Provatas, George

Link to this page

Authority KeyName Variants
8fb7860f-c45c-4b55-b78f-e955d8ab497e
  • Provatas, George (3)
Projects

Author's Bibliography

C-doped TiO2 nanotubes with pulsed laser deposited Bi2O3 films for photovoltaic application

Bjelajac, Anđelika; Petrović, Rada; Stan, George E.; Socol, Gabriel; Mihailescu, Andreea; Mihailescu, Ion N.; Veltruska, Katerina; Matolin, Vladimir; Siketic, Zdravko; Provatas, George; Jaksic, Milko; Janaćković, Đorđe

(2022)

TY  - JOUR
AU  - Bjelajac, Anđelika
AU  - Petrović, Rada
AU  - Stan, George E.
AU  - Socol, Gabriel
AU  - Mihailescu, Andreea
AU  - Mihailescu, Ion N.
AU  - Veltruska, Katerina
AU  - Matolin, Vladimir
AU  - Siketic, Zdravko
AU  - Provatas, George
AU  - Jaksic, Milko
AU  - Janaćković, Đorđe
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4996
AB  - Anodization was used to obtain a nanotubular TiO2 photoanode on F-SnO2 glass. Subsequent annealing in the CH4 atmosphere promoted the C-doping and improved the crystallinity of the TiO2 nanotubes. The pulsed laser deposition was applied to cover the nanotubes with Bi2O3, serving as a hole transport material. X-ray photoelectron spectroscopy analyses of the doped samples reveal a shift in the valence band's maximum position towards lower binding energy as compared to those observed for the undoped samples (annealed in the air). The doping positively affects the absorption by shifting the absorption edge to 567 nm. I-V measurements under illumination show that the C-doping of TiO2 increases the current density following the absorbance results. The highest open circuit voltage was reached for the samples with the 300 degrees C-deposited Bi2O3 layer, pointing to better quality of the p-n junction, hence of the contact between Bi2O3 and TiO2. This in situ annealing provided the formation of close contact between Bi2O3 and TiO2, which enabled a faster charge transport as compared to the contact obtained with no annealing or even with post annealing.
T2  - Ceramics International
T1  - C-doped TiO2 nanotubes with pulsed laser deposited Bi2O3 films for photovoltaic application
EP  - 4657
IS  - 4
SP  - 4649
VL  - 48
DO  - 10.1016/j.ceramint.2021.10.251
ER  - 
@article{
author = "Bjelajac, Anđelika and Petrović, Rada and Stan, George E. and Socol, Gabriel and Mihailescu, Andreea and Mihailescu, Ion N. and Veltruska, Katerina and Matolin, Vladimir and Siketic, Zdravko and Provatas, George and Jaksic, Milko and Janaćković, Đorđe",
year = "2022",
abstract = "Anodization was used to obtain a nanotubular TiO2 photoanode on F-SnO2 glass. Subsequent annealing in the CH4 atmosphere promoted the C-doping and improved the crystallinity of the TiO2 nanotubes. The pulsed laser deposition was applied to cover the nanotubes with Bi2O3, serving as a hole transport material. X-ray photoelectron spectroscopy analyses of the doped samples reveal a shift in the valence band's maximum position towards lower binding energy as compared to those observed for the undoped samples (annealed in the air). The doping positively affects the absorption by shifting the absorption edge to 567 nm. I-V measurements under illumination show that the C-doping of TiO2 increases the current density following the absorbance results. The highest open circuit voltage was reached for the samples with the 300 degrees C-deposited Bi2O3 layer, pointing to better quality of the p-n junction, hence of the contact between Bi2O3 and TiO2. This in situ annealing provided the formation of close contact between Bi2O3 and TiO2, which enabled a faster charge transport as compared to the contact obtained with no annealing or even with post annealing.",
journal = "Ceramics International",
title = "C-doped TiO2 nanotubes with pulsed laser deposited Bi2O3 films for photovoltaic application",
pages = "4657-4649",
number = "4",
volume = "48",
doi = "10.1016/j.ceramint.2021.10.251"
}
Bjelajac, A., Petrović, R., Stan, G. E., Socol, G., Mihailescu, A., Mihailescu, I. N., Veltruska, K., Matolin, V., Siketic, Z., Provatas, G., Jaksic, M.,& Janaćković, Đ.. (2022). C-doped TiO2 nanotubes with pulsed laser deposited Bi2O3 films for photovoltaic application. in Ceramics International, 48(4), 4649-4657.
https://doi.org/10.1016/j.ceramint.2021.10.251
Bjelajac A, Petrović R, Stan GE, Socol G, Mihailescu A, Mihailescu IN, Veltruska K, Matolin V, Siketic Z, Provatas G, Jaksic M, Janaćković Đ. C-doped TiO2 nanotubes with pulsed laser deposited Bi2O3 films for photovoltaic application. in Ceramics International. 2022;48(4):4649-4657.
doi:10.1016/j.ceramint.2021.10.251 .
Bjelajac, Anđelika, Petrović, Rada, Stan, George E., Socol, Gabriel, Mihailescu, Andreea, Mihailescu, Ion N., Veltruska, Katerina, Matolin, Vladimir, Siketic, Zdravko, Provatas, George, Jaksic, Milko, Janaćković, Đorđe, "C-doped TiO2 nanotubes with pulsed laser deposited Bi2O3 films for photovoltaic application" in Ceramics International, 48, no. 4 (2022):4649-4657,
https://doi.org/10.1016/j.ceramint.2021.10.251 . .
4
3

Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye

Bjelajac, Anđelika; Petrović, Rada; Vujančević, Jelena; Veltruska, Katerina; Matolin, Vladimir; Siketić, Zdravko; Provatas, George; Jakšić, Milko; Stan, George E.; Socol, Gabriel; Mihailescu, Ion N.; Janaćković, Đorđe

(Pergamon-Elsevier Science Ltd, Oxford, 2020)

TY  - JOUR
AU  - Bjelajac, Anđelika
AU  - Petrović, Rada
AU  - Vujančević, Jelena
AU  - Veltruska, Katerina
AU  - Matolin, Vladimir
AU  - Siketić, Zdravko
AU  - Provatas, George
AU  - Jakšić, Milko
AU  - Stan, George E.
AU  - Socol, Gabriel
AU  - Mihailescu, Ion N.
AU  - Janaćković, Đorđe
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4723
AB  - We fabricated Sn-doped TiO2 nanotubular film via annealing of anodized TiO2 nanotubes grown on F-SnO2 (FTO) glass. Annealing was carried out at 500 degrees C in ambient air. Anatase crystal structure was achieved with no change in nanotubular morphology in respect to as-anodized amorphous TiO(2 )nanotubes. The X-ray photoelectron spectroscopy analysis revealed Sn on the surface of TiO2 film, following the thermal treatment, probably caused by the diffusion from FTO glass. Depth profile examination of the film chemical composition was conducted by elastic recoil detection analysis, which showed that in addition to the diffusion of Sn from FTO, diffusion of Ti to FTO concurrently occurred. Thus, a higher concentration of Sn was found at the bottom of the tubes, while a lower concentration was present on the tubes' surface top. This explains the improved optical response revealed by a diffuse reflectance spectroscopy. The absorption enhancement demonstrated that Sn-doped TiO2 film was efficient in the degradation of methyl orange dye under visible light.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Journal of Physics and Chemistry of Solids
T1  - Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye
VL  - 147
DO  - 10.1016/j.jpcs.2020.109609
ER  - 
@article{
author = "Bjelajac, Anđelika and Petrović, Rada and Vujančević, Jelena and Veltruska, Katerina and Matolin, Vladimir and Siketić, Zdravko and Provatas, George and Jakšić, Milko and Stan, George E. and Socol, Gabriel and Mihailescu, Ion N. and Janaćković, Đorđe",
year = "2020",
abstract = "We fabricated Sn-doped TiO2 nanotubular film via annealing of anodized TiO2 nanotubes grown on F-SnO2 (FTO) glass. Annealing was carried out at 500 degrees C in ambient air. Anatase crystal structure was achieved with no change in nanotubular morphology in respect to as-anodized amorphous TiO(2 )nanotubes. The X-ray photoelectron spectroscopy analysis revealed Sn on the surface of TiO2 film, following the thermal treatment, probably caused by the diffusion from FTO glass. Depth profile examination of the film chemical composition was conducted by elastic recoil detection analysis, which showed that in addition to the diffusion of Sn from FTO, diffusion of Ti to FTO concurrently occurred. Thus, a higher concentration of Sn was found at the bottom of the tubes, while a lower concentration was present on the tubes' surface top. This explains the improved optical response revealed by a diffuse reflectance spectroscopy. The absorption enhancement demonstrated that Sn-doped TiO2 film was efficient in the degradation of methyl orange dye under visible light.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Journal of Physics and Chemistry of Solids",
title = "Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye",
volume = "147",
doi = "10.1016/j.jpcs.2020.109609"
}
Bjelajac, A., Petrović, R., Vujančević, J., Veltruska, K., Matolin, V., Siketić, Z., Provatas, G., Jakšić, M., Stan, G. E., Socol, G., Mihailescu, I. N.,& Janaćković, Đ.. (2020). Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. in Journal of Physics and Chemistry of Solids
Pergamon-Elsevier Science Ltd, Oxford., 147.
https://doi.org/10.1016/j.jpcs.2020.109609
Bjelajac A, Petrović R, Vujančević J, Veltruska K, Matolin V, Siketić Z, Provatas G, Jakšić M, Stan GE, Socol G, Mihailescu IN, Janaćković Đ. Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. in Journal of Physics and Chemistry of Solids. 2020;147.
doi:10.1016/j.jpcs.2020.109609 .
Bjelajac, Anđelika, Petrović, Rada, Vujančević, Jelena, Veltruska, Katerina, Matolin, Vladimir, Siketić, Zdravko, Provatas, George, Jakšić, Milko, Stan, George E., Socol, Gabriel, Mihailescu, Ion N., Janaćković, Đorđe, "Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye" in Journal of Physics and Chemistry of Solids, 147 (2020),
https://doi.org/10.1016/j.jpcs.2020.109609 . .
18
8
19

Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye

Bjelajac, Anđelika; Petrović, Rada; Vujančević, Jelena; Veltruska, Katerina; Matolin, Vladimir; Siketić, Zdravko; Provatas, George; Jakšić, Milko; Stan, George E.; Socol, Gabriel; Mihailescu, Ion N.; Janaćković, Đorđe

(Pergamon-Elsevier Science Ltd, Oxford, 2020)

TY  - JOUR
AU  - Bjelajac, Anđelika
AU  - Petrović, Rada
AU  - Vujančević, Jelena
AU  - Veltruska, Katerina
AU  - Matolin, Vladimir
AU  - Siketić, Zdravko
AU  - Provatas, George
AU  - Jakšić, Milko
AU  - Stan, George E.
AU  - Socol, Gabriel
AU  - Mihailescu, Ion N.
AU  - Janaćković, Đorđe
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4396
AB  - We fabricated Sn-doped TiO2 nanotubular film via annealing of anodized TiO2 nanotubes grown on F-SnO2 (FTO) glass. Annealing was carried out at 500 degrees C in ambient air. Anatase crystal structure was achieved with no change in nanotubular morphology in respect to as-anodized amorphous TiO(2 )nanotubes. The X-ray photoelectron spectroscopy analysis revealed Sn on the surface of TiO2 film, following the thermal treatment, probably caused by the diffusion from FTO glass. Depth profile examination of the film chemical composition was conducted by elastic recoil detection analysis, which showed that in addition to the diffusion of Sn from FTO, diffusion of Ti to FTO concurrently occurred. Thus, a higher concentration of Sn was found at the bottom of the tubes, while a lower concentration was present on the tubes' surface top. This explains the improved optical response revealed by a diffuse reflectance spectroscopy. The absorption enhancement demonstrated that Sn-doped TiO2 film was efficient in the degradation of methyl orange dye under visible light.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Journal of Physics and Chemistry of Solids
T1  - Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye
SP  - 109609
VL  - 147
DO  - 10.1016/j.jpcs.2020.109609
ER  - 
@article{
author = "Bjelajac, Anđelika and Petrović, Rada and Vujančević, Jelena and Veltruska, Katerina and Matolin, Vladimir and Siketić, Zdravko and Provatas, George and Jakšić, Milko and Stan, George E. and Socol, Gabriel and Mihailescu, Ion N. and Janaćković, Đorđe",
year = "2020",
abstract = "We fabricated Sn-doped TiO2 nanotubular film via annealing of anodized TiO2 nanotubes grown on F-SnO2 (FTO) glass. Annealing was carried out at 500 degrees C in ambient air. Anatase crystal structure was achieved with no change in nanotubular morphology in respect to as-anodized amorphous TiO(2 )nanotubes. The X-ray photoelectron spectroscopy analysis revealed Sn on the surface of TiO2 film, following the thermal treatment, probably caused by the diffusion from FTO glass. Depth profile examination of the film chemical composition was conducted by elastic recoil detection analysis, which showed that in addition to the diffusion of Sn from FTO, diffusion of Ti to FTO concurrently occurred. Thus, a higher concentration of Sn was found at the bottom of the tubes, while a lower concentration was present on the tubes' surface top. This explains the improved optical response revealed by a diffuse reflectance spectroscopy. The absorption enhancement demonstrated that Sn-doped TiO2 film was efficient in the degradation of methyl orange dye under visible light.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Journal of Physics and Chemistry of Solids",
title = "Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye",
pages = "109609",
volume = "147",
doi = "10.1016/j.jpcs.2020.109609"
}
Bjelajac, A., Petrović, R., Vujančević, J., Veltruska, K., Matolin, V., Siketić, Z., Provatas, G., Jakšić, M., Stan, G. E., Socol, G., Mihailescu, I. N.,& Janaćković, Đ.. (2020). Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. in Journal of Physics and Chemistry of Solids
Pergamon-Elsevier Science Ltd, Oxford., 147, 109609.
https://doi.org/10.1016/j.jpcs.2020.109609
Bjelajac A, Petrović R, Vujančević J, Veltruska K, Matolin V, Siketić Z, Provatas G, Jakšić M, Stan GE, Socol G, Mihailescu IN, Janaćković Đ. Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. in Journal of Physics and Chemistry of Solids. 2020;147:109609.
doi:10.1016/j.jpcs.2020.109609 .
Bjelajac, Anđelika, Petrović, Rada, Vujančević, Jelena, Veltruska, Katerina, Matolin, Vladimir, Siketić, Zdravko, Provatas, George, Jakšić, Milko, Stan, George E., Socol, Gabriel, Mihailescu, Ion N., Janaćković, Đorđe, "Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye" in Journal of Physics and Chemistry of Solids, 147 (2020):109609,
https://doi.org/10.1016/j.jpcs.2020.109609 . .
18
8
18