Slovenian Research AgencySlovenian Research Agency - Slovenia [P1-0112]

Link to this page

Slovenian Research AgencySlovenian Research Agency - Slovenia [P1-0112]

Authors

Publications

SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal from Wastewater under Solar Light

Suligoj, Andraz; Pavlović, Jelena; Arcon, Iztok; Rajić, Nevenka; Novak-Tusar, Nataša

(MDPI, Basel, 2020)

TY  - JOUR
AU  - Suligoj, Andraz
AU  - Pavlović, Jelena
AU  - Arcon, Iztok
AU  - Rajić, Nevenka
AU  - Novak-Tusar, Nataša
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4455
AB  - Due to their adsorbent, ion exchange and catalytic properties zeolites are suitable for a variety of applications. We report on the photocatalytic activity of a readily available and inexpensive natural zeolite clinoptilolite (Z) containing SnO2 (Sn-Z). The Sn-Z samples with 3-15 wt. % of Sn were prepared by using a precipitation-deposition method. Powder X-ray diffraction analysis showed that the zeolite structure was unaffected by the introduction of the Sn-phase. Diffuse reflectance UV/VIS spectra of the Sn-Z samples confirmed the presence of SnO2 and X-Ray absorption spectroscopy analyses suggested that the SnO2 particles mainly resided on the surface of the clinoptilolite, while ATR-FTIR analysis gave some clues that part of the SnO2 phase was incorporated in the pores of the zeolite. The presence of SnO2 in Sn-Z increased both adsorption capacity and photocatalytic performance which could be partially explained by higher surface area and partially with an increased negative potential of the surface. Adsorption and total degradation of methylene blue (MB) for the Sn-Z with the highest amount of Sn (15 wt.%) was about 30% and 45%, respectively, suggesting a synergetic effect between SnO2 and the clinoptilolite lattice. Reusability tests showed that these catalysts present a promising material for water purification.
PB  - MDPI, Basel
T2  - Catalysts
T1  - SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal from Wastewater under Solar Light
IS  - 2
VL  - 10
DO  - 10.3390/catal10020253
ER  - 
@article{
author = "Suligoj, Andraz and Pavlović, Jelena and Arcon, Iztok and Rajić, Nevenka and Novak-Tusar, Nataša",
year = "2020",
abstract = "Due to their adsorbent, ion exchange and catalytic properties zeolites are suitable for a variety of applications. We report on the photocatalytic activity of a readily available and inexpensive natural zeolite clinoptilolite (Z) containing SnO2 (Sn-Z). The Sn-Z samples with 3-15 wt. % of Sn were prepared by using a precipitation-deposition method. Powder X-ray diffraction analysis showed that the zeolite structure was unaffected by the introduction of the Sn-phase. Diffuse reflectance UV/VIS spectra of the Sn-Z samples confirmed the presence of SnO2 and X-Ray absorption spectroscopy analyses suggested that the SnO2 particles mainly resided on the surface of the clinoptilolite, while ATR-FTIR analysis gave some clues that part of the SnO2 phase was incorporated in the pores of the zeolite. The presence of SnO2 in Sn-Z increased both adsorption capacity and photocatalytic performance which could be partially explained by higher surface area and partially with an increased negative potential of the surface. Adsorption and total degradation of methylene blue (MB) for the Sn-Z with the highest amount of Sn (15 wt.%) was about 30% and 45%, respectively, suggesting a synergetic effect between SnO2 and the clinoptilolite lattice. Reusability tests showed that these catalysts present a promising material for water purification.",
publisher = "MDPI, Basel",
journal = "Catalysts",
title = "SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal from Wastewater under Solar Light",
number = "2",
volume = "10",
doi = "10.3390/catal10020253"
}
Suligoj, A., Pavlović, J., Arcon, I., Rajić, N.,& Novak-Tusar, N.. (2020). SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal from Wastewater under Solar Light. in Catalysts
MDPI, Basel., 10(2).
https://doi.org/10.3390/catal10020253
Suligoj A, Pavlović J, Arcon I, Rajić N, Novak-Tusar N. SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal from Wastewater under Solar Light. in Catalysts. 2020;10(2).
doi:10.3390/catal10020253 .
Suligoj, Andraz, Pavlović, Jelena, Arcon, Iztok, Rajić, Nevenka, Novak-Tusar, Nataša, "SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal from Wastewater under Solar Light" in Catalysts, 10, no. 2 (2020),
https://doi.org/10.3390/catal10020253 . .
1
27
14
21

The iron(III)-modified natural zeolitic tuff as an adsorbent and carrier for selenium oxyanions

Jevtić, Sanja; Arcon, Iztok; Recnik, Aleksander; Babić, Biljana M.; Mazaj, Matjaz; Pavlović, Jelena; Matijasević, Danka; Nikšić, Miomir; Rajić, Nevenka

(Elsevier, Amsterdam, 2014)

TY  - JOUR
AU  - Jevtić, Sanja
AU  - Arcon, Iztok
AU  - Recnik, Aleksander
AU  - Babić, Biljana M.
AU  - Mazaj, Matjaz
AU  - Pavlović, Jelena
AU  - Matijasević, Danka
AU  - Nikšić, Miomir
AU  - Rajić, Nevenka
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2662
AB  - Se(IV) and Se(VI) anions are the dominant species of Se existing in aqueous systems. In this study, the iron(III)-modified natural zeolitic tuff (Fe-CLI) from the Serbian deposit Zlatokop has been investigated as an adsorbent for the Se oxyanions. Fe-CLI shows adsorption activity for both Se(IV) and Se(VI) which decreases with increasing pH. The adsorption capacity of Fe-CLI is found to be higher for Se(IV) than for Se(VI). Kinetics data follow the pseudo-second-order model and the obtained parameters k indicate that the rates of adsorption and desorption are higher for Se(VI). Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) analyses reveal that Se is bound at the zeolite surface forming not only the Se-O-Fe but also Se-O-Si bonds. The adsorption mechanism depends of the type of oxo ions. Samples of zeolitic tuff which contain Se were tested as soil supplements for the cultivation of Pleurotus ostreatus mushrooms. The fungus adsorbed the inorganic Se from zeolitic tuff transforming it to a more valuable organically bound form.
PB  - Elsevier, Amsterdam
T2  - Microporous and Mesoporous Materials
T1  - The iron(III)-modified natural zeolitic tuff as an adsorbent and carrier for selenium oxyanions
EP  - 100
SP  - 92
VL  - 197
DO  - 10.1016/j.micromeso.2014.06.008
ER  - 
@article{
author = "Jevtić, Sanja and Arcon, Iztok and Recnik, Aleksander and Babić, Biljana M. and Mazaj, Matjaz and Pavlović, Jelena and Matijasević, Danka and Nikšić, Miomir and Rajić, Nevenka",
year = "2014",
abstract = "Se(IV) and Se(VI) anions are the dominant species of Se existing in aqueous systems. In this study, the iron(III)-modified natural zeolitic tuff (Fe-CLI) from the Serbian deposit Zlatokop has been investigated as an adsorbent for the Se oxyanions. Fe-CLI shows adsorption activity for both Se(IV) and Se(VI) which decreases with increasing pH. The adsorption capacity of Fe-CLI is found to be higher for Se(IV) than for Se(VI). Kinetics data follow the pseudo-second-order model and the obtained parameters k indicate that the rates of adsorption and desorption are higher for Se(VI). Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) analyses reveal that Se is bound at the zeolite surface forming not only the Se-O-Fe but also Se-O-Si bonds. The adsorption mechanism depends of the type of oxo ions. Samples of zeolitic tuff which contain Se were tested as soil supplements for the cultivation of Pleurotus ostreatus mushrooms. The fungus adsorbed the inorganic Se from zeolitic tuff transforming it to a more valuable organically bound form.",
publisher = "Elsevier, Amsterdam",
journal = "Microporous and Mesoporous Materials",
title = "The iron(III)-modified natural zeolitic tuff as an adsorbent and carrier for selenium oxyanions",
pages = "100-92",
volume = "197",
doi = "10.1016/j.micromeso.2014.06.008"
}
Jevtić, S., Arcon, I., Recnik, A., Babić, B. M., Mazaj, M., Pavlović, J., Matijasević, D., Nikšić, M.,& Rajić, N.. (2014). The iron(III)-modified natural zeolitic tuff as an adsorbent and carrier for selenium oxyanions. in Microporous and Mesoporous Materials
Elsevier, Amsterdam., 197, 92-100.
https://doi.org/10.1016/j.micromeso.2014.06.008
Jevtić S, Arcon I, Recnik A, Babić BM, Mazaj M, Pavlović J, Matijasević D, Nikšić M, Rajić N. The iron(III)-modified natural zeolitic tuff as an adsorbent and carrier for selenium oxyanions. in Microporous and Mesoporous Materials. 2014;197:92-100.
doi:10.1016/j.micromeso.2014.06.008 .
Jevtić, Sanja, Arcon, Iztok, Recnik, Aleksander, Babić, Biljana M., Mazaj, Matjaz, Pavlović, Jelena, Matijasević, Danka, Nikšić, Miomir, Rajić, Nevenka, "The iron(III)-modified natural zeolitic tuff as an adsorbent and carrier for selenium oxyanions" in Microporous and Mesoporous Materials, 197 (2014):92-100,
https://doi.org/10.1016/j.micromeso.2014.06.008 . .
26
13
29