Milašević, Ivana

Link to this page

Authority KeyName Variants
cf568669-548d-40e9-8232-3cdbf79fdb15
  • Milašević, Ivana (4)
Projects

Author's Bibliography

A novel type of building material derived from the by-products of steel making industry

Nikolić, Irena; Milašević, Ivana; Cupara, Nevena; Ivanović, Ljubica; Đurović, Dijana; Marković, Smilja; Veselinović, Ljiljana; Radmilović, Vuk; Radmilović, Velimir R.

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Nikolić, Irena
AU  - Milašević, Ivana
AU  - Cupara, Nevena
AU  - Ivanović, Ljubica
AU  - Đurović, Dijana
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4178
AB  - Electric arc furnace slag (EAFS) and electric arc furnace dust (EAFD) are the waste materials generated during the iron and steel scrap remelting in electric arc furnace. EAFS is non-hazardous material which has found its application in different field of civil engineering. On the other hand, EAFD is classified as hazardous matreials due to the presence of heavy metals (Zn, Pb, Cu Cr and Cd) and their potential leaching into environment. Stabilization/solidification (S/S) of toxic waste is a widely investigated as simply method for production of stable product. Cement binder was mainly used for this purpose but important shift in the use of different waste materials as a cement replacement was observed. The aim of this study was to investigate the possibility of S/S of heavy metals from EAFD using the alkali activated binders based on EAFS. The alkali activated slag with a different content of EAFS was synthesised and characterized using the SEM/EDS, XRDP, FTIR. The binding of Zn into the reaction product of slag alkali activation was founded. The immobilization efficacy was evaluated using TCLP Method No. 1311 (USEPA) and EN 12457-2 (EULFD) leaching tests.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World R
T1  - A novel type of building material derived from the by-products of steel making industry
SP  - 84
VL  - 84
UR  - https://hdl.handle.net/21.15107/rcub_technorep_4178
ER  - 
@conference{
author = "Nikolić, Irena and Milašević, Ivana and Cupara, Nevena and Ivanović, Ljubica and Đurović, Dijana and Marković, Smilja and Veselinović, Ljiljana and Radmilović, Vuk and Radmilović, Velimir R.",
year = "2019",
abstract = "Electric arc furnace slag (EAFS) and electric arc furnace dust (EAFD) are the waste materials generated during the iron and steel scrap remelting in electric arc furnace. EAFS is non-hazardous material which has found its application in different field of civil engineering. On the other hand, EAFD is classified as hazardous matreials due to the presence of heavy metals (Zn, Pb, Cu Cr and Cd) and their potential leaching into environment. Stabilization/solidification (S/S) of toxic waste is a widely investigated as simply method for production of stable product. Cement binder was mainly used for this purpose but important shift in the use of different waste materials as a cement replacement was observed. The aim of this study was to investigate the possibility of S/S of heavy metals from EAFD using the alkali activated binders based on EAFS. The alkali activated slag with a different content of EAFS was synthesised and characterized using the SEM/EDS, XRDP, FTIR. The binding of Zn into the reaction product of slag alkali activation was founded. The immobilization efficacy was evaluated using TCLP Method No. 1311 (USEPA) and EN 12457-2 (EULFD) leaching tests.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World R",
title = "A novel type of building material derived from the by-products of steel making industry",
pages = "84",
volume = "84",
url = "https://hdl.handle.net/21.15107/rcub_technorep_4178"
}
Nikolić, I., Milašević, I., Cupara, N., Ivanović, L., Đurović, D., Marković, S., Veselinović, L., Radmilović, V.,& Radmilović, V. R.. (2019). A novel type of building material derived from the by-products of steel making industry. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World R
Belgrade : Materials Research Society of Serbia., 84, 84.
https://hdl.handle.net/21.15107/rcub_technorep_4178
Nikolić I, Milašević I, Cupara N, Ivanović L, Đurović D, Marković S, Veselinović L, Radmilović V, Radmilović VR. A novel type of building material derived from the by-products of steel making industry. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World R. 2019;84:84.
https://hdl.handle.net/21.15107/rcub_technorep_4178 .
Nikolić, Irena, Milašević, Ivana, Cupara, Nevena, Ivanović, Ljubica, Đurović, Dijana, Marković, Smilja, Veselinović, Ljiljana, Radmilović, Vuk, Radmilović, Velimir R., "A novel type of building material derived from the by-products of steel making industry" in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World R, 84 (2019):84,
https://hdl.handle.net/21.15107/rcub_technorep_4178 .

Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters

Nikolić, Irena; Đurović, Dijana; Milašević, Ivana; Marković, Smilja; Veselinović, Ljiljana; Radmilović, Vuk; Janković-Častvan, Ivona; Radmilović, Velimir R.

(Belgrade : Serbian Academy of Sciences and Arts, 2018)

TY  - CONF
AU  - Nikolić, Irena
AU  - Đurović, Dijana
AU  - Milašević, Ivana
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Radmilović, Vuk
AU  - Janković-Častvan, Ivona
AU  - Radmilović, Velimir R.
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3770
AB  - The removal of heavy metals from wastewaters is presently a global imperative primarily due to their well-known toxic nature and detrimental effects on the environment, and more importantly, on human health. Currently, special attention is paid to the use of novel slag based materials – alkali activated slag (AAS) as potential novel adsorbents. Our previous studies have shown that electric arc furnace slag (EAFS) can be successfully used as a precursor for the production of AAS. Generally, alkaline activation involves a chemical reaction between solid aluminosilicate materials and a highly alkaline activator. The alkali activation mechanism of slag involves the dissolution of slag in a highly alkaline, which is followed by the condensation and hardening processes. Dependent on the pH and type of alkaline activator, calcium (alumina) silicate hydrate or C–(A)–S–H gel has been identified as a reaction product of slag alkali activation. The objective of this research was to investigate the removal of Cu2+ from aquatic solution using alkali activated slag (AAS) obtained by alkaline activation of EAFS.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructu
T1  - Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters
EP  - 200
SP  - 198
UR  - https://hdl.handle.net/21.15107/rcub_technorep_3770
ER  - 
@conference{
author = "Nikolić, Irena and Đurović, Dijana and Milašević, Ivana and Marković, Smilja and Veselinović, Ljiljana and Radmilović, Vuk and Janković-Častvan, Ivona and Radmilović, Velimir R.",
year = "2018",
abstract = "The removal of heavy metals from wastewaters is presently a global imperative primarily due to their well-known toxic nature and detrimental effects on the environment, and more importantly, on human health. Currently, special attention is paid to the use of novel slag based materials – alkali activated slag (AAS) as potential novel adsorbents. Our previous studies have shown that electric arc furnace slag (EAFS) can be successfully used as a precursor for the production of AAS. Generally, alkaline activation involves a chemical reaction between solid aluminosilicate materials and a highly alkaline activator. The alkali activation mechanism of slag involves the dissolution of slag in a highly alkaline, which is followed by the condensation and hardening processes. Dependent on the pH and type of alkaline activator, calcium (alumina) silicate hydrate or C–(A)–S–H gel has been identified as a reaction product of slag alkali activation. The objective of this research was to investigate the removal of Cu2+ from aquatic solution using alkali activated slag (AAS) obtained by alkaline activation of EAFS.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructu",
title = "Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters",
pages = "200-198",
url = "https://hdl.handle.net/21.15107/rcub_technorep_3770"
}
Nikolić, I., Đurović, D., Milašević, I., Marković, S., Veselinović, L., Radmilović, V., Janković-Častvan, I.,& Radmilović, V. R.. (2018). Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters. in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructu
Belgrade : Serbian Academy of Sciences and Arts., 198-200.
https://hdl.handle.net/21.15107/rcub_technorep_3770
Nikolić I, Đurović D, Milašević I, Marković S, Veselinović L, Radmilović V, Janković-Častvan I, Radmilović VR. Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters. in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructu. 2018;:198-200.
https://hdl.handle.net/21.15107/rcub_technorep_3770 .
Nikolić, Irena, Đurović, Dijana, Milašević, Ivana, Marković, Smilja, Veselinović, Ljiljana, Radmilović, Vuk, Janković-Častvan, Ivona, Radmilović, Velimir R., "Alkali Activated Slag as Adsorbents for Cu2+ Removal from Wastewaters" in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructu (2018):198-200,
https://hdl.handle.net/21.15107/rcub_technorep_3770 .

New multifunctional materials based on steel slag

Milašević, Ivana; Ivanović, Ljubica; Nikolić, Irena; Đurović, Dijana; Marković, Smilja; Radmilović, Vuk; Radmilović, Velimir R.

(Belgrade : Materials Research Society of Serbia, 2018)

TY  - CONF
AU  - Milašević, Ivana
AU  - Ivanović, Ljubica
AU  - Nikolić, Irena
AU  - Đurović, Dijana
AU  - Marković, Smilja
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3771
AB  - Electric arc furnace slag (EAFS) is the by-product of steel production in an electric arc furnace. In a pass two decade a special attention is paid to the valorization of metallurgical slags by alkali activation. The process involves a chemical reaction of slag with the alkaline activator followed by the condensation and hardening processes. Aluminium-containing calcium silicate hydrate gel i.e. C–(A)–S–H gel with a low C/S ratio has been identified as a reaction product of slag alkali activation. We have synthesized the AAS using the EAFS as the precursor and Na2SiO3 solution as an activator. The AAS samples are characterized by XRD, SEM/EDS and FTIR analysis. Moreover, investigation of mechanical properties dilatometric and porosity analysis were performed as well so as to build up a detailed illustration of AAS properties and possible application of these materials. The results have shown that AAS may reach the compressive strength (~ 40 MPa) which enables its application in a civil engineering. Moreover, the AAS sample exhibits improved strength (~ 50 MPa) at elevated temperatures thus potential application of these materials in a high temperature conditions should be considered. On the other hand, these materials may be used as an effective adsorbent for the Cu2+ removal from sulfate bearing wastewater. The Cu2 + ions have been found to be attached on the surface of AAS by formation of stable hydrooxocomplexes that are sorbed on the adsorbent surface via hydroxyl groups in the form of posnjakite crystal phase.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, Septemb
T1  - New multifunctional materials based on steel slag
EP  - 123
SP  - 123
UR  - https://hdl.handle.net/21.15107/rcub_technorep_3771
ER  - 
@conference{
author = "Milašević, Ivana and Ivanović, Ljubica and Nikolić, Irena and Đurović, Dijana and Marković, Smilja and Radmilović, Vuk and Radmilović, Velimir R.",
year = "2018",
abstract = "Electric arc furnace slag (EAFS) is the by-product of steel production in an electric arc furnace. In a pass two decade a special attention is paid to the valorization of metallurgical slags by alkali activation. The process involves a chemical reaction of slag with the alkaline activator followed by the condensation and hardening processes. Aluminium-containing calcium silicate hydrate gel i.e. C–(A)–S–H gel with a low C/S ratio has been identified as a reaction product of slag alkali activation. We have synthesized the AAS using the EAFS as the precursor and Na2SiO3 solution as an activator. The AAS samples are characterized by XRD, SEM/EDS and FTIR analysis. Moreover, investigation of mechanical properties dilatometric and porosity analysis were performed as well so as to build up a detailed illustration of AAS properties and possible application of these materials. The results have shown that AAS may reach the compressive strength (~ 40 MPa) which enables its application in a civil engineering. Moreover, the AAS sample exhibits improved strength (~ 50 MPa) at elevated temperatures thus potential application of these materials in a high temperature conditions should be considered. On the other hand, these materials may be used as an effective adsorbent for the Cu2+ removal from sulfate bearing wastewater. The Cu2 + ions have been found to be attached on the surface of AAS by formation of stable hydrooxocomplexes that are sorbed on the adsorbent surface via hydroxyl groups in the form of posnjakite crystal phase.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, Septemb",
title = "New multifunctional materials based on steel slag",
pages = "123-123",
url = "https://hdl.handle.net/21.15107/rcub_technorep_3771"
}
Milašević, I., Ivanović, L., Nikolić, I., Đurović, D., Marković, S., Radmilović, V.,& Radmilović, V. R.. (2018). New multifunctional materials based on steel slag. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, Septemb
Belgrade : Materials Research Society of Serbia., 123-123.
https://hdl.handle.net/21.15107/rcub_technorep_3771
Milašević I, Ivanović L, Nikolić I, Đurović D, Marković S, Radmilović V, Radmilović VR. New multifunctional materials based on steel slag. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, Septemb. 2018;:123-123.
https://hdl.handle.net/21.15107/rcub_technorep_3771 .
Milašević, Ivana, Ivanović, Ljubica, Nikolić, Irena, Đurović, Dijana, Marković, Smilja, Radmilović, Vuk, Radmilović, Velimir R., "New multifunctional materials based on steel slag" in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, Septemb (2018):123-123,
https://hdl.handle.net/21.15107/rcub_technorep_3771 .

The slag based adsorbents for Cu2+ removal from aquatic solutions

Nikolić, Irena; Đurović, Dijana; Milašević, Ivana; Marković, Smilja; Radmilović, Vuk; Radmilović, Velimir R.

(Belgrade : Materials Research Society of Serbia, 2017)

TY  - CONF
AU  - Nikolić, Irena
AU  - Đurović, Dijana
AU  - Milašević, Ivana
AU  - Marković, Smilja
AU  - Radmilović, Vuk
AU  - Radmilović, Velimir R.
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3491
AB  - This study aims to understand the kinetic, thermodynamic and mechanism of Cu2+ adsorption onto unmodified electric arc furnace slag (EAFS) and alkali modified EAFS. The adsorption process was investigated via a batch reactor system. The modified EAFS sample has been prepared by reacting an EAFS powder with an aqueous alkali silicate solution. The both samples were characterized by SEM, XRD, FTIR and porosimetric measurements. The results have shown that alkali activation of EAFS favour adsorption process. The adsorption reaction on both adsorbents was found to be pseudo second order. Thermodynamic investigations have shown that adsorption process is spontaneous and endothermic. Mechanism of adsorption was investigated using the intraparticle diffusion and Boyd model which suggested that the both, film diffusion and diffusion within the pores of adsorbent controls the intraparticle diffusion of Cu2+ onto and EAFS and modified EAFS and was mainly due to external mass transport. Besides, FTIR spectroscopy determined the surface functional groups of the EAFS and modified EAFS which participate in Cu2+ bonding.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, Septem
T1  - The slag based adsorbents for Cu2+ removal from aquatic solutions
EP  - 58
SP  - 58
UR  - https://hdl.handle.net/21.15107/rcub_technorep_3491
ER  - 
@conference{
author = "Nikolić, Irena and Đurović, Dijana and Milašević, Ivana and Marković, Smilja and Radmilović, Vuk and Radmilović, Velimir R.",
year = "2017",
abstract = "This study aims to understand the kinetic, thermodynamic and mechanism of Cu2+ adsorption onto unmodified electric arc furnace slag (EAFS) and alkali modified EAFS. The adsorption process was investigated via a batch reactor system. The modified EAFS sample has been prepared by reacting an EAFS powder with an aqueous alkali silicate solution. The both samples were characterized by SEM, XRD, FTIR and porosimetric measurements. The results have shown that alkali activation of EAFS favour adsorption process. The adsorption reaction on both adsorbents was found to be pseudo second order. Thermodynamic investigations have shown that adsorption process is spontaneous and endothermic. Mechanism of adsorption was investigated using the intraparticle diffusion and Boyd model which suggested that the both, film diffusion and diffusion within the pores of adsorbent controls the intraparticle diffusion of Cu2+ onto and EAFS and modified EAFS and was mainly due to external mass transport. Besides, FTIR spectroscopy determined the surface functional groups of the EAFS and modified EAFS which participate in Cu2+ bonding.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, Septem",
title = "The slag based adsorbents for Cu2+ removal from aquatic solutions",
pages = "58-58",
url = "https://hdl.handle.net/21.15107/rcub_technorep_3491"
}
Nikolić, I., Đurović, D., Milašević, I., Marković, S., Radmilović, V.,& Radmilović, V. R.. (2017). The slag based adsorbents for Cu2+ removal from aquatic solutions. in Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, Septem
Belgrade : Materials Research Society of Serbia., 58-58.
https://hdl.handle.net/21.15107/rcub_technorep_3491
Nikolić I, Đurović D, Milašević I, Marković S, Radmilović V, Radmilović VR. The slag based adsorbents for Cu2+ removal from aquatic solutions. in Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, Septem. 2017;:58-58.
https://hdl.handle.net/21.15107/rcub_technorep_3491 .
Nikolić, Irena, Đurović, Dijana, Milašević, Ivana, Marković, Smilja, Radmilović, Vuk, Radmilović, Velimir R., "The slag based adsorbents for Cu2+ removal from aquatic solutions" in Programme and The Book of Abstracts / Nineteenth Annual Conference YUCOMAT 2017, Herceg Novi, Septem (2017):58-58,
https://hdl.handle.net/21.15107/rcub_technorep_3491 .