Mladenović, Ivana O.

Link to this page

Authority KeyName Variants
17e76f77-a11b-4bcd-a2cb-331317ecaf6b
  • Mladenović, Ivana O. (7)

Author's Bibliography

Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles

Alazreg, Asma; Vuksanović, Marija M.; Mladenović, Ivana O.; Egelja, Adela; Janković-Mandić, Ljiljana; Marinković, Aleksandar; Jančić Heinemann, Radmila

(Elsevier B.V., 2024)

TY  - JOUR
AU  - Alazreg, Asma
AU  - Vuksanović, Marija M.
AU  - Mladenović, Ivana O.
AU  - Egelja, Adela
AU  - Janković-Mandić, Ljiljana
AU  - Marinković, Aleksandar
AU  - Jančić Heinemann, Radmila
PY  - 2024
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6694
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6710
AB  - The MgAl-LDH@SiO2 particles are prepared by the coprecipitation of LDH on silica originating from plants.Particles are of submicron size and are well dispersed in the matrix. Composites consisting of PMMA reinforcedwith MgAl-LDH@SiO2 particles have improved hardness and resistance to viscoelastic deformation, as tested bymicrohardness measurements.
PB  - Elsevier B.V.
T2  - Materials Letters
T1  - Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles
SP  - 135354
VL  - 354
DO  - 10.1016/j.matlet.2023.135354
ER  - 
@article{
author = "Alazreg, Asma and Vuksanović, Marija M. and Mladenović, Ivana O. and Egelja, Adela and Janković-Mandić, Ljiljana and Marinković, Aleksandar and Jančić Heinemann, Radmila",
year = "2024",
abstract = "The MgAl-LDH@SiO2 particles are prepared by the coprecipitation of LDH on silica originating from plants.Particles are of submicron size and are well dispersed in the matrix. Composites consisting of PMMA reinforcedwith MgAl-LDH@SiO2 particles have improved hardness and resistance to viscoelastic deformation, as tested bymicrohardness measurements.",
publisher = "Elsevier B.V.",
journal = "Materials Letters",
title = "Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles",
pages = "135354",
volume = "354",
doi = "10.1016/j.matlet.2023.135354"
}
Alazreg, A., Vuksanović, M. M., Mladenović, I. O., Egelja, A., Janković-Mandić, L., Marinković, A.,& Jančić Heinemann, R.. (2024). Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles. in Materials Letters
Elsevier B.V.., 354, 135354.
https://doi.org/10.1016/j.matlet.2023.135354
Alazreg A, Vuksanović MM, Mladenović IO, Egelja A, Janković-Mandić L, Marinković A, Jančić Heinemann R. Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles. in Materials Letters. 2024;354:135354.
doi:10.1016/j.matlet.2023.135354 .
Alazreg, Asma, Vuksanović, Marija M., Mladenović, Ivana O., Egelja, Adela, Janković-Mandić, Ljiljana, Marinković, Aleksandar, Jančić Heinemann, Radmila, "Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles" in Materials Letters, 354 (2024):135354,
https://doi.org/10.1016/j.matlet.2023.135354 . .
1

Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide

Alazreg, Asma; Vuksanović, Marija M.; Egelja, Adela; Mladenović, Ivana O.; Radovanović, Željko; Petrović, Miloš; Marinković, Aleksandar; Jančić Heinemann, Radmila

(John Wiley and Sons Inc., 2023)

TY  - JOUR
AU  - Alazreg, Asma
AU  - Vuksanović, Marija M.
AU  - Egelja, Adela
AU  - Mladenović, Ivana O.
AU  - Radovanović, Željko
AU  - Petrović, Miloš
AU  - Marinković, Aleksandar
AU  - Jančić Heinemann, Radmila
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6589
AB  - Acrylate polymers are used in several applications such as dentistry, medicine, and industry. The modification of their properties using the reinforcement is of key importance for the possible applications. Layered double hydroxides are materials that are easily synthesized by several techniques giving the possibility to modulate the chemical composition and morphology of the reinforcement and they consist of a divalent and a trivalent anion hydroxide and the layers can be exfoliated and thus provide a material interesting for composite reinforcement. In this paper, Mn was used as a divalent and Al as a trivalent cation. The obtained particles were used as reinforcement for the preparation of composites in 1, 3, and 5 wt% quantities and prepared samples were compared to the matrix consisting of PMMA. Physical mechanical properties of the sample having the best mechanical properties (with 3 wt% of MnAl-LDH filers) exhibited 6.38% modulus of elasticity, 27% hardness, and 10% tensile strength improved values compared to the clear PMMA matrix. Toughness was lowered in this sort of composite compared to the pure matrix. Highlights: MnAl-LDH-PMMA composites improved modulus, strength, hardness Loss of toughness is tolerable for 3 wt% reinforcement Viscoelastic properties are improved for composites compared to matrix.
PB  - John Wiley and Sons Inc.
T2  - Polymer Composites
T1  - Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide
DO  - 10.1002/pc.27597
ER  - 
@article{
author = "Alazreg, Asma and Vuksanović, Marija M. and Egelja, Adela and Mladenović, Ivana O. and Radovanović, Željko and Petrović, Miloš and Marinković, Aleksandar and Jančić Heinemann, Radmila",
year = "2023",
abstract = "Acrylate polymers are used in several applications such as dentistry, medicine, and industry. The modification of their properties using the reinforcement is of key importance for the possible applications. Layered double hydroxides are materials that are easily synthesized by several techniques giving the possibility to modulate the chemical composition and morphology of the reinforcement and they consist of a divalent and a trivalent anion hydroxide and the layers can be exfoliated and thus provide a material interesting for composite reinforcement. In this paper, Mn was used as a divalent and Al as a trivalent cation. The obtained particles were used as reinforcement for the preparation of composites in 1, 3, and 5 wt% quantities and prepared samples were compared to the matrix consisting of PMMA. Physical mechanical properties of the sample having the best mechanical properties (with 3 wt% of MnAl-LDH filers) exhibited 6.38% modulus of elasticity, 27% hardness, and 10% tensile strength improved values compared to the clear PMMA matrix. Toughness was lowered in this sort of composite compared to the pure matrix. Highlights: MnAl-LDH-PMMA composites improved modulus, strength, hardness Loss of toughness is tolerable for 3 wt% reinforcement Viscoelastic properties are improved for composites compared to matrix.",
publisher = "John Wiley and Sons Inc.",
journal = "Polymer Composites",
title = "Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide",
doi = "10.1002/pc.27597"
}
Alazreg, A., Vuksanović, M. M., Egelja, A., Mladenović, I. O., Radovanović, Ž., Petrović, M., Marinković, A.,& Jančić Heinemann, R.. (2023). Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide. in Polymer Composites
John Wiley and Sons Inc...
https://doi.org/10.1002/pc.27597
Alazreg A, Vuksanović MM, Egelja A, Mladenović IO, Radovanović Ž, Petrović M, Marinković A, Jančić Heinemann R. Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide. in Polymer Composites. 2023;.
doi:10.1002/pc.27597 .
Alazreg, Asma, Vuksanović, Marija M., Egelja, Adela, Mladenović, Ivana O., Radovanović, Željko, Petrović, Miloš, Marinković, Aleksandar, Jančić Heinemann, Radmila, "Mechanical properties of acrylate matrix composite reinforced with manganese-aluminum layered double hydroxide" in Polymer Composites (2023),
https://doi.org/10.1002/pc.27597 . .
1
1

Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles

Embirsh, Hifa Salah Adeen; Stajčić, Ivana; Gržetić, Jelena; Mladenović, Ivana O.; Anđelković, Boban; Marinković, Aleksandar; Vuksanović, Marija M.

(MDPI, 2023)

TY  - JOUR
AU  - Embirsh, Hifa Salah Adeen
AU  - Stajčić, Ivana
AU  - Gržetić, Jelena
AU  - Mladenović, Ivana O.
AU  - Anđelković, Boban
AU  - Marinković, Aleksandar
AU  - Vuksanović, Marija M.
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6610
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6663
AB  - This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol(PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained fromrice husk. The structural and morphological properties of the obtained particles, b-UPR, as well ascomposites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magneticresonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electronmicroscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanicalproperties of composites was supported by hardness modeling. Improvement of the tensile strengthof the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named“b-UPR/SiO2-V” composite, has been achieved with 88% increase. The thermal aging process appliedto the b-UPR/SiO2-V composite, which simulates use over the product’s lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR).The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of atable top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, aswell as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainablecomposites that are chemically synthesized from renewable sources is important from the aspect ofpreserving the environment and existing resources as well as the extending their life cycle.
PB  - MDPI
T2  - Polymers
T1  - Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles
IS  - 18
SP  - 3756
VL  - 15
DO  - 10.3390/polym15183756
ER  - 
@article{
author = "Embirsh, Hifa Salah Adeen and Stajčić, Ivana and Gržetić, Jelena and Mladenović, Ivana O. and Anđelković, Boban and Marinković, Aleksandar and Vuksanović, Marija M.",
year = "2023",
abstract = "This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol(PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained fromrice husk. The structural and morphological properties of the obtained particles, b-UPR, as well ascomposites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magneticresonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electronmicroscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanicalproperties of composites was supported by hardness modeling. Improvement of the tensile strengthof the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named“b-UPR/SiO2-V” composite, has been achieved with 88% increase. The thermal aging process appliedto the b-UPR/SiO2-V composite, which simulates use over the product’s lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR).The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of atable top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, aswell as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainablecomposites that are chemically synthesized from renewable sources is important from the aspect ofpreserving the environment and existing resources as well as the extending their life cycle.",
publisher = "MDPI",
journal = "Polymers",
title = "Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles",
number = "18",
pages = "3756",
volume = "15",
doi = "10.3390/polym15183756"
}
Embirsh, H. S. A., Stajčić, I., Gržetić, J., Mladenović, I. O., Anđelković, B., Marinković, A.,& Vuksanović, M. M.. (2023). Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. in Polymers
MDPI., 15(18), 3756.
https://doi.org/10.3390/polym15183756
Embirsh HSA, Stajčić I, Gržetić J, Mladenović IO, Anđelković B, Marinković A, Vuksanović MM. Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. in Polymers. 2023;15(18):3756.
doi:10.3390/polym15183756 .
Embirsh, Hifa Salah Adeen, Stajčić, Ivana, Gržetić, Jelena, Mladenović, Ivana O., Anđelković, Boban, Marinković, Aleksandar, Vuksanović, Marija M., "Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles" in Polymers, 15, no. 18 (2023):3756,
https://doi.org/10.3390/polym15183756 . .
8
4

Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles

Mladenović, Ivana O.; Vuksanović, Marija M.; Dimitrijević, Stevan P.; Vasilić, Rastko; Radojević, Vesna J.; Vasiljević-Radović, Dana G.; Nikolić, Nebojša D.

(MDPI, 2023)

TY  - JOUR
AU  - Mladenović, Ivana O.
AU  - Vuksanović, Marija M.
AU  - Dimitrijević, Stevan P.
AU  - Vasilić, Rastko
AU  - Radojević, Vesna J.
AU  - Vasiljević-Radović, Dana G.
AU  - Nikolić, Nebojša D.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7072
AB  - Copper from sulfate baths without and with added inorganic pigment particles based on strontium aluminate doped with europium and dysprosium (SrAl2O4: Eu2+, Dy3+) was electrodeposited on a brass cathode by a galvanostatic regime. Morphological, structural, and roughness analysis of the pigment particles, the pure (pigment-free) Cu coating, and the Cu coatings with incorporated pigment particles were performed using SEM, XRD, and AFM techniques, respectively. Hardness and creep resistance were considered for the examination of the mechanical properties of the Cu coatings, applying Chicot–Lesage (for hardness) and Sargent–Ashby (for creep resistance) mathematical models. The wettability of the Cu coatings was examined by the static sessile drop method by a measurement of the water contact angle. The incorporation of pigment particles in the Cu deposits did not significantly affect the morphology or texture of the coatings, while the roughness of the deposits rose with the rise in pigment particle concentrations. The hardness of the Cu coatings also increased with the increasing concentration of pigments and was greater than that obtained for the pigment-free Cu coating. The presence of the pigments caused a change in the wettability of the Cu coatings from hydrophilic (for the pigment-free Cu coating) to hydrophobic (for Cu coatings with incorporated particles) surface areas.
PB  - MDPI
T2  - Metals
T1  - Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles
IS  - 12
SP  - 1979
VL  - 13
DO  - 10.3390/met13121979
ER  - 
@article{
author = "Mladenović, Ivana O. and Vuksanović, Marija M. and Dimitrijević, Stevan P. and Vasilić, Rastko and Radojević, Vesna J. and Vasiljević-Radović, Dana G. and Nikolić, Nebojša D.",
year = "2023",
abstract = "Copper from sulfate baths without and with added inorganic pigment particles based on strontium aluminate doped with europium and dysprosium (SrAl2O4: Eu2+, Dy3+) was electrodeposited on a brass cathode by a galvanostatic regime. Morphological, structural, and roughness analysis of the pigment particles, the pure (pigment-free) Cu coating, and the Cu coatings with incorporated pigment particles were performed using SEM, XRD, and AFM techniques, respectively. Hardness and creep resistance were considered for the examination of the mechanical properties of the Cu coatings, applying Chicot–Lesage (for hardness) and Sargent–Ashby (for creep resistance) mathematical models. The wettability of the Cu coatings was examined by the static sessile drop method by a measurement of the water contact angle. The incorporation of pigment particles in the Cu deposits did not significantly affect the morphology or texture of the coatings, while the roughness of the deposits rose with the rise in pigment particle concentrations. The hardness of the Cu coatings also increased with the increasing concentration of pigments and was greater than that obtained for the pigment-free Cu coating. The presence of the pigments caused a change in the wettability of the Cu coatings from hydrophilic (for the pigment-free Cu coating) to hydrophobic (for Cu coatings with incorporated particles) surface areas.",
publisher = "MDPI",
journal = "Metals",
title = "Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles",
number = "12",
pages = "1979",
volume = "13",
doi = "10.3390/met13121979"
}
Mladenović, I. O., Vuksanović, M. M., Dimitrijević, S. P., Vasilić, R., Radojević, V. J., Vasiljević-Radović, D. G.,& Nikolić, N. D.. (2023). Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles. in Metals
MDPI., 13(12), 1979.
https://doi.org/10.3390/met13121979
Mladenović IO, Vuksanović MM, Dimitrijević SP, Vasilić R, Radojević VJ, Vasiljević-Radović DG, Nikolić ND. Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles. in Metals. 2023;13(12):1979.
doi:10.3390/met13121979 .
Mladenović, Ivana O., Vuksanović, Marija M., Dimitrijević, Stevan P., Vasilić, Rastko, Radojević, Vesna J., Vasiljević-Radović, Dana G., Nikolić, Nebojša D., "Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles" in Metals, 13, no. 12 (2023):1979,
https://doi.org/10.3390/met13121979 . .
1

Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material

Vuksanović, Marija M.; Mladenović, Ivana O.; Tomić, Nataša Z.; Petrović, Miloš; Radojević, Vesna J.; Marinković, Aleksandar D.; Jančić-Heinemann, Radmila M.

(2022)

TY  - JOUR
AU  - Vuksanović, Marija M.
AU  - Mladenović, Ivana O.
AU  - Tomić, Nataša Z.
AU  - Petrović, Miloš
AU  - Radojević, Vesna J.
AU  - Marinković, Aleksandar D.
AU  - Jančić-Heinemann, Radmila M.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5172
AB  - Rice husk was used to produce silica particles, which were then used to reinforce the polymer matrix. The synthesized SiO2 particles were characterized using X-ray diffraction, Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy with EDS. In a PMMA matrix, prepared SiO2 particles in amounts of 1, 3, and 5 wt.% were used as reinforcing agents. The goal of this research was to see if SiO2 particles had any effect on the mechanical properties of polymer composite materials. The morphology of the composites was examined using a field emission scanning electron microscope (FE-SEM). Vickers microindentation hardness and impact testing were used to determine the mechanical properties of the obtained composites. The indentation creep’s behavior of a polymethylmetacrylate (PMMA) composite material with varying amounts of nanoparticles (SiO2) was investigated and analyzed.
T2  - Science of Sintering
T1  - Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material
IS  - 2
VL  - 54
DO  - 10.2298/SOS2202211V
ER  - 
@article{
author = "Vuksanović, Marija M. and Mladenović, Ivana O. and Tomić, Nataša Z. and Petrović, Miloš and Radojević, Vesna J. and Marinković, Aleksandar D. and Jančić-Heinemann, Radmila M.",
year = "2022",
abstract = "Rice husk was used to produce silica particles, which were then used to reinforce the polymer matrix. The synthesized SiO2 particles were characterized using X-ray diffraction, Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy with EDS. In a PMMA matrix, prepared SiO2 particles in amounts of 1, 3, and 5 wt.% were used as reinforcing agents. The goal of this research was to see if SiO2 particles had any effect on the mechanical properties of polymer composite materials. The morphology of the composites was examined using a field emission scanning electron microscope (FE-SEM). Vickers microindentation hardness and impact testing were used to determine the mechanical properties of the obtained composites. The indentation creep’s behavior of a polymethylmetacrylate (PMMA) composite material with varying amounts of nanoparticles (SiO2) was investigated and analyzed.",
journal = "Science of Sintering",
title = "Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material",
number = "2",
volume = "54",
doi = "10.2298/SOS2202211V"
}
Vuksanović, M. M., Mladenović, I. O., Tomić, N. Z., Petrović, M., Radojević, V. J., Marinković, A. D.,& Jančić-Heinemann, R. M.. (2022). Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material. in Science of Sintering, 54(2).
https://doi.org/10.2298/SOS2202211V
Vuksanović MM, Mladenović IO, Tomić NZ, Petrović M, Radojević VJ, Marinković AD, Jančić-Heinemann RM. Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material. in Science of Sintering. 2022;54(2).
doi:10.2298/SOS2202211V .
Vuksanović, Marija M., Mladenović, Ivana O., Tomić, Nataša Z., Petrović, Miloš, Radojević, Vesna J., Marinković, Aleksandar D., Jančić-Heinemann, Radmila M., "Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material" in Science of Sintering, 54, no. 2 (2022),
https://doi.org/10.2298/SOS2202211V . .
7
6

Influence of intensity of ultrasound on morphology and hardness of copper coatings obtained by electrodeposition

Mladenović, Ivana O.; Lamovec, Jelena S.; Radović, Dana G. Vasiljević; Radojević, Vesna J.; Nikolić, Nebojša D.

(International Association of Physical Chemists, 2022)

TY  - JOUR
AU  - Mladenović, Ivana O.
AU  - Lamovec, Jelena S.
AU  - Radović, Dana G. Vasiljević
AU  - Radojević, Vesna J.
AU  - Nikolić, Nebojša D.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5225
AB  - The influence of various intensities of ultrasound applied for the electrolyte stirring on morphological and mechanical characteristics of electrolytically produced copper coatings has been investigated. The copper coatings produced by the galvanostatic regime of the electrodeposition from the basic sulphate electrolyte and the electrolyte with added levelling/brightening additives at the low temperature were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques (surface morphology and topography, respectively) and by Vickers microindentation (hardness). The roughness of coatings increased with the increasing intensity of ultrasound, indicating that morphology of the coatings worsened with the enhanced application of ultrasonic waves. This is attributed to the strong effect of ultrasound on hydrodynamic conditions in the near-electrode layer, which is manifested by the increase of share of the activation control in the mixed activation-diffusion control of electrodeposition with increasing the intensity of ultrasound. The concept of "effective overpotential" originally proposed to explain a change of surface morphology in the conditions of vigorous hydrogen evolution is also applicable for a change of morphology of Cu coatings under the imposed effect of ultrasonic waves. Hardness analysis of the coatings showed that an intensity of applied ultrasound did not have any significant effect on the hardness, especially for the Cu coatings produced from the basic sulphate electrolyte.
PB  - International Association of Physical Chemists
T2  - Journal of Electrochemical Science and Engineering
T1  - Influence of intensity of ultrasound on morphology and hardness of copper coatings obtained by electrodeposition
EP  - 615
IS  - 4
SP  - 603
VL  - 12
DO  - 10.5599/jese.1290
ER  - 
@article{
author = "Mladenović, Ivana O. and Lamovec, Jelena S. and Radović, Dana G. Vasiljević and Radojević, Vesna J. and Nikolić, Nebojša D.",
year = "2022",
abstract = "The influence of various intensities of ultrasound applied for the electrolyte stirring on morphological and mechanical characteristics of electrolytically produced copper coatings has been investigated. The copper coatings produced by the galvanostatic regime of the electrodeposition from the basic sulphate electrolyte and the electrolyte with added levelling/brightening additives at the low temperature were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques (surface morphology and topography, respectively) and by Vickers microindentation (hardness). The roughness of coatings increased with the increasing intensity of ultrasound, indicating that morphology of the coatings worsened with the enhanced application of ultrasonic waves. This is attributed to the strong effect of ultrasound on hydrodynamic conditions in the near-electrode layer, which is manifested by the increase of share of the activation control in the mixed activation-diffusion control of electrodeposition with increasing the intensity of ultrasound. The concept of "effective overpotential" originally proposed to explain a change of surface morphology in the conditions of vigorous hydrogen evolution is also applicable for a change of morphology of Cu coatings under the imposed effect of ultrasonic waves. Hardness analysis of the coatings showed that an intensity of applied ultrasound did not have any significant effect on the hardness, especially for the Cu coatings produced from the basic sulphate electrolyte.",
publisher = "International Association of Physical Chemists",
journal = "Journal of Electrochemical Science and Engineering",
title = "Influence of intensity of ultrasound on morphology and hardness of copper coatings obtained by electrodeposition",
pages = "615-603",
number = "4",
volume = "12",
doi = "10.5599/jese.1290"
}
Mladenović, I. O., Lamovec, J. S., Radović, D. G. V., Radojević, V. J.,& Nikolić, N. D.. (2022). Influence of intensity of ultrasound on morphology and hardness of copper coatings obtained by electrodeposition. in Journal of Electrochemical Science and Engineering
International Association of Physical Chemists., 12(4), 603-615.
https://doi.org/10.5599/jese.1290
Mladenović IO, Lamovec JS, Radović DGV, Radojević VJ, Nikolić ND. Influence of intensity of ultrasound on morphology and hardness of copper coatings obtained by electrodeposition. in Journal of Electrochemical Science and Engineering. 2022;12(4):603-615.
doi:10.5599/jese.1290 .
Mladenović, Ivana O., Lamovec, Jelena S., Radović, Dana G. Vasiljević, Radojević, Vesna J., Nikolić, Nebojša D., "Influence of intensity of ultrasound on morphology and hardness of copper coatings obtained by electrodeposition" in Journal of Electrochemical Science and Engineering, 12, no. 4 (2022):603-615,
https://doi.org/10.5599/jese.1290 . .
3
2

Determination of the absolute hardness of electrolytically produced copper coatings by application of the Chicot–Lesage composite hardness model

Mladenović, Ivana O.; Lamovec, Jelena S.; Vasiljević-Radović, Dana; Radojević, Vesna; Nikolić, Nebojša D.

(Serbian Chemical Society, 2022)

TY  - JOUR
AU  - Mladenović, Ivana O.
AU  - Lamovec, Jelena S.
AU  - Vasiljević-Radović, Dana
AU  - Radojević, Vesna
AU  - Nikolić, Nebojša D.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5326
AB  - In this study, a novel procedure, based on application of the Chicot––Lesage (C–L) composite hardness model, was proposed for the determination of an absolute hardness of electrolytically produced copper coatings. The Cu coatings were electrodeposited on the Si(111) substrate by the pulsating current (PC) regime with a variation of the following parameters: the pause duration, the current density amplitude and the coating thickness. The topography of produced coatings was characterized by atomic force microscope (AFM), while a hardness of the coatings was examined by Vickers microindentation test. Applying the C–L model, the critical relative indentation depth (RID)c of 0.14 was determined, which is independent of all examined parameters of the PC regime. This RID value separated the area in which the composite hardness of the Cu coating corresponded to its absolute hardness (RID < 0.14) from the area in which the application of the C–L model was necessary for a determination of the absolute coating hardness (RID ≥ 0.14). The obtained value was in a good agreement with the value already published in the literature.
AB  - Предложен je нови поступак заснован на примени Chicot–Lesage (C–L) композитног модела тврдоће за одређивање апсолутне тврдоће електролитички добијених превлака бакра. Превлаке бакра су електрохемијски исталожене на силицијуму (111) оријентације режимом пулсирајуће струје варирањем следећих параметара: трајање паузе,
амплитудна густина струје и дебљина превлаке. Топографија произведених превлака је
окарактерисана микроскопијом атомских сила, док је тврдоћа превлака испитивана Викерсовим тестом утискивања. Применом C–L композитног модела тврдоће, одређена је
критична релативна дубина утискивања (RID)c, од 0,14, која је независна од свих испитиваних параметара режима пулсирајуће струје. Ова вредност раздваја област у којој композитна тврдоћа превлаке може да се изједначи са њеном апсолутном тврдоћом (RID < 0,14) од области у којој је неопходно применити C–L модел за одређивање апсолутне
тврдоће превлаке (RID ≥ 0,14). Добијена вредност RID показује добро слагање са вредностима публикованим у литератури.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Determination of the absolute hardness of electrolytically produced copper coatings by application of the Chicot–Lesage composite hardness model
T1  - ОДРЕЂИВАЊЕ АПСОЛУТНЕ ТВРДОЋЕ ЕЛЕКТРОЛИТИЧКИ ДОБИЈЕНИХ ПРЕВЛАКА БАКРА ПРИМЕНОМ CHICOT–LESAGE КОМПОЗИТНОГ МОДЕЛА ТВРДОЋЕ
EP  - 910
IS  - 7-8
SP  - 899
VL  - 87
DO  - 10.2298/JSC211014105M
ER  - 
@article{
author = "Mladenović, Ivana O. and Lamovec, Jelena S. and Vasiljević-Radović, Dana and Radojević, Vesna and Nikolić, Nebojša D.",
year = "2022",
abstract = "In this study, a novel procedure, based on application of the Chicot––Lesage (C–L) composite hardness model, was proposed for the determination of an absolute hardness of electrolytically produced copper coatings. The Cu coatings were electrodeposited on the Si(111) substrate by the pulsating current (PC) regime with a variation of the following parameters: the pause duration, the current density amplitude and the coating thickness. The topography of produced coatings was characterized by atomic force microscope (AFM), while a hardness of the coatings was examined by Vickers microindentation test. Applying the C–L model, the critical relative indentation depth (RID)c of 0.14 was determined, which is independent of all examined parameters of the PC regime. This RID value separated the area in which the composite hardness of the Cu coating corresponded to its absolute hardness (RID < 0.14) from the area in which the application of the C–L model was necessary for a determination of the absolute coating hardness (RID ≥ 0.14). The obtained value was in a good agreement with the value already published in the literature., Предложен je нови поступак заснован на примени Chicot–Lesage (C–L) композитног модела тврдоће за одређивање апсолутне тврдоће електролитички добијених превлака бакра. Превлаке бакра су електрохемијски исталожене на силицијуму (111) оријентације режимом пулсирајуће струје варирањем следећих параметара: трајање паузе,
амплитудна густина струје и дебљина превлаке. Топографија произведених превлака је
окарактерисана микроскопијом атомских сила, док је тврдоћа превлака испитивана Викерсовим тестом утискивања. Применом C–L композитног модела тврдоће, одређена је
критична релативна дубина утискивања (RID)c, од 0,14, која је независна од свих испитиваних параметара режима пулсирајуће струје. Ова вредност раздваја област у којој композитна тврдоћа превлаке може да се изједначи са њеном апсолутном тврдоћом (RID < 0,14) од области у којој је неопходно применити C–L модел за одређивање апсолутне
тврдоће превлаке (RID ≥ 0,14). Добијена вредност RID показује добро слагање са вредностима публикованим у литератури.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Determination of the absolute hardness of electrolytically produced copper coatings by application of the Chicot–Lesage composite hardness model, ОДРЕЂИВАЊЕ АПСОЛУТНЕ ТВРДОЋЕ ЕЛЕКТРОЛИТИЧКИ ДОБИЈЕНИХ ПРЕВЛАКА БАКРА ПРИМЕНОМ CHICOT–LESAGE КОМПОЗИТНОГ МОДЕЛА ТВРДОЋЕ",
pages = "910-899",
number = "7-8",
volume = "87",
doi = "10.2298/JSC211014105M"
}
Mladenović, I. O., Lamovec, J. S., Vasiljević-Radović, D., Radojević, V.,& Nikolić, N. D.. (2022). Determination of the absolute hardness of electrolytically produced copper coatings by application of the Chicot–Lesage composite hardness model. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 87(7-8), 899-910.
https://doi.org/10.2298/JSC211014105M
Mladenović IO, Lamovec JS, Vasiljević-Radović D, Radojević V, Nikolić ND. Determination of the absolute hardness of electrolytically produced copper coatings by application of the Chicot–Lesage composite hardness model. in Journal of the Serbian Chemical Society. 2022;87(7-8):899-910.
doi:10.2298/JSC211014105M .
Mladenović, Ivana O., Lamovec, Jelena S., Vasiljević-Radović, Dana, Radojević, Vesna, Nikolić, Nebojša D., "Determination of the absolute hardness of electrolytically produced copper coatings by application of the Chicot–Lesage composite hardness model" in Journal of the Serbian Chemical Society, 87, no. 7-8 (2022):899-910,
https://doi.org/10.2298/JSC211014105M . .
3
1
4