Đuriš, Jelena

Link to this page

Authority KeyName Variants
orcid::0000-0002-1833-6704
  • Đuriš, Jelena (4)

Author's Bibliography

Intraoral administration of probiotics and postbiotics: An overview of microorganisms and formulation strategies

Bogdanović, Mihajlo; Mladenović, Dragana; Mojović, Ljiljana; Đuriš, Jelena; Đukić-Vuković, Aleksandra

(Faculty of Pharmaceutical Sciences of the University of São Paulo, 2024)

TY  - JOUR
AU  - Bogdanović, Mihajlo
AU  - Mladenović, Dragana
AU  - Mojović, Ljiljana
AU  - Đuriš, Jelena
AU  - Đukić-Vuković, Aleksandra
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7346
AB  - The last decade provided significant advances in the understanding of microbiota and its role in human health. Probiotics are live microorganisms with proven benefits for the host and were mostly studied in the context of gut health, but they can also confer significant benefits for oral health, mainly in the treatment of gingivitis. Postbiotics are cell-free extracts and metabolites of microorganisms which can provide additional preventive and therapeutic value for human health. This opens opportunities for new preventive or therapeutic formulations for oral administration. The microorganisms that colonize the oral cavity, their role in oral health and disease, as well as the probiotics and postbiotics which could have beneficial effects in this complex environment were discussed. The aim of this study was to review, analyse and discuss novel probiotic and postbiotic formulations intended for oral administration that could be of great preventive and therapeutic importance. A special attention has been put on the formulation of the pharmaceutical dosage forms that are expected to provide new benefits for the patients and technological advantages relevant for industry. An adequate dosage form could significantly enhance the efficiency of these products.
PB  - Faculty of Pharmaceutical Sciences of the University of São Paulo
T2  - Brazilian Journal of Pharmaceutical Sciences
T1  - Intraoral administration of probiotics and postbiotics: An overview of microorganisms and formulation strategies
SP  - e23272
VL  - 60
DO  - 10.1590/s2175-97902024e23272
ER  - 
@article{
author = "Bogdanović, Mihajlo and Mladenović, Dragana and Mojović, Ljiljana and Đuriš, Jelena and Đukić-Vuković, Aleksandra",
year = "2024",
abstract = "The last decade provided significant advances in the understanding of microbiota and its role in human health. Probiotics are live microorganisms with proven benefits for the host and were mostly studied in the context of gut health, but they can also confer significant benefits for oral health, mainly in the treatment of gingivitis. Postbiotics are cell-free extracts and metabolites of microorganisms which can provide additional preventive and therapeutic value for human health. This opens opportunities for new preventive or therapeutic formulations for oral administration. The microorganisms that colonize the oral cavity, their role in oral health and disease, as well as the probiotics and postbiotics which could have beneficial effects in this complex environment were discussed. The aim of this study was to review, analyse and discuss novel probiotic and postbiotic formulations intended for oral administration that could be of great preventive and therapeutic importance. A special attention has been put on the formulation of the pharmaceutical dosage forms that are expected to provide new benefits for the patients and technological advantages relevant for industry. An adequate dosage form could significantly enhance the efficiency of these products.",
publisher = "Faculty of Pharmaceutical Sciences of the University of São Paulo",
journal = "Brazilian Journal of Pharmaceutical Sciences",
title = "Intraoral administration of probiotics and postbiotics: An overview of microorganisms and formulation strategies",
pages = "e23272",
volume = "60",
doi = "10.1590/s2175-97902024e23272"
}
Bogdanović, M., Mladenović, D., Mojović, L., Đuriš, J.,& Đukić-Vuković, A.. (2024). Intraoral administration of probiotics and postbiotics: An overview of microorganisms and formulation strategies. in Brazilian Journal of Pharmaceutical Sciences
Faculty of Pharmaceutical Sciences of the University of São Paulo., 60, e23272.
https://doi.org/10.1590/s2175-97902024e23272
Bogdanović M, Mladenović D, Mojović L, Đuriš J, Đukić-Vuković A. Intraoral administration of probiotics and postbiotics: An overview of microorganisms and formulation strategies. in Brazilian Journal of Pharmaceutical Sciences. 2024;60:e23272.
doi:10.1590/s2175-97902024e23272 .
Bogdanović, Mihajlo, Mladenović, Dragana, Mojović, Ljiljana, Đuriš, Jelena, Đukić-Vuković, Aleksandra, "Intraoral administration of probiotics and postbiotics: An overview of microorganisms and formulation strategies" in Brazilian Journal of Pharmaceutical Sciences, 60 (2024):e23272,
https://doi.org/10.1590/s2175-97902024e23272 . .

Tableting properties of microcrystalline cellulose obtained from wheat straw measured with a single punch bench top tablet press

Krivokapić, Jovana; Ivanović, Jasna; Đuriš, Jelena; Medarević, Đorđe; Potpara, Zorica; Maksimović, Zoran; Ibrić, Svetlana

(Elsevier B.V., 2020)

TY  - JOUR
AU  - Krivokapić, Jovana
AU  - Ivanović, Jasna
AU  - Đuriš, Jelena
AU  - Medarević, Đorđe
AU  - Potpara, Zorica
AU  - Maksimović, Zoran
AU  - Ibrić, Svetlana
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5900
AB  - The objective of this work was to study the relation between the manufacturing conditions of microcrystalline cellulose (MCC), its physicochemical properties and its tableting behavior. Two different preparation procedures were used to produce MCC from wheat straw, utilizing an acid hydrolysis method, either using only sulfuric acid or combination of sulfuric and hydrochloric acid. The tableting behavior of obtained MCC samples and mixtures of MCC with ibuprofen was studied using a dynamic powder compaction analyzer. It was observed that some of the obtained MCC samples showed better flowing properties than commercially available Vivapur® PH101 and also very high values of tensile strength, solid fraction and elastic recovery. This can be linked with its good compaction behavior, but on the other hand it can cause problems with the disintegration of the tablets. In mixtures with ibuprofen, MCC samples showed lower values of tensile strength, while on the other hand elastic recovery did not seem to be much affected, still exhibiting very high values. According to the obtained results, it can be concluded that MCC obtained from the agricultural waste could have satisfactory properties for tablet preparation by the direct compression method. Further studies are needed to optimize process conditions in order to achieve better physicochemical characteristics, especially in terms of elastic recovery.
PB  - Elsevier B.V.
T2  - Saudi Pharmaceutical Journal
T1  - Tableting properties of microcrystalline cellulose obtained from wheat straw measured with a single punch bench top tablet press
EP  - 718
SP  - 710
VL  - 2
DO  - 10.1016/j.jsps.2020.04.013
ER  - 
@article{
author = "Krivokapić, Jovana and Ivanović, Jasna and Đuriš, Jelena and Medarević, Đorđe and Potpara, Zorica and Maksimović, Zoran and Ibrić, Svetlana",
year = "2020",
abstract = "The objective of this work was to study the relation between the manufacturing conditions of microcrystalline cellulose (MCC), its physicochemical properties and its tableting behavior. Two different preparation procedures were used to produce MCC from wheat straw, utilizing an acid hydrolysis method, either using only sulfuric acid or combination of sulfuric and hydrochloric acid. The tableting behavior of obtained MCC samples and mixtures of MCC with ibuprofen was studied using a dynamic powder compaction analyzer. It was observed that some of the obtained MCC samples showed better flowing properties than commercially available Vivapur® PH101 and also very high values of tensile strength, solid fraction and elastic recovery. This can be linked with its good compaction behavior, but on the other hand it can cause problems with the disintegration of the tablets. In mixtures with ibuprofen, MCC samples showed lower values of tensile strength, while on the other hand elastic recovery did not seem to be much affected, still exhibiting very high values. According to the obtained results, it can be concluded that MCC obtained from the agricultural waste could have satisfactory properties for tablet preparation by the direct compression method. Further studies are needed to optimize process conditions in order to achieve better physicochemical characteristics, especially in terms of elastic recovery.",
publisher = "Elsevier B.V.",
journal = "Saudi Pharmaceutical Journal",
title = "Tableting properties of microcrystalline cellulose obtained from wheat straw measured with a single punch bench top tablet press",
pages = "718-710",
volume = "2",
doi = "10.1016/j.jsps.2020.04.013"
}
Krivokapić, J., Ivanović, J., Đuriš, J., Medarević, Đ., Potpara, Z., Maksimović, Z.,& Ibrić, S.. (2020). Tableting properties of microcrystalline cellulose obtained from wheat straw measured with a single punch bench top tablet press. in Saudi Pharmaceutical Journal
Elsevier B.V.., 2, 710-718.
https://doi.org/10.1016/j.jsps.2020.04.013
Krivokapić J, Ivanović J, Đuriš J, Medarević Đ, Potpara Z, Maksimović Z, Ibrić S. Tableting properties of microcrystalline cellulose obtained from wheat straw measured with a single punch bench top tablet press. in Saudi Pharmaceutical Journal. 2020;2:710-718.
doi:10.1016/j.jsps.2020.04.013 .
Krivokapić, Jovana, Ivanović, Jasna, Đuriš, Jelena, Medarević, Đorđe, Potpara, Zorica, Maksimović, Zoran, Ibrić, Svetlana, "Tableting properties of microcrystalline cellulose obtained from wheat straw measured with a single punch bench top tablet press" in Saudi Pharmaceutical Journal, 2 (2020):710-718,
https://doi.org/10.1016/j.jsps.2020.04.013 . .
11
2
10

Soluplus (R), Eudragit (R), HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process

Milovanović, Stoja; Đuriš, Jelena; Dapčević, Aleksandra; Medarević, Đorđe; Ibrić, Svetlana; Žižović, Irena

(Elsevier Sci Ltd, Oxford, 2019)

TY  - JOUR
AU  - Milovanović, Stoja
AU  - Đuriš, Jelena
AU  - Dapčević, Aleksandra
AU  - Medarević, Đorđe
AU  - Ibrić, Svetlana
AU  - Žižović, Irena
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4074
AB  - The present work is aimed towards designing advanced materials by means of sustainable processes. In that sense, the utilization of supercritical CO2 (scCO(2)) for processing of pharmaceutical polymers (Soluplus (R), Eudragit (R), and hydroxypropyl methylcellulose acetate succinate), alone and with an addition of cardiovascular drug Carvedilol, was explored. Employed single-step static scCO(2) process (pressure of 30 MPa and temperature of 100 degrees C for 2 h) enabled fabrication of solvent-free polymeric foams and Carvedilol solid dispersions with controlled microstructure and average pore diameter of 101-257 pm suitable for application in the pharmaceutical industry. ScCO2 did not remain in the foams after processing or affected the polymer composition, while Carvedilol formed hydrogen bonds with the polymers. Carvedilol was molecularly dispersed in the fabricated solid dispersions and its transition from the crystalline to amorphous form was complete. Korsmeyer-Peppas model was successfully used for the mathematical description of Carvedilol dissolution from solid dispersions. The dissolution rate of Carvedilol in acidic medium was significantly enhanced by its dispersion in tested polymers using the proposed high-pressure method.
PB  - Elsevier Sci Ltd, Oxford
T2  - Polymer Testing
T1  - Soluplus (R), Eudragit (R), HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process
EP  - 64
SP  - 54
VL  - 76
DO  - 10.1016/j.polymertesting.2019.03.001
ER  - 
@article{
author = "Milovanović, Stoja and Đuriš, Jelena and Dapčević, Aleksandra and Medarević, Đorđe and Ibrić, Svetlana and Žižović, Irena",
year = "2019",
abstract = "The present work is aimed towards designing advanced materials by means of sustainable processes. In that sense, the utilization of supercritical CO2 (scCO(2)) for processing of pharmaceutical polymers (Soluplus (R), Eudragit (R), and hydroxypropyl methylcellulose acetate succinate), alone and with an addition of cardiovascular drug Carvedilol, was explored. Employed single-step static scCO(2) process (pressure of 30 MPa and temperature of 100 degrees C for 2 h) enabled fabrication of solvent-free polymeric foams and Carvedilol solid dispersions with controlled microstructure and average pore diameter of 101-257 pm suitable for application in the pharmaceutical industry. ScCO2 did not remain in the foams after processing or affected the polymer composition, while Carvedilol formed hydrogen bonds with the polymers. Carvedilol was molecularly dispersed in the fabricated solid dispersions and its transition from the crystalline to amorphous form was complete. Korsmeyer-Peppas model was successfully used for the mathematical description of Carvedilol dissolution from solid dispersions. The dissolution rate of Carvedilol in acidic medium was significantly enhanced by its dispersion in tested polymers using the proposed high-pressure method.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Polymer Testing",
title = "Soluplus (R), Eudragit (R), HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process",
pages = "64-54",
volume = "76",
doi = "10.1016/j.polymertesting.2019.03.001"
}
Milovanović, S., Đuriš, J., Dapčević, A., Medarević, Đ., Ibrić, S.,& Žižović, I.. (2019). Soluplus (R), Eudragit (R), HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process. in Polymer Testing
Elsevier Sci Ltd, Oxford., 76, 54-64.
https://doi.org/10.1016/j.polymertesting.2019.03.001
Milovanović S, Đuriš J, Dapčević A, Medarević Đ, Ibrić S, Žižović I. Soluplus (R), Eudragit (R), HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process. in Polymer Testing. 2019;76:54-64.
doi:10.1016/j.polymertesting.2019.03.001 .
Milovanović, Stoja, Đuriš, Jelena, Dapčević, Aleksandra, Medarević, Đorđe, Ibrić, Svetlana, Žižović, Irena, "Soluplus (R), Eudragit (R), HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process" in Polymer Testing, 76 (2019):54-64,
https://doi.org/10.1016/j.polymertesting.2019.03.001 . .
15
7
14

Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions

Đuriš, Jelena; Milovanović, Stoja; Medarević, Đorđe; Dobričić, Vladimir; Dapčević, Aleksandra; Ibrić, Svetlana

(Elsevier Science Bv, Amsterdam, 2019)

TY  - JOUR
AU  - Đuriš, Jelena
AU  - Milovanović, Stoja
AU  - Medarević, Đorđe
AU  - Dobričić, Vladimir
AU  - Dapčević, Aleksandra
AU  - Ibrić, Svetlana
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4335
AB  - Solid dispersions production is one of the substantial approaches for improvement of poor drug solubility. Additionally, supercritical fluid assisted method for preparation of solid dispersions can offer many advantages in comparison to the conventional melting or solvent-evaporation methods. Miscibility analysis provides valuable guidance for selection of the most appropriate polymeric carrier for dispersion of the drug of interest. In addition to the increased drug release rate, solid dispersions should have proper mechanical attributes in order to be successfully formulated in the final solid dosage form such as tablet. Therefore, several pharmaceutical grade polymers have been selected for development of BCS Class II drug carvedilol (CARV) solid dispersions. They were compared based on behavior in supercritical CO2 and affinity towards CARV calculated from the miscibility analysis. By utilization of the supercritical CO2 assisted method, solid dispersions of CARV with the selected (co) polymers (polyvinylpyrrolidone (PVP), hydroxypropyl methylcellulose (HPMC), Soluplus (R) and Eudragit (R)) were obtained. Properties of the prepared CARV-polymer dispersions were observed by the polarizing and scanning electron microscopy and analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. CARV was additionally characterized by X-ray powder diffraction. Furthermore, in vitro dissolution studies and dynamic compaction analysis were performed on the selected samples of solid dispersions. Among the studied polymers, PVP and HPMC have been identified as polymers with the highest affinity towards CARV, based on the calculated delta(p) values. This has been also confirmed with the highest dissolution efficiency of CARV-PVP and CARV-HPMC solid dispersions. Solid state characterization indicated that CARV was dispersed either molecularly, or in the amorphous form, depending on interactions with each polymer. Determination of CARV-PVP and CARV-HPMC mechanical properties revealed that CARV-PVP solid dispersion has superior compactibility and tabletability. Therefore, CARV-PVP solid dispersion has been highlighted as the most appropriate for the further development of tablets as the final dosage form. Presented study provides an example for efficient approach for development of poorly soluble drug solid dispersion with satisfactory tableting properties.
PB  - Elsevier Science Bv, Amsterdam
T2  - International Journal of Pharmaceutics
T1  - Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions
EP  - 200
SP  - 190
VL  - 554
DO  - 10.1016/j.ijpharm.2018.11.015
ER  - 
@article{
author = "Đuriš, Jelena and Milovanović, Stoja and Medarević, Đorđe and Dobričić, Vladimir and Dapčević, Aleksandra and Ibrić, Svetlana",
year = "2019",
abstract = "Solid dispersions production is one of the substantial approaches for improvement of poor drug solubility. Additionally, supercritical fluid assisted method for preparation of solid dispersions can offer many advantages in comparison to the conventional melting or solvent-evaporation methods. Miscibility analysis provides valuable guidance for selection of the most appropriate polymeric carrier for dispersion of the drug of interest. In addition to the increased drug release rate, solid dispersions should have proper mechanical attributes in order to be successfully formulated in the final solid dosage form such as tablet. Therefore, several pharmaceutical grade polymers have been selected for development of BCS Class II drug carvedilol (CARV) solid dispersions. They were compared based on behavior in supercritical CO2 and affinity towards CARV calculated from the miscibility analysis. By utilization of the supercritical CO2 assisted method, solid dispersions of CARV with the selected (co) polymers (polyvinylpyrrolidone (PVP), hydroxypropyl methylcellulose (HPMC), Soluplus (R) and Eudragit (R)) were obtained. Properties of the prepared CARV-polymer dispersions were observed by the polarizing and scanning electron microscopy and analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. CARV was additionally characterized by X-ray powder diffraction. Furthermore, in vitro dissolution studies and dynamic compaction analysis were performed on the selected samples of solid dispersions. Among the studied polymers, PVP and HPMC have been identified as polymers with the highest affinity towards CARV, based on the calculated delta(p) values. This has been also confirmed with the highest dissolution efficiency of CARV-PVP and CARV-HPMC solid dispersions. Solid state characterization indicated that CARV was dispersed either molecularly, or in the amorphous form, depending on interactions with each polymer. Determination of CARV-PVP and CARV-HPMC mechanical properties revealed that CARV-PVP solid dispersion has superior compactibility and tabletability. Therefore, CARV-PVP solid dispersion has been highlighted as the most appropriate for the further development of tablets as the final dosage form. Presented study provides an example for efficient approach for development of poorly soluble drug solid dispersion with satisfactory tableting properties.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "International Journal of Pharmaceutics",
title = "Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions",
pages = "200-190",
volume = "554",
doi = "10.1016/j.ijpharm.2018.11.015"
}
Đuriš, J., Milovanović, S., Medarević, Đ., Dobričić, V., Dapčević, A.,& Ibrić, S.. (2019). Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions. in International Journal of Pharmaceutics
Elsevier Science Bv, Amsterdam., 554, 190-200.
https://doi.org/10.1016/j.ijpharm.2018.11.015
Đuriš J, Milovanović S, Medarević Đ, Dobričić V, Dapčević A, Ibrić S. Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions. in International Journal of Pharmaceutics. 2019;554:190-200.
doi:10.1016/j.ijpharm.2018.11.015 .
Đuriš, Jelena, Milovanović, Stoja, Medarević, Đorđe, Dobričić, Vladimir, Dapčević, Aleksandra, Ibrić, Svetlana, "Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions" in International Journal of Pharmaceutics, 554 (2019):190-200,
https://doi.org/10.1016/j.ijpharm.2018.11.015 . .
34
17
32