dos Santos, Leandro Alves

Link to this page

Authority KeyName Variants
b5ab43c8-ec4c-48b7-96f7-2291182341c9
  • dos Santos, Leandro Alves (1)
Projects

Author's Bibliography

IMMOBILIZATION OF XYLANASE ON MAGNETIC NANOPARTICLES MODIFIED WITH POLYETHYLENEIMINE AND ITS APPLICATION IN XYLO-OLIGOSACCHARIDES SYNTHESIS

dos Santos, Leandro Alves; Banjanac, Katarina; Veljković, Milica; Simović, Milica; Mateo, Cesar; Bezbradica, Dejan

(Belgrade : University, Faculty of Technology and Metallurgy, 2023)

TY  - CONF
AU  - dos Santos, Leandro Alves
AU  - Banjanac, Katarina
AU  - Veljković, Milica
AU  - Simović, Milica
AU  - Mateo, Cesar
AU  - Bezbradica, Dejan
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6948
AB  - A food-grade bacterial xylanase enzyme preparation, ROHALASE® SEP-VISCO,
was immobilized by adsorption onto polyethyleneimine (PEI) functionalized magnetic
nanoparticles (MNPs). This process resulted in nanobiocatalysts with optimal characteristics.
Subsequently, this nanobiocatalyst was employed to produce xylo-oligosaccharides (XOS). In
the past decade, magnetic nanoparticles (MNPs) have gained significant interest, finding
diverse applications in biomedicine, biosensor production, food processing, catalysis,
agriculture, and environmental processes. MNPs have proven highly effective for enzyme
immobilization because of their unique and distinguished properties such as high specific
surface area, biocompatibility, and magnetic characteristics. Magnetic characteristics
facilitate the easy removal of MNPs from reaction mixtures, allowing for their efficient reuse.
The functionalization of MNPs through with the cationic polymer PEI can further augment
their ability for enzyme attachment. Generally, xylanases hydrolyses β-1,4-glycosidic
linkages present in xylan which is a major component of the hemicellulosic fraction in the
plant cell walls. Furthermore, xylanases can produce XOS composed of xylose units linked
by β-1,4-xylosidic bonds. XOS have stimulatory effects on the selective growth of human
intestinal microbiota and are frequently defined as prebiotics.
In the present work, the xylanase immobilization efficiency on MNPs-PEI is between
100 and 43 % within the wide range of xylanase concentrations (400-2400 mg/g of support).
Free and immobilized xylanase showed maximal catalytic activity at pH 6.0 and 60°C in
reaction with commercial birchwood xylan (concentration of 1 % w/v). The maximum
activity of 1675 IU/g of support was achieved when immobilization was performed at initial
enzyme concentration of 1250 mg/g of support during 2 h. Since this immobilized
preparation exhibited the activity immobilization yield of 80 % and specific activity of 2.1
mg of proteins/g of support, it has been applied in reaction of XOS synthesis. The MNPsPEI-xylanase was found to produce high yield of XOS from birchwood xylan, indicating its
potential for utilization in feed and food formulations.
PB  - Belgrade : University, Faculty of Technology and Metallurgy
C3  - Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade
T1  - IMMOBILIZATION OF XYLANASE ON MAGNETIC NANOPARTICLES MODIFIED WITH POLYETHYLENEIMINE AND ITS APPLICATION IN XYLO-OLIGOSACCHARIDES SYNTHESIS
SP  - 34
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6948
ER  - 
@conference{
author = "dos Santos, Leandro Alves and Banjanac, Katarina and Veljković, Milica and Simović, Milica and Mateo, Cesar and Bezbradica, Dejan",
year = "2023",
abstract = "A food-grade bacterial xylanase enzyme preparation, ROHALASE® SEP-VISCO,
was immobilized by adsorption onto polyethyleneimine (PEI) functionalized magnetic
nanoparticles (MNPs). This process resulted in nanobiocatalysts with optimal characteristics.
Subsequently, this nanobiocatalyst was employed to produce xylo-oligosaccharides (XOS). In
the past decade, magnetic nanoparticles (MNPs) have gained significant interest, finding
diverse applications in biomedicine, biosensor production, food processing, catalysis,
agriculture, and environmental processes. MNPs have proven highly effective for enzyme
immobilization because of their unique and distinguished properties such as high specific
surface area, biocompatibility, and magnetic characteristics. Magnetic characteristics
facilitate the easy removal of MNPs from reaction mixtures, allowing for their efficient reuse.
The functionalization of MNPs through with the cationic polymer PEI can further augment
their ability for enzyme attachment. Generally, xylanases hydrolyses β-1,4-glycosidic
linkages present in xylan which is a major component of the hemicellulosic fraction in the
plant cell walls. Furthermore, xylanases can produce XOS composed of xylose units linked
by β-1,4-xylosidic bonds. XOS have stimulatory effects on the selective growth of human
intestinal microbiota and are frequently defined as prebiotics.
In the present work, the xylanase immobilization efficiency on MNPs-PEI is between
100 and 43 % within the wide range of xylanase concentrations (400-2400 mg/g of support).
Free and immobilized xylanase showed maximal catalytic activity at pH 6.0 and 60°C in
reaction with commercial birchwood xylan (concentration of 1 % w/v). The maximum
activity of 1675 IU/g of support was achieved when immobilization was performed at initial
enzyme concentration of 1250 mg/g of support during 2 h. Since this immobilized
preparation exhibited the activity immobilization yield of 80 % and specific activity of 2.1
mg of proteins/g of support, it has been applied in reaction of XOS synthesis. The MNPsPEI-xylanase was found to produce high yield of XOS from birchwood xylan, indicating its
potential for utilization in feed and food formulations.",
publisher = "Belgrade : University, Faculty of Technology and Metallurgy",
journal = "Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade",
title = "IMMOBILIZATION OF XYLANASE ON MAGNETIC NANOPARTICLES MODIFIED WITH POLYETHYLENEIMINE AND ITS APPLICATION IN XYLO-OLIGOSACCHARIDES SYNTHESIS",
pages = "34",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6948"
}
dos Santos, L. A., Banjanac, K., Veljković, M., Simović, M., Mateo, C.,& Bezbradica, D.. (2023). IMMOBILIZATION OF XYLANASE ON MAGNETIC NANOPARTICLES MODIFIED WITH POLYETHYLENEIMINE AND ITS APPLICATION IN XYLO-OLIGOSACCHARIDES SYNTHESIS. in Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade
Belgrade : University, Faculty of Technology and Metallurgy., 34.
https://hdl.handle.net/21.15107/rcub_technorep_6948
dos Santos LA, Banjanac K, Veljković M, Simović M, Mateo C, Bezbradica D. IMMOBILIZATION OF XYLANASE ON MAGNETIC NANOPARTICLES MODIFIED WITH POLYETHYLENEIMINE AND ITS APPLICATION IN XYLO-OLIGOSACCHARIDES SYNTHESIS. in Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade. 2023;:34.
https://hdl.handle.net/21.15107/rcub_technorep_6948 .
dos Santos, Leandro Alves, Banjanac, Katarina, Veljković, Milica, Simović, Milica, Mateo, Cesar, Bezbradica, Dejan, "IMMOBILIZATION OF XYLANASE ON MAGNETIC NANOPARTICLES MODIFIED WITH POLYETHYLENEIMINE AND ITS APPLICATION IN XYLO-OLIGOSACCHARIDES SYNTHESIS" in Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade (2023):34,
https://hdl.handle.net/21.15107/rcub_technorep_6948 .