.handle.net/21.15107/rcub_technorep_5240
ER  - 
@conference{
author = "Ugrinović, Vukašin and Hristara, Veroniki and Marković, Maja and Petrović, Predrag and Petrović, Rada and Janaćković, Đorđe and Veljović, Đorđe",
year = "2022",
abstract = "Hydrogels are three-dimensional hydrophilic networks of polymers capable of retaining large
amounts of water or biological fluids, which makes them attractive for biomedical and
pharmaceutical applications. Although various types of polymers have been investigated as
hydrogels for biomedical purposes, those obtained from natural polymers have intrinsic
advantages as they are abundant, cheap, biocompatible and biodegradable. Gelatin is a natural
polymer that has been applied in biomedicine due to its low price, biocompatibility, and
biodegradability. HPMC, a derivative of cellulose, is a hydrophilic, biodegradable, and
biocompatible polymer. However, natural polymer-based hydrogels have low mechanical
properties and are relatively soluble in physiological conditions, which requires creative crosslinking strategies to improve the functionality of the hydrogels. The citric acid (CA) is an
inexpensive and non-toxic compound that has been proven to be an effective crosslinker for
natural polymers. In addition, the incorporation of bioactive calcium phosphate particles could
further improve mechanical properties and add new functionalities to the hydrogels.
In this work, we present novel composite hydrogels for biomedical applications, based on CAcrosslinked gelatin/HPMC (HPMC-G) matrix and Mg-doped biphasic calcium phosphate filler
(BCP). Firstly, the HPMC-G hydrogels crosslinking conditions were optimized. Different CA
concentrations, curing temperatures (140-180°C) and times (3-9 min) were applied. During the
second step, the optimaly crosslinked HPMC-G hydrogel was incorporated with different amounts
of BCP. BCP was obtained by calcination of Mg-doped hydroxyapatite (HA) powder synthesized
by the hydrothermal method. XRD analysis confirmed that powder was constituted only of HA
and beta-tricalcium phosphate. The obtained composite hydrogels were characterized by
mechanical testing, FTIR, SEM, swelling behavior and drug deliverability.",
publisher = "Materials Research Society of Serbia, Belgrade, Serbia",
journal = "TWENTY THIRD ANNUAL CONFERENCE - YUCOMAT 2022, Herceg Novi, Montenegro",
title = "Composite hydrogels based on gelatin, hydroxypropyl methylcellulose and Mg-doped biphasic calcium phosphate for biomedical applications",
url = "https://hdl.handle.net/21.15107/rcub_technorep_5240"
}
Ugrinović, V., Hristara, V., Marković, M., Petrović, P., Petrović, R., Janaćković, Đ.,& Veljović, Đ.. (2022). Composite hydrogels based on gelatin, hydroxypropyl methylcellulose and Mg-doped biphasic calcium phosphate for biomedical applications. in TWENTY THIRD ANNUAL CONFERENCE - YUCOMAT 2022, Herceg Novi, Montenegro
Materials Research Society of Serbia, Belgrade, Serbia..
https://hdl.handle.net/21.15107/rcub_technorep_5240
Ugrinović V, Hristara V, Marković M, Petrović P, Petrović R, Janaćković Đ, Veljović Đ. Composite hydrogels based on gelatin, hydroxypropyl methylcellulose and Mg-doped biphasic calcium phosphate for biomedical applications. in TWENTY THIRD ANNUAL CONFERENCE - YUCOMAT 2022, Herceg Novi, Montenegro. 2022;.
https://hdl.handle.net/21.15107/rcub_technorep_5240 .
Ugrinović, Vukašin, Hristara, Veroniki, Marković, Maja, Petrović, Predrag, Petrović, Rada, Janaćković, Đorđe, Veljović, Đorđe, "Composite hydrogels based on gelatin, hydroxypropyl methylcellulose and Mg-doped biphasic calcium phosphate for biomedical applications" in TWENTY THIRD ANNUAL CONFERENCE - YUCOMAT 2022, Herceg Novi, Montenegro (2022),
https://hdl.handle.net/21.15107/rcub_technorep_5240 .