Salih, Rabab

Link to this page

Authority KeyName Variants
d6c13c57-3f71-4ca9-a59b-72a9ffbcacf0
  • Salih, Rabab (2)
Projects

Author's Bibliography

Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes

Salih, Rabab; Banjanac, Katarina; Vukoičić, Ana; Gržetić, Jelena; Popović, Ana; Veljković, Milica; Bezbradica, Dejan; Marinković, Aleksandar

(Elsevier Ltd., 2023)

TY  - JOUR
AU  - Salih, Rabab
AU  - Banjanac, Katarina
AU  - Vukoičić, Ana
AU  - Gržetić, Jelena
AU  - Popović, Ana
AU  - Veljković, Milica
AU  - Bezbradica, Dejan
AU  - Marinković, Aleksandar
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5278
AB  - The novel lignin-based microspheres (LMS-DEGDMA) were produced through a two-step modification procedure consisting of kraft lignin (KL) modification with acrylic acid synthesized from fructose; and suspension and copolymerization of acrylic acid modified KL (KL-A) with diethylene glycol dimethacrylate (DEGDMA). The applied procedure provided LMS-DEGDMA microspheres in the size range of 50-90 μm with specific surface area of 39 m2/g, porosity ϵp 62, pore diameters of 4-20 nm and total pore volume of 0.14 cm3/g. Immobilization of laccase from Myceliophthora thermophilia expressed in Aspergillus oryzae (Novozyme® 51003) on LMS-DEGDMA was explored. By optimization of the immobilization process, it was demonstrated that laccase immobilization on LMS-DEGDMA exhibited the best results (protein immobilization yield of 70 %, activity yield of 27 %, and catalytic activity of 262 IU/g of support) when the immobilization was carried out at pH 5.0 and 100 mg of offered protein per g support during 1 h. Additionally, the LMS-DEGDMA-laccase preparation showed efficiency (>80 %, 5-7 cycles) in decolorization of anthraquinone dyes (Lanaset® violet B, Lanaset® blue 2 R and C.I. Acid Green 40) and their mixture. In case of Lanaset® violet B, LMS-DEGDMA improved laccase's kinetics characteristics (90 % over 24 h) along with operational stability (> 63 % catalytic activity, 7 cycles).
PB  - Elsevier Ltd.
T2  - Journal of Environmental Chemical Engineering
T1  - Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes
IS  - 1
SP  - 109077
VL  - 11
DO  - 10.1016/j.jece.2022.109077
ER  - 
@article{
author = "Salih, Rabab and Banjanac, Katarina and Vukoičić, Ana and Gržetić, Jelena and Popović, Ana and Veljković, Milica and Bezbradica, Dejan and Marinković, Aleksandar",
year = "2023",
abstract = "The novel lignin-based microspheres (LMS-DEGDMA) were produced through a two-step modification procedure consisting of kraft lignin (KL) modification with acrylic acid synthesized from fructose; and suspension and copolymerization of acrylic acid modified KL (KL-A) with diethylene glycol dimethacrylate (DEGDMA). The applied procedure provided LMS-DEGDMA microspheres in the size range of 50-90 μm with specific surface area of 39 m2/g, porosity ϵp 62, pore diameters of 4-20 nm and total pore volume of 0.14 cm3/g. Immobilization of laccase from Myceliophthora thermophilia expressed in Aspergillus oryzae (Novozyme® 51003) on LMS-DEGDMA was explored. By optimization of the immobilization process, it was demonstrated that laccase immobilization on LMS-DEGDMA exhibited the best results (protein immobilization yield of 70 %, activity yield of 27 %, and catalytic activity of 262 IU/g of support) when the immobilization was carried out at pH 5.0 and 100 mg of offered protein per g support during 1 h. Additionally, the LMS-DEGDMA-laccase preparation showed efficiency (>80 %, 5-7 cycles) in decolorization of anthraquinone dyes (Lanaset® violet B, Lanaset® blue 2 R and C.I. Acid Green 40) and their mixture. In case of Lanaset® violet B, LMS-DEGDMA improved laccase's kinetics characteristics (90 % over 24 h) along with operational stability (> 63 % catalytic activity, 7 cycles).",
publisher = "Elsevier Ltd.",
journal = "Journal of Environmental Chemical Engineering",
title = "Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes",
number = "1",
pages = "109077",
volume = "11",
doi = "10.1016/j.jece.2022.109077"
}
Salih, R., Banjanac, K., Vukoičić, A., Gržetić, J., Popović, A., Veljković, M., Bezbradica, D.,& Marinković, A.. (2023). Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes. in Journal of Environmental Chemical Engineering
Elsevier Ltd.., 11(1), 109077.
https://doi.org/10.1016/j.jece.2022.109077
Salih R, Banjanac K, Vukoičić A, Gržetić J, Popović A, Veljković M, Bezbradica D, Marinković A. Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes. in Journal of Environmental Chemical Engineering. 2023;11(1):109077.
doi:10.1016/j.jece.2022.109077 .
Salih, Rabab, Banjanac, Katarina, Vukoičić, Ana, Gržetić, Jelena, Popović, Ana, Veljković, Milica, Bezbradica, Dejan, Marinković, Aleksandar, "Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes" in Journal of Environmental Chemical Engineering, 11, no. 1 (2023):109077,
https://doi.org/10.1016/j.jece.2022.109077 . .
7
5

Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study

Salih, Rabab; Veličković, Zlate; Milošević, Milena; Pavlović, Vera P.; Cvijetić, Ilija; Sofrenić, Ivana V.; Gržetić, Jelena D.; Marinković, Aleksandar

(Academic Press, 2023)

TY  - JOUR
AU  - Salih, Rabab
AU  - Veličković, Zlate
AU  - Milošević, Milena
AU  - Pavlović, Vera P.
AU  - Cvijetić, Ilija
AU  - Sofrenić, Ivana V.
AU  - Gržetić, Jelena D.
AU  - Marinković, Aleksandar
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5275
AB  - Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 μm diameters, 69.4 m2 g−1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g−1 for MG, 86.8 mg g−1 for T, and 68.6 mg g−1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.
PB  - Academic Press
T2  - Journal of Environmental Management
T1  - Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study
SP  - 116838
VL  - 326
DO  - 10.1016/j.jenvman.2022.116838
ER  - 
@article{
author = "Salih, Rabab and Veličković, Zlate and Milošević, Milena and Pavlović, Vera P. and Cvijetić, Ilija and Sofrenić, Ivana V. and Gržetić, Jelena D. and Marinković, Aleksandar",
year = "2023",
abstract = "Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 μm diameters, 69.4 m2 g−1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g−1 for MG, 86.8 mg g−1 for T, and 68.6 mg g−1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.",
publisher = "Academic Press",
journal = "Journal of Environmental Management",
title = "Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study",
pages = "116838",
volume = "326",
doi = "10.1016/j.jenvman.2022.116838"
}
Salih, R., Veličković, Z., Milošević, M., Pavlović, V. P., Cvijetić, I., Sofrenić, I. V., Gržetić, J. D.,& Marinković, A.. (2023). Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study. in Journal of Environmental Management
Academic Press., 326, 116838.
https://doi.org/10.1016/j.jenvman.2022.116838
Salih R, Veličković Z, Milošević M, Pavlović VP, Cvijetić I, Sofrenić IV, Gržetić JD, Marinković A. Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study. in Journal of Environmental Management. 2023;326:116838.
doi:10.1016/j.jenvman.2022.116838 .
Salih, Rabab, Veličković, Zlate, Milošević, Milena, Pavlović, Vera P., Cvijetić, Ilija, Sofrenić, Ivana V., Gržetić, Jelena D., Marinković, Aleksandar, "Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study" in Journal of Environmental Management, 326 (2023):116838,
https://doi.org/10.1016/j.jenvman.2022.116838 . .
18
16