Gržetić, Jelena

Link to this page

Authority KeyName Variants
0a7022e5-b9df-4230-a87d-1bd8bb84ee85
  • Gržetić, Jelena (6)
Projects

Author's Bibliography

Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation

Vuksanović, Marija M.; Milošević, Milena; Dimitrijević, Ivan; Milentijević, Gordana; Babincev, Ljiljana; Gržetić, Jelena; Marinković, Aleksandar; Milosavljević, Milutin

(MDPI, 2024)

TY  - JOUR
AU  - Vuksanović, Marija M.
AU  - Milošević, Milena
AU  - Dimitrijević, Ivan
AU  - Milentijević, Gordana
AU  - Babincev, Ljiljana
AU  - Gržetić, Jelena
AU  - Marinković, Aleksandar
AU  - Milosavljević, Milutin
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7424
AB  - The increase in waste polymer recycling has helped in promoting sustainability, and together with the use of renewable raw materials, it has become a widespread concept with positive effects on both the economy and ecology. Accordingly, the aim of this study was the synthesis of “green” plasticizers, marked as LA/PG/PET/EG/LA, formed from waste poly(ethylene terephthalate) (PET) and bio-based platform chemicals propylene glycol (PG) and levulinic acid (LA). The structure of the obtained plasticizers was complex, as confirmed by results from nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) analysis. The LA/PG/PET/EG/LA plasticizers and waste poly(vinyl chloride) (PVC) were used in an optimized technology for PVC re-granulate production. The hardness of the PVC-based material with “green” plasticizers, in comparison to commercial plasticizer dioctyl terephthalate (DOTP), increased by 11.3%, while migration decreased. An improved material homogeneity and wettability of the fibers by the matrix were observed using SEM analysis of the material’s fracture surface, with a higher efficiency of intermolecular interactions leading to better mechanical performances of the newly designed materials. Thus, LA/PG/PET/EG/LA are unique materials with good compounding and plasticizing potential for PVC, as revealed by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). In that manner, the use of bio-renewable resources and recycled polymers will contribute to diminishing waste polymer generation, contributing to a lower carbon footprint.
PB  - MDPI
T2  - Processes
T1  - Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation
IS  - 3
SP  - 520
VL  - 12
DO  - 10.3390/pr12030520
ER  - 
@article{
author = "Vuksanović, Marija M. and Milošević, Milena and Dimitrijević, Ivan and Milentijević, Gordana and Babincev, Ljiljana and Gržetić, Jelena and Marinković, Aleksandar and Milosavljević, Milutin",
year = "2024",
abstract = "The increase in waste polymer recycling has helped in promoting sustainability, and together with the use of renewable raw materials, it has become a widespread concept with positive effects on both the economy and ecology. Accordingly, the aim of this study was the synthesis of “green” plasticizers, marked as LA/PG/PET/EG/LA, formed from waste poly(ethylene terephthalate) (PET) and bio-based platform chemicals propylene glycol (PG) and levulinic acid (LA). The structure of the obtained plasticizers was complex, as confirmed by results from nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) analysis. The LA/PG/PET/EG/LA plasticizers and waste poly(vinyl chloride) (PVC) were used in an optimized technology for PVC re-granulate production. The hardness of the PVC-based material with “green” plasticizers, in comparison to commercial plasticizer dioctyl terephthalate (DOTP), increased by 11.3%, while migration decreased. An improved material homogeneity and wettability of the fibers by the matrix were observed using SEM analysis of the material’s fracture surface, with a higher efficiency of intermolecular interactions leading to better mechanical performances of the newly designed materials. Thus, LA/PG/PET/EG/LA are unique materials with good compounding and plasticizing potential for PVC, as revealed by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). In that manner, the use of bio-renewable resources and recycled polymers will contribute to diminishing waste polymer generation, contributing to a lower carbon footprint.",
publisher = "MDPI",
journal = "Processes",
title = "Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation",
number = "3",
pages = "520",
volume = "12",
doi = "10.3390/pr12030520"
}
Vuksanović, M. M., Milošević, M., Dimitrijević, I., Milentijević, G., Babincev, L., Gržetić, J., Marinković, A.,& Milosavljević, M.. (2024). Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation. in Processes
MDPI., 12(3), 520.
https://doi.org/10.3390/pr12030520
Vuksanović MM, Milošević M, Dimitrijević I, Milentijević G, Babincev L, Gržetić J, Marinković A, Milosavljević M. Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation. in Processes. 2024;12(3):520.
doi:10.3390/pr12030520 .
Vuksanović, Marija M., Milošević, Milena, Dimitrijević, Ivan, Milentijević, Gordana, Babincev, Ljiljana, Gržetić, Jelena, Marinković, Aleksandar, Milosavljević, Milutin, "Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation" in Processes, 12, no. 3 (2024):520,
https://doi.org/10.3390/pr12030520 . .

Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles

Embirsh, Hifa Salah Adeen; Stajčić, Ivana; Gržetić, Jelena; Mladenović, Ivana O.; Anđelković, Boban; Marinković, Aleksandar; Vuksanović, Marija M.

(MDPI, 2023)

TY  - JOUR
AU  - Embirsh, Hifa Salah Adeen
AU  - Stajčić, Ivana
AU  - Gržetić, Jelena
AU  - Mladenović, Ivana O.
AU  - Anđelković, Boban
AU  - Marinković, Aleksandar
AU  - Vuksanović, Marija M.
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6610
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6663
AB  - This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol(PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained fromrice husk. The structural and morphological properties of the obtained particles, b-UPR, as well ascomposites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magneticresonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electronmicroscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanicalproperties of composites was supported by hardness modeling. Improvement of the tensile strengthof the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named“b-UPR/SiO2-V” composite, has been achieved with 88% increase. The thermal aging process appliedto the b-UPR/SiO2-V composite, which simulates use over the product’s lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR).The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of atable top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, aswell as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainablecomposites that are chemically synthesized from renewable sources is important from the aspect ofpreserving the environment and existing resources as well as the extending their life cycle.
PB  - MDPI
T2  - Polymers
T1  - Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles
IS  - 18
SP  - 3756
VL  - 15
DO  - 10.3390/polym15183756
ER  - 
@article{
author = "Embirsh, Hifa Salah Adeen and Stajčić, Ivana and Gržetić, Jelena and Mladenović, Ivana O. and Anđelković, Boban and Marinković, Aleksandar and Vuksanović, Marija M.",
year = "2023",
abstract = "This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol(PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained fromrice husk. The structural and morphological properties of the obtained particles, b-UPR, as well ascomposites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magneticresonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electronmicroscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanicalproperties of composites was supported by hardness modeling. Improvement of the tensile strengthof the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named“b-UPR/SiO2-V” composite, has been achieved with 88% increase. The thermal aging process appliedto the b-UPR/SiO2-V composite, which simulates use over the product’s lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR).The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of atable top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, aswell as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainablecomposites that are chemically synthesized from renewable sources is important from the aspect ofpreserving the environment and existing resources as well as the extending their life cycle.",
publisher = "MDPI",
journal = "Polymers",
title = "Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles",
number = "18",
pages = "3756",
volume = "15",
doi = "10.3390/polym15183756"
}
Embirsh, H. S. A., Stajčić, I., Gržetić, J., Mladenović, I. O., Anđelković, B., Marinković, A.,& Vuksanović, M. M.. (2023). Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. in Polymers
MDPI., 15(18), 3756.
https://doi.org/10.3390/polym15183756
Embirsh HSA, Stajčić I, Gržetić J, Mladenović IO, Anđelković B, Marinković A, Vuksanović MM. Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. in Polymers. 2023;15(18):3756.
doi:10.3390/polym15183756 .
Embirsh, Hifa Salah Adeen, Stajčić, Ivana, Gržetić, Jelena, Mladenović, Ivana O., Anđelković, Boban, Marinković, Aleksandar, Vuksanović, Marija M., "Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles" in Polymers, 15, no. 18 (2023):3756,
https://doi.org/10.3390/polym15183756 . .
8
4

EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES

Gržetić, Jelena; Banjanac, Katarina; Marinković, Aleksandar; Milošević, Milena; Vuksanović, Marija

(Belgrade : University, Faculty of Technology and Metallurgy, 2023)

TY  - CONF
AU  - Gržetić, Jelena
AU  - Banjanac, Katarina
AU  - Marinković, Aleksandar
AU  - Milošević, Milena
AU  - Vuksanović, Marija
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6961
AB  - The morphological properties and adsorption potential of lignin-based porous
microspheres (LgMS) for heavy metals ions were investigated. LgMS were produced via
suspension copolymerization of unmodified or acryloyl modified kraft lignin with amine
(polyethylene imine - PEI) or acrylate (trimethylolpropanetriacrylate - TMPTA) functional
polymers. Structural and morphological characterization of LgMS was performed using
FTIR, BET, and SEM techniques. Copolymerization of the unmodified lignin and PEI, using
epoxy chloropropane cross-linker, provided highly porous LgMS, with 800 ± 80 μm
diameter, 7.68 m2g−1 surface area and 7.7 mmol g−1 of terminal amino groups. The LgMS
produced by copolymerization of the acryloyl functionalized lignin and TMPTA provided a
decrease in LgMS diameter (253 ± 42 μm), while surface area and porosity increase, 69.4 m2
g-1and 59%, respectively. The effect of acryloyl functionalization of kraft lignin on the
LgMS adsorption capacity for Ni2+ ions was also studied in a comparative study. The results
showed that final adsorption performances of LgMS were affected by the key factors
including lignin functionality and the LgMS synthesis condition. Lower adsorption capacity
of 22.6 mg g-1 for Ni2+ was observed for acryloyl LgMS due to lower affinity for formation
electrostatic interactions of Ni2+ ions with phenol/hydroxyl groups responsible for
adsorption. Opposite was found for amino LgMS where 49.4 mg g-1was achieved. However,
this study indicated that removal of heavy metal ions from wastewater can be realized
through the application of eco-friendly lignin-based porous microspheres.
PB  - Belgrade : University, Faculty of Technology and Metallurgy
C3  - Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade
T1  - EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES
SP  - 61
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6961
ER  - 
@conference{
author = "Gržetić, Jelena and Banjanac, Katarina and Marinković, Aleksandar and Milošević, Milena and Vuksanović, Marija",
year = "2023",
abstract = "The morphological properties and adsorption potential of lignin-based porous
microspheres (LgMS) for heavy metals ions were investigated. LgMS were produced via
suspension copolymerization of unmodified or acryloyl modified kraft lignin with amine
(polyethylene imine - PEI) or acrylate (trimethylolpropanetriacrylate - TMPTA) functional
polymers. Structural and morphological characterization of LgMS was performed using
FTIR, BET, and SEM techniques. Copolymerization of the unmodified lignin and PEI, using
epoxy chloropropane cross-linker, provided highly porous LgMS, with 800 ± 80 μm
diameter, 7.68 m2g−1 surface area and 7.7 mmol g−1 of terminal amino groups. The LgMS
produced by copolymerization of the acryloyl functionalized lignin and TMPTA provided a
decrease in LgMS diameter (253 ± 42 μm), while surface area and porosity increase, 69.4 m2
g-1and 59%, respectively. The effect of acryloyl functionalization of kraft lignin on the
LgMS adsorption capacity for Ni2+ ions was also studied in a comparative study. The results
showed that final adsorption performances of LgMS were affected by the key factors
including lignin functionality and the LgMS synthesis condition. Lower adsorption capacity
of 22.6 mg g-1 for Ni2+ was observed for acryloyl LgMS due to lower affinity for formation
electrostatic interactions of Ni2+ ions with phenol/hydroxyl groups responsible for
adsorption. Opposite was found for amino LgMS where 49.4 mg g-1was achieved. However,
this study indicated that removal of heavy metal ions from wastewater can be realized
through the application of eco-friendly lignin-based porous microspheres.",
publisher = "Belgrade : University, Faculty of Technology and Metallurgy",
journal = "Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade",
title = "EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES",
pages = "61",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6961"
}
Gržetić, J., Banjanac, K., Marinković, A., Milošević, M.,& Vuksanović, M.. (2023). EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES. in Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade
Belgrade : University, Faculty of Technology and Metallurgy., 61.
https://hdl.handle.net/21.15107/rcub_technorep_6961
Gržetić J, Banjanac K, Marinković A, Milošević M, Vuksanović M. EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES. in Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade. 2023;:61.
https://hdl.handle.net/21.15107/rcub_technorep_6961 .
Gržetić, Jelena, Banjanac, Katarina, Marinković, Aleksandar, Milošević, Milena, Vuksanović, Marija, "EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES" in Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade (2023):61,
https://hdl.handle.net/21.15107/rcub_technorep_6961 .

Postupak dobijanja regranulata PVC-a sa dodatkom modifikovanog etilenvinilacetata (EVA) za meke proizvode

Marinković, Aleksandar; Milošević, Milena; Knežević, Nataša; Jovanović, Aleksandra A.; Gržetić, Jelena; Nikolić, Željko; Vuksanović, Marija

(2023)


                                            

                                            
Marinković, A., Milošević, M., Knežević, N., Jovanović, A. A., Gržetić, J., Nikolić, Ž.,& Vuksanović, M.. (2023). Postupak dobijanja regranulata PVC-a sa dodatkom modifikovanog etilenvinilacetata (EVA) za meke proizvode. .
https://hdl.handle.net/21.15107/rcub_technorep_7065
Marinković A, Milošević M, Knežević N, Jovanović AA, Gržetić J, Nikolić Ž, Vuksanović M. Postupak dobijanja regranulata PVC-a sa dodatkom modifikovanog etilenvinilacetata (EVA) za meke proizvode. 2023;.
https://hdl.handle.net/21.15107/rcub_technorep_7065 .
Marinković, Aleksandar, Milošević, Milena, Knežević, Nataša, Jovanović, Aleksandra A., Gržetić, Jelena, Nikolić, Željko, Vuksanović, Marija, "Postupak dobijanja regranulata PVC-a sa dodatkom modifikovanog etilenvinilacetata (EVA) za meke proizvode" (2023),
https://hdl.handle.net/21.15107/rcub_technorep_7065 .

Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes

Salih, Rabab; Banjanac, Katarina; Vukoičić, Ana; Gržetić, Jelena; Popović, Ana; Veljković, Milica; Bezbradica, Dejan; Marinković, Aleksandar

(Elsevier Ltd., 2023)

TY  - JOUR
AU  - Salih, Rabab
AU  - Banjanac, Katarina
AU  - Vukoičić, Ana
AU  - Gržetić, Jelena
AU  - Popović, Ana
AU  - Veljković, Milica
AU  - Bezbradica, Dejan
AU  - Marinković, Aleksandar
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5278
AB  - The novel lignin-based microspheres (LMS-DEGDMA) were produced through a two-step modification procedure consisting of kraft lignin (KL) modification with acrylic acid synthesized from fructose; and suspension and copolymerization of acrylic acid modified KL (KL-A) with diethylene glycol dimethacrylate (DEGDMA). The applied procedure provided LMS-DEGDMA microspheres in the size range of 50-90 μm with specific surface area of 39 m2/g, porosity ϵp 62, pore diameters of 4-20 nm and total pore volume of 0.14 cm3/g. Immobilization of laccase from Myceliophthora thermophilia expressed in Aspergillus oryzae (Novozyme® 51003) on LMS-DEGDMA was explored. By optimization of the immobilization process, it was demonstrated that laccase immobilization on LMS-DEGDMA exhibited the best results (protein immobilization yield of 70 %, activity yield of 27 %, and catalytic activity of 262 IU/g of support) when the immobilization was carried out at pH 5.0 and 100 mg of offered protein per g support during 1 h. Additionally, the LMS-DEGDMA-laccase preparation showed efficiency (>80 %, 5-7 cycles) in decolorization of anthraquinone dyes (Lanaset® violet B, Lanaset® blue 2 R and C.I. Acid Green 40) and their mixture. In case of Lanaset® violet B, LMS-DEGDMA improved laccase's kinetics characteristics (90 % over 24 h) along with operational stability (> 63 % catalytic activity, 7 cycles).
PB  - Elsevier Ltd.
T2  - Journal of Environmental Chemical Engineering
T1  - Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes
IS  - 1
SP  - 109077
VL  - 11
DO  - 10.1016/j.jece.2022.109077
ER  - 
@article{
author = "Salih, Rabab and Banjanac, Katarina and Vukoičić, Ana and Gržetić, Jelena and Popović, Ana and Veljković, Milica and Bezbradica, Dejan and Marinković, Aleksandar",
year = "2023",
abstract = "The novel lignin-based microspheres (LMS-DEGDMA) were produced through a two-step modification procedure consisting of kraft lignin (KL) modification with acrylic acid synthesized from fructose; and suspension and copolymerization of acrylic acid modified KL (KL-A) with diethylene glycol dimethacrylate (DEGDMA). The applied procedure provided LMS-DEGDMA microspheres in the size range of 50-90 μm with specific surface area of 39 m2/g, porosity ϵp 62, pore diameters of 4-20 nm and total pore volume of 0.14 cm3/g. Immobilization of laccase from Myceliophthora thermophilia expressed in Aspergillus oryzae (Novozyme® 51003) on LMS-DEGDMA was explored. By optimization of the immobilization process, it was demonstrated that laccase immobilization on LMS-DEGDMA exhibited the best results (protein immobilization yield of 70 %, activity yield of 27 %, and catalytic activity of 262 IU/g of support) when the immobilization was carried out at pH 5.0 and 100 mg of offered protein per g support during 1 h. Additionally, the LMS-DEGDMA-laccase preparation showed efficiency (>80 %, 5-7 cycles) in decolorization of anthraquinone dyes (Lanaset® violet B, Lanaset® blue 2 R and C.I. Acid Green 40) and their mixture. In case of Lanaset® violet B, LMS-DEGDMA improved laccase's kinetics characteristics (90 % over 24 h) along with operational stability (> 63 % catalytic activity, 7 cycles).",
publisher = "Elsevier Ltd.",
journal = "Journal of Environmental Chemical Engineering",
title = "Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes",
number = "1",
pages = "109077",
volume = "11",
doi = "10.1016/j.jece.2022.109077"
}
Salih, R., Banjanac, K., Vukoičić, A., Gržetić, J., Popović, A., Veljković, M., Bezbradica, D.,& Marinković, A.. (2023). Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes. in Journal of Environmental Chemical Engineering
Elsevier Ltd.., 11(1), 109077.
https://doi.org/10.1016/j.jece.2022.109077
Salih R, Banjanac K, Vukoičić A, Gržetić J, Popović A, Veljković M, Bezbradica D, Marinković A. Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes. in Journal of Environmental Chemical Engineering. 2023;11(1):109077.
doi:10.1016/j.jece.2022.109077 .
Salih, Rabab, Banjanac, Katarina, Vukoičić, Ana, Gržetić, Jelena, Popović, Ana, Veljković, Milica, Bezbradica, Dejan, Marinković, Aleksandar, "Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes" in Journal of Environmental Chemical Engineering, 11, no. 1 (2023):109077,
https://doi.org/10.1016/j.jece.2022.109077 . .
7
5

Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)

Jelić, Aleksandra; Sekulić, Milica; Travica, Milan; Gržetić, Jelena; Ugrinović, Vukašin; Marinković, Aleksandar D.; Božić, Aleksandra; Stamenović, Marina; Putić, Slaviša

(MDPI, 2022)

TY  - JOUR
AU  - Jelić, Aleksandra
AU  - Sekulić, Milica
AU  - Travica, Milan
AU  - Gržetić, Jelena
AU  - Ugrinović, Vukašin
AU  - Marinković, Aleksandar D.
AU  - Božić, Aleksandra
AU  - Stamenović, Marina
AU  - Putić, Slaviša
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5110
AB  - In this study, silicate nanofillers; dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite; were synthesized using four different methods and incorporated into the epoxy resin to improve its mechanical properties. Characterization of the newly synthesized nanofillers was performed using Fourier-transformation infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The purpose of this study was to analyze newly developed composite materials reinforced with silicate nanoparticles utilizing tensile testing and a full-field non-contact 3D Digital Image Correlation (DIC) method. Analysis of deformation and displacement fields gives precise material behavior during testing. Testing results allowed a more reliable assessment of the structural integrity of epoxy composite materials reinforced using different silicate nanofillers. It was concluded that the addition of 3% of dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite lead to the increasement of tensile strength up to 31.5%, 29.0%, 27.5%, and 23.5% in comparison with neat epoxy, respectively. In order to offer more trustworthy information about the viscoelastic behavior of neat epoxy and composites, a dynamic mechanical analysis (DMA) was also performed and rheological measurements of uncured epoxy matrix and epoxy suspensions were obtained.
PB  - MDPI
T2  - Polymers
T1  - Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)
IS  - 6
SP  - 1255
VL  - 14
DO  - 10.3390/polym14061255
ER  - 
@article{
author = "Jelić, Aleksandra and Sekulić, Milica and Travica, Milan and Gržetić, Jelena and Ugrinović, Vukašin and Marinković, Aleksandar D. and Božić, Aleksandra and Stamenović, Marina and Putić, Slaviša",
year = "2022",
abstract = "In this study, silicate nanofillers; dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite; were synthesized using four different methods and incorporated into the epoxy resin to improve its mechanical properties. Characterization of the newly synthesized nanofillers was performed using Fourier-transformation infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The purpose of this study was to analyze newly developed composite materials reinforced with silicate nanoparticles utilizing tensile testing and a full-field non-contact 3D Digital Image Correlation (DIC) method. Analysis of deformation and displacement fields gives precise material behavior during testing. Testing results allowed a more reliable assessment of the structural integrity of epoxy composite materials reinforced using different silicate nanofillers. It was concluded that the addition of 3% of dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite lead to the increasement of tensile strength up to 31.5%, 29.0%, 27.5%, and 23.5% in comparison with neat epoxy, respectively. In order to offer more trustworthy information about the viscoelastic behavior of neat epoxy and composites, a dynamic mechanical analysis (DMA) was also performed and rheological measurements of uncured epoxy matrix and epoxy suspensions were obtained.",
publisher = "MDPI",
journal = "Polymers",
title = "Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)",
number = "6",
pages = "1255",
volume = "14",
doi = "10.3390/polym14061255"
}
Jelić, A., Sekulić, M., Travica, M., Gržetić, J., Ugrinović, V., Marinković, A. D., Božić, A., Stamenović, M.,& Putić, S.. (2022). Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). in Polymers
MDPI., 14(6), 1255.
https://doi.org/10.3390/polym14061255
Jelić A, Sekulić M, Travica M, Gržetić J, Ugrinović V, Marinković AD, Božić A, Stamenović M, Putić S. Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). in Polymers. 2022;14(6):1255.
doi:10.3390/polym14061255 .
Jelić, Aleksandra, Sekulić, Milica, Travica, Milan, Gržetić, Jelena, Ugrinović, Vukašin, Marinković, Aleksandar D., Božić, Aleksandra, Stamenović, Marina, Putić, Slaviša, "Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)" in Polymers, 14, no. 6 (2022):1255,
https://doi.org/10.3390/polym14061255 . .
8
8