Milosevic, Dragana

Link to this page

Authority KeyName Variants
75e379ae-1c5f-4a04-9bfd-6a2a8a57dd99
  • Milosevic, Dragana (2)
Projects

Author's Bibliography

Hybrid material based on subgleba of mosaic puffball mushroom (Handkea utriformis) as an adsorbent for heavy metal removal from aqueous solutions

Milosevic, Dragana; Levic, Steva; Lazarević, Slavica; Veličković, Zlate; Marinković, Aleksandar; Petrović, Rada; Petrović, Predrag

(2021)

TY  - JOUR
AU  - Milosevic, Dragana
AU  - Levic, Steva
AU  - Lazarević, Slavica
AU  - Veličković, Zlate
AU  - Marinković, Aleksandar
AU  - Petrović, Rada
AU  - Petrović, Predrag
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4788
AB  - The alkali treated subglebal tissue of the mosaic puffball (Handkea utriformis) (Sa) and Sa modified with hydroxyapatite (Sa-HAp), obtained by successive ionic layer adsorption and reaction (SILAR) method, were used for the removal of Pb2+, Cd2+ and Ni2+ from aqueous solution. The materials were characterized by FT-IR, Raman, SEM and EDS analysis and by determination of pH(PZC). The adsorption performances of Sa and SaHAp were assessed in batch experiments at different pH, contact times, temperatures and mass of the adsorbent. Different models of adsorption isotherms were used, and the best fit was obtained with the Langmuir model. Maximum adsorption capacities of Sa towards Pb2+, Cd2+ and Ni2+ were 44.82, 15.54 and 17.21 mg g(-1), while for Sa-HAp were 79.55, 52.59 and 45.01 mg g(-1), respectively. Kinetic data were well fitted by a pseudo second-order model, while thermodynamic studies disclose spontaneous and endothermic adsorption process. The Sa-Hap was successfully regenerated with 1 M NaCl and after the fifth desorption cycle and 10 h achieved 82.9, 69.7 and 60.4 %, while for 0.5 M NaCl + 0.5 M NaOH and 1 h was 78.3, 64.1, 57.5 % of desorbed Pb2+, Cd2+ and Ni2+, respectively. The competitive study and results from a column system confirmed good applicability of Sa-HAp adsorbent.
T2  - Journal of Environmental Management
T1  - Hybrid material based on subgleba of mosaic puffball mushroom (Handkea utriformis) as an adsorbent for heavy metal removal from aqueous solutions
VL  - 297
DO  - 10.1016/j.jenvman.2021.113358
ER  - 
@article{
author = "Milosevic, Dragana and Levic, Steva and Lazarević, Slavica and Veličković, Zlate and Marinković, Aleksandar and Petrović, Rada and Petrović, Predrag",
year = "2021",
abstract = "The alkali treated subglebal tissue of the mosaic puffball (Handkea utriformis) (Sa) and Sa modified with hydroxyapatite (Sa-HAp), obtained by successive ionic layer adsorption and reaction (SILAR) method, were used for the removal of Pb2+, Cd2+ and Ni2+ from aqueous solution. The materials were characterized by FT-IR, Raman, SEM and EDS analysis and by determination of pH(PZC). The adsorption performances of Sa and SaHAp were assessed in batch experiments at different pH, contact times, temperatures and mass of the adsorbent. Different models of adsorption isotherms were used, and the best fit was obtained with the Langmuir model. Maximum adsorption capacities of Sa towards Pb2+, Cd2+ and Ni2+ were 44.82, 15.54 and 17.21 mg g(-1), while for Sa-HAp were 79.55, 52.59 and 45.01 mg g(-1), respectively. Kinetic data were well fitted by a pseudo second-order model, while thermodynamic studies disclose spontaneous and endothermic adsorption process. The Sa-Hap was successfully regenerated with 1 M NaCl and after the fifth desorption cycle and 10 h achieved 82.9, 69.7 and 60.4 %, while for 0.5 M NaCl + 0.5 M NaOH and 1 h was 78.3, 64.1, 57.5 % of desorbed Pb2+, Cd2+ and Ni2+, respectively. The competitive study and results from a column system confirmed good applicability of Sa-HAp adsorbent.",
journal = "Journal of Environmental Management",
title = "Hybrid material based on subgleba of mosaic puffball mushroom (Handkea utriformis) as an adsorbent for heavy metal removal from aqueous solutions",
volume = "297",
doi = "10.1016/j.jenvman.2021.113358"
}
Milosevic, D., Levic, S., Lazarević, S., Veličković, Z., Marinković, A., Petrović, R.,& Petrović, P.. (2021). Hybrid material based on subgleba of mosaic puffball mushroom (Handkea utriformis) as an adsorbent for heavy metal removal from aqueous solutions. in Journal of Environmental Management, 297.
https://doi.org/10.1016/j.jenvman.2021.113358
Milosevic D, Levic S, Lazarević S, Veličković Z, Marinković A, Petrović R, Petrović P. Hybrid material based on subgleba of mosaic puffball mushroom (Handkea utriformis) as an adsorbent for heavy metal removal from aqueous solutions. in Journal of Environmental Management. 2021;297.
doi:10.1016/j.jenvman.2021.113358 .
Milosevic, Dragana, Levic, Steva, Lazarević, Slavica, Veličković, Zlate, Marinković, Aleksandar, Petrović, Rada, Petrović, Predrag, "Hybrid material based on subgleba of mosaic puffball mushroom (Handkea utriformis) as an adsorbent for heavy metal removal from aqueous solutions" in Journal of Environmental Management, 297 (2021),
https://doi.org/10.1016/j.jenvman.2021.113358 . .
7
5

Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal

Bugarcic, Mladen; Lopicic, Zorica; Sostaric, Tatjana; Marinković, Aleksandar; Rusmirovic, Jelena D.; Milosevic, Dragana; Milivojević, Milan

(2021)

TY  - JOUR
AU  - Bugarcic, Mladen
AU  - Lopicic, Zorica
AU  - Sostaric, Tatjana
AU  - Marinković, Aleksandar
AU  - Rusmirovic, Jelena D.
AU  - Milosevic, Dragana
AU  - Milivojević, Milan
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4800
AB  - Expanded vermiculite (EV) was modified by deposition of different spinel ferrite composites on the outer surface of EV 2:1 layers in order to improve its adsorptive properties. Modifications were made by deposition of: magnetite, manganese ferrite, cobalt ferrite and chromium oxide/hematite. The characterization of modified materials was performed by: scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) methodology, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), magnetization measurements, as well as determination of cation exchange capacity (CEC) and pH point of zero charge (pHPZC). Obtained samples were used as adsorbents for Pb2+, Ni(2+)and Cd2+ ions from an aqueous solution in a batch system. Results showed that adsorption capacity was strongly dependent on physical and chemical changes induced by specific chemical modification. Hydrothermally produced manganese and cobalt ferrites caused significant surface changes and altered the interlayer cation balance. Among the others, EV-Mn/Co-ferrite(s) samples possessed the highest adsorption capacity towards Ni2+ (33.06 mg g(-1)), along with an increase of the CEC. Freundlich's adsorption isotherm model provided the best fit of obtained experimental data, while kinetic studies showed that the adsorption rate follows the pseudo second-order model, implying heterogeneous adsorbents surface. Thermodynamic and kinetic parameters indicated that the mechanism of cations removal efficacy was dominantly followed by the ion exchange. This study confirmed that doped ferrites, produced by solvothermal method, improve surface properties of EV and increase adsorption potentials towards heavy metals.
T2  - Journal of Environmental Chemical Engineering
T1  - Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal
IS  - 5
VL  - 9
DO  - 10.1016/j.jece.2021.106020
ER  - 
@article{
author = "Bugarcic, Mladen and Lopicic, Zorica and Sostaric, Tatjana and Marinković, Aleksandar and Rusmirovic, Jelena D. and Milosevic, Dragana and Milivojević, Milan",
year = "2021",
abstract = "Expanded vermiculite (EV) was modified by deposition of different spinel ferrite composites on the outer surface of EV 2:1 layers in order to improve its adsorptive properties. Modifications were made by deposition of: magnetite, manganese ferrite, cobalt ferrite and chromium oxide/hematite. The characterization of modified materials was performed by: scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) methodology, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), magnetization measurements, as well as determination of cation exchange capacity (CEC) and pH point of zero charge (pHPZC). Obtained samples were used as adsorbents for Pb2+, Ni(2+)and Cd2+ ions from an aqueous solution in a batch system. Results showed that adsorption capacity was strongly dependent on physical and chemical changes induced by specific chemical modification. Hydrothermally produced manganese and cobalt ferrites caused significant surface changes and altered the interlayer cation balance. Among the others, EV-Mn/Co-ferrite(s) samples possessed the highest adsorption capacity towards Ni2+ (33.06 mg g(-1)), along with an increase of the CEC. Freundlich's adsorption isotherm model provided the best fit of obtained experimental data, while kinetic studies showed that the adsorption rate follows the pseudo second-order model, implying heterogeneous adsorbents surface. Thermodynamic and kinetic parameters indicated that the mechanism of cations removal efficacy was dominantly followed by the ion exchange. This study confirmed that doped ferrites, produced by solvothermal method, improve surface properties of EV and increase adsorption potentials towards heavy metals.",
journal = "Journal of Environmental Chemical Engineering",
title = "Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal",
number = "5",
volume = "9",
doi = "10.1016/j.jece.2021.106020"
}
Bugarcic, M., Lopicic, Z., Sostaric, T., Marinković, A., Rusmirovic, J. D., Milosevic, D.,& Milivojević, M.. (2021). Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal. in Journal of Environmental Chemical Engineering, 9(5).
https://doi.org/10.1016/j.jece.2021.106020
Bugarcic M, Lopicic Z, Sostaric T, Marinković A, Rusmirovic JD, Milosevic D, Milivojević M. Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal. in Journal of Environmental Chemical Engineering. 2021;9(5).
doi:10.1016/j.jece.2021.106020 .
Bugarcic, Mladen, Lopicic, Zorica, Sostaric, Tatjana, Marinković, Aleksandar, Rusmirovic, Jelena D., Milosevic, Dragana, Milivojević, Milan, "Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal" in Journal of Environmental Chemical Engineering, 9, no. 5 (2021),
https://doi.org/10.1016/j.jece.2021.106020 . .
10
11