Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200325 (Military Technical Institute - MTI, Belgrade)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200325/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200325 (Military Technical Institute - MTI, Belgrade) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200325 (Vojnotehnički institut - VTI, Beograd) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200325 (Војнотехнички институт - ВТИ, Београд) (sr)
Authors

Publications

Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles

Embirsh, Hifa Salah Adeen; Stajčić, Ivana; Gržetić, Jelena; Mladenović, Ivana O.; Anđelković, Boban; Marinković, Aleksandar; Vuksanović, Marija M.

(MDPI, 2023)

TY  - JOUR
AU  - Embirsh, Hifa Salah Adeen
AU  - Stajčić, Ivana
AU  - Gržetić, Jelena
AU  - Mladenović, Ivana O.
AU  - Anđelković, Boban
AU  - Marinković, Aleksandar
AU  - Vuksanović, Marija M.
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6610
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6663
AB  - This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol(PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained fromrice husk. The structural and morphological properties of the obtained particles, b-UPR, as well ascomposites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magneticresonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electronmicroscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanicalproperties of composites was supported by hardness modeling. Improvement of the tensile strengthof the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named“b-UPR/SiO2-V” composite, has been achieved with 88% increase. The thermal aging process appliedto the b-UPR/SiO2-V composite, which simulates use over the product’s lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR).The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of atable top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, aswell as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainablecomposites that are chemically synthesized from renewable sources is important from the aspect ofpreserving the environment and existing resources as well as the extending their life cycle.
PB  - MDPI
T2  - Polymers
T1  - Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles
IS  - 18
SP  - 3756
VL  - 15
DO  - 10.3390/polym15183756
ER  - 
@article{
author = "Embirsh, Hifa Salah Adeen and Stajčić, Ivana and Gržetić, Jelena and Mladenović, Ivana O. and Anđelković, Boban and Marinković, Aleksandar and Vuksanović, Marija M.",
year = "2023",
abstract = "This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol(PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained fromrice husk. The structural and morphological properties of the obtained particles, b-UPR, as well ascomposites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magneticresonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electronmicroscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanicalproperties of composites was supported by hardness modeling. Improvement of the tensile strengthof the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named“b-UPR/SiO2-V” composite, has been achieved with 88% increase. The thermal aging process appliedto the b-UPR/SiO2-V composite, which simulates use over the product’s lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR).The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of atable top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, aswell as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainablecomposites that are chemically synthesized from renewable sources is important from the aspect ofpreserving the environment and existing resources as well as the extending their life cycle.",
publisher = "MDPI",
journal = "Polymers",
title = "Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles",
number = "18",
pages = "3756",
volume = "15",
doi = "10.3390/polym15183756"
}
Embirsh, H. S. A., Stajčić, I., Gržetić, J., Mladenović, I. O., Anđelković, B., Marinković, A.,& Vuksanović, M. M.. (2023). Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. in Polymers
MDPI., 15(18), 3756.
https://doi.org/10.3390/polym15183756
Embirsh HSA, Stajčić I, Gržetić J, Mladenović IO, Anđelković B, Marinković A, Vuksanović MM. Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. in Polymers. 2023;15(18):3756.
doi:10.3390/polym15183756 .
Embirsh, Hifa Salah Adeen, Stajčić, Ivana, Gržetić, Jelena, Mladenović, Ivana O., Anđelković, Boban, Marinković, Aleksandar, Vuksanović, Marija M., "Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles" in Polymers, 15, no. 18 (2023):3756,
https://doi.org/10.3390/polym15183756 . .
8
4

EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES

Gržetić, Jelena; Banjanac, Katarina; Marinković, Aleksandar; Milošević, Milena; Vuksanović, Marija

(Belgrade : University, Faculty of Technology and Metallurgy, 2023)

TY  - CONF
AU  - Gržetić, Jelena
AU  - Banjanac, Katarina
AU  - Marinković, Aleksandar
AU  - Milošević, Milena
AU  - Vuksanović, Marija
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6961
AB  - The morphological properties and adsorption potential of lignin-based porous
microspheres (LgMS) for heavy metals ions were investigated. LgMS were produced via
suspension copolymerization of unmodified or acryloyl modified kraft lignin with amine
(polyethylene imine - PEI) or acrylate (trimethylolpropanetriacrylate - TMPTA) functional
polymers. Structural and morphological characterization of LgMS was performed using
FTIR, BET, and SEM techniques. Copolymerization of the unmodified lignin and PEI, using
epoxy chloropropane cross-linker, provided highly porous LgMS, with 800 ± 80 μm
diameter, 7.68 m2g−1 surface area and 7.7 mmol g−1 of terminal amino groups. The LgMS
produced by copolymerization of the acryloyl functionalized lignin and TMPTA provided a
decrease in LgMS diameter (253 ± 42 μm), while surface area and porosity increase, 69.4 m2
g-1and 59%, respectively. The effect of acryloyl functionalization of kraft lignin on the
LgMS adsorption capacity for Ni2+ ions was also studied in a comparative study. The results
showed that final adsorption performances of LgMS were affected by the key factors
including lignin functionality and the LgMS synthesis condition. Lower adsorption capacity
of 22.6 mg g-1 for Ni2+ was observed for acryloyl LgMS due to lower affinity for formation
electrostatic interactions of Ni2+ ions with phenol/hydroxyl groups responsible for
adsorption. Opposite was found for amino LgMS where 49.4 mg g-1was achieved. However,
this study indicated that removal of heavy metal ions from wastewater can be realized
through the application of eco-friendly lignin-based porous microspheres.
PB  - Belgrade : University, Faculty of Technology and Metallurgy
C3  - Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade
T1  - EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES
SP  - 61
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6961
ER  - 
@conference{
author = "Gržetić, Jelena and Banjanac, Katarina and Marinković, Aleksandar and Milošević, Milena and Vuksanović, Marija",
year = "2023",
abstract = "The morphological properties and adsorption potential of lignin-based porous
microspheres (LgMS) for heavy metals ions were investigated. LgMS were produced via
suspension copolymerization of unmodified or acryloyl modified kraft lignin with amine
(polyethylene imine - PEI) or acrylate (trimethylolpropanetriacrylate - TMPTA) functional
polymers. Structural and morphological characterization of LgMS was performed using
FTIR, BET, and SEM techniques. Copolymerization of the unmodified lignin and PEI, using
epoxy chloropropane cross-linker, provided highly porous LgMS, with 800 ± 80 μm
diameter, 7.68 m2g−1 surface area and 7.7 mmol g−1 of terminal amino groups. The LgMS
produced by copolymerization of the acryloyl functionalized lignin and TMPTA provided a
decrease in LgMS diameter (253 ± 42 μm), while surface area and porosity increase, 69.4 m2
g-1and 59%, respectively. The effect of acryloyl functionalization of kraft lignin on the
LgMS adsorption capacity for Ni2+ ions was also studied in a comparative study. The results
showed that final adsorption performances of LgMS were affected by the key factors
including lignin functionality and the LgMS synthesis condition. Lower adsorption capacity
of 22.6 mg g-1 for Ni2+ was observed for acryloyl LgMS due to lower affinity for formation
electrostatic interactions of Ni2+ ions with phenol/hydroxyl groups responsible for
adsorption. Opposite was found for amino LgMS where 49.4 mg g-1was achieved. However,
this study indicated that removal of heavy metal ions from wastewater can be realized
through the application of eco-friendly lignin-based porous microspheres.",
publisher = "Belgrade : University, Faculty of Technology and Metallurgy",
journal = "Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade",
title = "EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES",
pages = "61",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6961"
}
Gržetić, J., Banjanac, K., Marinković, A., Milošević, M.,& Vuksanović, M.. (2023). EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES. in Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade
Belgrade : University, Faculty of Technology and Metallurgy., 61.
https://hdl.handle.net/21.15107/rcub_technorep_6961
Gržetić J, Banjanac K, Marinković A, Milošević M, Vuksanović M. EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES. in Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade. 2023;:61.
https://hdl.handle.net/21.15107/rcub_technorep_6961 .
Gržetić, Jelena, Banjanac, Katarina, Marinković, Aleksandar, Milošević, Milena, Vuksanović, Marija, "EFFECT OF THE LIGNIN FUNCTIONALIZATION ON THE MORPHOLOGY AND ADSORPTION POTENTIAL OF THE LIGNIN-BASED MICROSPHERES" in Book of Abstracts / International Conference Biochemical Engineering and Biotechnology for Young Scientists, 7-8 December, 2023, Belgrade (2023):61,
https://hdl.handle.net/21.15107/rcub_technorep_6961 .

Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes

Salih, Rabab; Banjanac, Katarina; Vukoičić, Ana; Gržetić, Jelena; Popović, Ana; Veljković, Milica; Bezbradica, Dejan; Marinković, Aleksandar

(Elsevier Ltd., 2023)

TY  - JOUR
AU  - Salih, Rabab
AU  - Banjanac, Katarina
AU  - Vukoičić, Ana
AU  - Gržetić, Jelena
AU  - Popović, Ana
AU  - Veljković, Milica
AU  - Bezbradica, Dejan
AU  - Marinković, Aleksandar
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5278
AB  - The novel lignin-based microspheres (LMS-DEGDMA) were produced through a two-step modification procedure consisting of kraft lignin (KL) modification with acrylic acid synthesized from fructose; and suspension and copolymerization of acrylic acid modified KL (KL-A) with diethylene glycol dimethacrylate (DEGDMA). The applied procedure provided LMS-DEGDMA microspheres in the size range of 50-90 μm with specific surface area of 39 m2/g, porosity ϵp 62, pore diameters of 4-20 nm and total pore volume of 0.14 cm3/g. Immobilization of laccase from Myceliophthora thermophilia expressed in Aspergillus oryzae (Novozyme® 51003) on LMS-DEGDMA was explored. By optimization of the immobilization process, it was demonstrated that laccase immobilization on LMS-DEGDMA exhibited the best results (protein immobilization yield of 70 %, activity yield of 27 %, and catalytic activity of 262 IU/g of support) when the immobilization was carried out at pH 5.0 and 100 mg of offered protein per g support during 1 h. Additionally, the LMS-DEGDMA-laccase preparation showed efficiency (>80 %, 5-7 cycles) in decolorization of anthraquinone dyes (Lanaset® violet B, Lanaset® blue 2 R and C.I. Acid Green 40) and their mixture. In case of Lanaset® violet B, LMS-DEGDMA improved laccase's kinetics characteristics (90 % over 24 h) along with operational stability (> 63 % catalytic activity, 7 cycles).
PB  - Elsevier Ltd.
T2  - Journal of Environmental Chemical Engineering
T1  - Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes
IS  - 1
SP  - 109077
VL  - 11
DO  - 10.1016/j.jece.2022.109077
ER  - 
@article{
author = "Salih, Rabab and Banjanac, Katarina and Vukoičić, Ana and Gržetić, Jelena and Popović, Ana and Veljković, Milica and Bezbradica, Dejan and Marinković, Aleksandar",
year = "2023",
abstract = "The novel lignin-based microspheres (LMS-DEGDMA) were produced through a two-step modification procedure consisting of kraft lignin (KL) modification with acrylic acid synthesized from fructose; and suspension and copolymerization of acrylic acid modified KL (KL-A) with diethylene glycol dimethacrylate (DEGDMA). The applied procedure provided LMS-DEGDMA microspheres in the size range of 50-90 μm with specific surface area of 39 m2/g, porosity ϵp 62, pore diameters of 4-20 nm and total pore volume of 0.14 cm3/g. Immobilization of laccase from Myceliophthora thermophilia expressed in Aspergillus oryzae (Novozyme® 51003) on LMS-DEGDMA was explored. By optimization of the immobilization process, it was demonstrated that laccase immobilization on LMS-DEGDMA exhibited the best results (protein immobilization yield of 70 %, activity yield of 27 %, and catalytic activity of 262 IU/g of support) when the immobilization was carried out at pH 5.0 and 100 mg of offered protein per g support during 1 h. Additionally, the LMS-DEGDMA-laccase preparation showed efficiency (>80 %, 5-7 cycles) in decolorization of anthraquinone dyes (Lanaset® violet B, Lanaset® blue 2 R and C.I. Acid Green 40) and their mixture. In case of Lanaset® violet B, LMS-DEGDMA improved laccase's kinetics characteristics (90 % over 24 h) along with operational stability (> 63 % catalytic activity, 7 cycles).",
publisher = "Elsevier Ltd.",
journal = "Journal of Environmental Chemical Engineering",
title = "Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes",
number = "1",
pages = "109077",
volume = "11",
doi = "10.1016/j.jece.2022.109077"
}
Salih, R., Banjanac, K., Vukoičić, A., Gržetić, J., Popović, A., Veljković, M., Bezbradica, D.,& Marinković, A.. (2023). Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes. in Journal of Environmental Chemical Engineering
Elsevier Ltd.., 11(1), 109077.
https://doi.org/10.1016/j.jece.2022.109077
Salih R, Banjanac K, Vukoičić A, Gržetić J, Popović A, Veljković M, Bezbradica D, Marinković A. Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes. in Journal of Environmental Chemical Engineering. 2023;11(1):109077.
doi:10.1016/j.jece.2022.109077 .
Salih, Rabab, Banjanac, Katarina, Vukoičić, Ana, Gržetić, Jelena, Popović, Ana, Veljković, Milica, Bezbradica, Dejan, Marinković, Aleksandar, "Acrylic modified kraft lignin microspheres as novel support for immobilization of laccase from M.Thermophila expressed in A. oryzae (Novozym® 51003) and application in degradation of anthraquinone textile dyes" in Journal of Environmental Chemical Engineering, 11, no. 1 (2023):109077,
https://doi.org/10.1016/j.jece.2022.109077 . .
7
5

Functional nano-silver decorated textiles for wearable electronics and electromagnetic interference shielding

Stupar, Stevan Lj.; Vuksanović, Marija M.; Mijin, Dušan Ž.; Bučko, Mihael M.; Joksimović, Vasilija J.; Barudžija, Tanja S.; Tanić, Milan N.

(Elsevier Ltd, 2023)

TY  - JOUR
AU  - Stupar, Stevan Lj.
AU  - Vuksanović, Marija M.
AU  - Mijin, Dušan Ž.
AU  - Bučko, Mihael M.
AU  - Joksimović, Vasilija J.
AU  - Barudžija, Tanja S.
AU  - Tanić, Milan N.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5600
AB  - The presented research focused on the metallization of polyester, cotton, and polyamide 6.6 fabrics using the silver conductive complex to allow electric conductivity through the fabric's surface and enhance the fabric's mechanical properties. The method used for the metallization of studied fabrics does not require the use of expensive toxic chemicals or electricity, making the process more economically acceptable. The signal attenuation was measured in frequency ranges of 1–4 and 5–12 GHz. After five cycles of metallization, the polyester fabric has higher EMI effectiveness, in a lower range was 45.44 and 57.25 dB. X-ray powder diffractometry (XRD) and infrared spectroscopy with Fourier transform infrared spectrophotometry (FT-IR) characterize the modified tissues. Scanning electron microscopy coupled with energy-dispersion spectroscopy (SEM-EDS) was used to determine layers' morphology and elemental composition. Also, the water and air permeability of modified textiles was determined.
PB  - Elsevier Ltd
T2  - Materials Today Communications
T1  - Functional nano-silver decorated textiles for wearable electronics and electromagnetic interference shielding
SP  - 105312
VL  - 34
DO  - 10.1016/j.mtcomm.2023.105312
ER  - 
@article{
author = "Stupar, Stevan Lj. and Vuksanović, Marija M. and Mijin, Dušan Ž. and Bučko, Mihael M. and Joksimović, Vasilija J. and Barudžija, Tanja S. and Tanić, Milan N.",
year = "2023",
abstract = "The presented research focused on the metallization of polyester, cotton, and polyamide 6.6 fabrics using the silver conductive complex to allow electric conductivity through the fabric's surface and enhance the fabric's mechanical properties. The method used for the metallization of studied fabrics does not require the use of expensive toxic chemicals or electricity, making the process more economically acceptable. The signal attenuation was measured in frequency ranges of 1–4 and 5–12 GHz. After five cycles of metallization, the polyester fabric has higher EMI effectiveness, in a lower range was 45.44 and 57.25 dB. X-ray powder diffractometry (XRD) and infrared spectroscopy with Fourier transform infrared spectrophotometry (FT-IR) characterize the modified tissues. Scanning electron microscopy coupled with energy-dispersion spectroscopy (SEM-EDS) was used to determine layers' morphology and elemental composition. Also, the water and air permeability of modified textiles was determined.",
publisher = "Elsevier Ltd",
journal = "Materials Today Communications",
title = "Functional nano-silver decorated textiles for wearable electronics and electromagnetic interference shielding",
pages = "105312",
volume = "34",
doi = "10.1016/j.mtcomm.2023.105312"
}
Stupar, S. Lj., Vuksanović, M. M., Mijin, D. Ž., Bučko, M. M., Joksimović, V. J., Barudžija, T. S.,& Tanić, M. N.. (2023). Functional nano-silver decorated textiles for wearable electronics and electromagnetic interference shielding. in Materials Today Communications
Elsevier Ltd., 34, 105312.
https://doi.org/10.1016/j.mtcomm.2023.105312
Stupar SL, Vuksanović MM, Mijin DŽ, Bučko MM, Joksimović VJ, Barudžija TS, Tanić MN. Functional nano-silver decorated textiles for wearable electronics and electromagnetic interference shielding. in Materials Today Communications. 2023;34:105312.
doi:10.1016/j.mtcomm.2023.105312 .
Stupar, Stevan Lj., Vuksanović, Marija M., Mijin, Dušan Ž., Bučko, Mihael M., Joksimović, Vasilija J., Barudžija, Tanja S., Tanić, Milan N., "Functional nano-silver decorated textiles for wearable electronics and electromagnetic interference shielding" in Materials Today Communications, 34 (2023):105312,
https://doi.org/10.1016/j.mtcomm.2023.105312 . .
5
5

Zavisnost efikasnosti razgradnje karbamatnog pesticida metomila od početne pH vrednosti rastvora pri direktnoj elektrohemijskoj oksidaciji

Tomašević, Anđelka V.; Mijin, Dušan Ž.; Grgur, Branimir N.; Stupar, Stevan Lj.; Stojisavljević, Predrag N.; Ivanković, Negovan D.

(Beograd : Srpsko hemijsko društvo, 2023)

TY  - CONF
AU  - Tomašević, Anđelka V.
AU  - Mijin, Dušan Ž.
AU  - Grgur, Branimir N.
AU  - Stupar, Stevan Lj.
AU  - Stojisavljević, Predrag N.
AU  - Ivanković, Negovan D.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6952
PB  - Beograd : Srpsko hemijsko društvo
C3  - Knjiga izvoda / 9. simpozijum Hemija i zaštita životne sredine sa međunarodnim učešćem, EnviroChem2023, Kladovo 4-7. jun 2023. godine
T1  - Zavisnost efikasnosti razgradnje karbamatnog pesticida metomila od početne pH vrednosti rastvora pri direktnoj elektrohemijskoj oksidaciji
T1  - Dependence of the degradation efficiency of the carbamate pesticide methomyl on the initial pH value during direct electrochemical oxidation
EP  - 174
SP  - 173
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6952
ER  - 
@conference{
author = "Tomašević, Anđelka V. and Mijin, Dušan Ž. and Grgur, Branimir N. and Stupar, Stevan Lj. and Stojisavljević, Predrag N. and Ivanković, Negovan D.",
year = "2023",
publisher = "Beograd : Srpsko hemijsko društvo",
journal = "Knjiga izvoda / 9. simpozijum Hemija i zaštita životne sredine sa međunarodnim učešćem, EnviroChem2023, Kladovo 4-7. jun 2023. godine",
title = "Zavisnost efikasnosti razgradnje karbamatnog pesticida metomila od početne pH vrednosti rastvora pri direktnoj elektrohemijskoj oksidaciji, Dependence of the degradation efficiency of the carbamate pesticide methomyl on the initial pH value during direct electrochemical oxidation",
pages = "174-173",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6952"
}
Tomašević, A. V., Mijin, D. Ž., Grgur, B. N., Stupar, S. Lj., Stojisavljević, P. N.,& Ivanković, N. D.. (2023). Zavisnost efikasnosti razgradnje karbamatnog pesticida metomila od početne pH vrednosti rastvora pri direktnoj elektrohemijskoj oksidaciji. in Knjiga izvoda / 9. simpozijum Hemija i zaštita životne sredine sa međunarodnim učešćem, EnviroChem2023, Kladovo 4-7. jun 2023. godine
Beograd : Srpsko hemijsko društvo., 173-174.
https://hdl.handle.net/21.15107/rcub_technorep_6952
Tomašević AV, Mijin DŽ, Grgur BN, Stupar SL, Stojisavljević PN, Ivanković ND. Zavisnost efikasnosti razgradnje karbamatnog pesticida metomila od početne pH vrednosti rastvora pri direktnoj elektrohemijskoj oksidaciji. in Knjiga izvoda / 9. simpozijum Hemija i zaštita životne sredine sa međunarodnim učešćem, EnviroChem2023, Kladovo 4-7. jun 2023. godine. 2023;:173-174.
https://hdl.handle.net/21.15107/rcub_technorep_6952 .
Tomašević, Anđelka V., Mijin, Dušan Ž., Grgur, Branimir N., Stupar, Stevan Lj., Stojisavljević, Predrag N., Ivanković, Negovan D., "Zavisnost efikasnosti razgradnje karbamatnog pesticida metomila od početne pH vrednosti rastvora pri direktnoj elektrohemijskoj oksidaciji" in Knjiga izvoda / 9. simpozijum Hemija i zaštita životne sredine sa međunarodnim učešćem, EnviroChem2023, Kladovo 4-7. jun 2023. godine (2023):173-174,
https://hdl.handle.net/21.15107/rcub_technorep_6952 .

Influence of the solution pH value on the adsorption of carbamate pesticide methomyl onto synthetized Cobalt-Beta Zeolite

Tomašević, Anđelka V.; Mijin, Dušan Ž.; Stupar, Stevan Lj.; Stojisavljević, Predrag N.; Ivanković, Negovan D.; Dinić, Denis

(Beograd : Srpsko hemijsko društvo, 2023)

TY  - CONF
AU  - Tomašević, Anđelka V.
AU  - Mijin, Dušan Ž.
AU  - Stupar, Stevan Lj.
AU  - Stojisavljević, Predrag N.
AU  - Ivanković, Negovan D.
AU  - Dinić, Denis
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6953
PB  - Beograd : Srpsko hemijsko društvo
C3  - Knjiga izvoda / 9. simpozijum Hemija i zaštita životne sredine sa međunarodnim učešćem, EnviroChem2023, Kladovo 4-7. jun 2023. godine
T1  - Influence of the solution pH value on the adsorption of carbamate pesticide methomyl onto synthetized Cobalt-Beta Zeolite
EP  - 176
SP  - 175
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6953
ER  - 
@conference{
author = "Tomašević, Anđelka V. and Mijin, Dušan Ž. and Stupar, Stevan Lj. and Stojisavljević, Predrag N. and Ivanković, Negovan D. and Dinić, Denis",
year = "2023",
publisher = "Beograd : Srpsko hemijsko društvo",
journal = "Knjiga izvoda / 9. simpozijum Hemija i zaštita životne sredine sa međunarodnim učešćem, EnviroChem2023, Kladovo 4-7. jun 2023. godine",
title = "Influence of the solution pH value on the adsorption of carbamate pesticide methomyl onto synthetized Cobalt-Beta Zeolite",
pages = "176-175",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6953"
}
Tomašević, A. V., Mijin, D. Ž., Stupar, S. Lj., Stojisavljević, P. N., Ivanković, N. D.,& Dinić, D.. (2023). Influence of the solution pH value on the adsorption of carbamate pesticide methomyl onto synthetized Cobalt-Beta Zeolite. in Knjiga izvoda / 9. simpozijum Hemija i zaštita životne sredine sa međunarodnim učešćem, EnviroChem2023, Kladovo 4-7. jun 2023. godine
Beograd : Srpsko hemijsko društvo., 175-176.
https://hdl.handle.net/21.15107/rcub_technorep_6953
Tomašević AV, Mijin DŽ, Stupar SL, Stojisavljević PN, Ivanković ND, Dinić D. Influence of the solution pH value on the adsorption of carbamate pesticide methomyl onto synthetized Cobalt-Beta Zeolite. in Knjiga izvoda / 9. simpozijum Hemija i zaštita životne sredine sa međunarodnim učešćem, EnviroChem2023, Kladovo 4-7. jun 2023. godine. 2023;:175-176.
https://hdl.handle.net/21.15107/rcub_technorep_6953 .
Tomašević, Anđelka V., Mijin, Dušan Ž., Stupar, Stevan Lj., Stojisavljević, Predrag N., Ivanković, Negovan D., Dinić, Denis, "Influence of the solution pH value on the adsorption of carbamate pesticide methomyl onto synthetized Cobalt-Beta Zeolite" in Knjiga izvoda / 9. simpozijum Hemija i zaštita životne sredine sa međunarodnim učešćem, EnviroChem2023, Kladovo 4-7. jun 2023. godine (2023):175-176,
https://hdl.handle.net/21.15107/rcub_technorep_6953 .

Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study

Salih, Rabab; Veličković, Zlate; Milošević, Milena; Pavlović, Vera P.; Cvijetić, Ilija; Sofrenić, Ivana V.; Gržetić, Jelena D.; Marinković, Aleksandar

(Academic Press, 2023)

TY  - JOUR
AU  - Salih, Rabab
AU  - Veličković, Zlate
AU  - Milošević, Milena
AU  - Pavlović, Vera P.
AU  - Cvijetić, Ilija
AU  - Sofrenić, Ivana V.
AU  - Gržetić, Jelena D.
AU  - Marinković, Aleksandar
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5275
AB  - Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 μm diameters, 69.4 m2 g−1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g−1 for MG, 86.8 mg g−1 for T, and 68.6 mg g−1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.
PB  - Academic Press
T2  - Journal of Environmental Management
T1  - Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study
SP  - 116838
VL  - 326
DO  - 10.1016/j.jenvman.2022.116838
ER  - 
@article{
author = "Salih, Rabab and Veličković, Zlate and Milošević, Milena and Pavlović, Vera P. and Cvijetić, Ilija and Sofrenić, Ivana V. and Gržetić, Jelena D. and Marinković, Aleksandar",
year = "2023",
abstract = "Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 μm diameters, 69.4 m2 g−1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g−1 for MG, 86.8 mg g−1 for T, and 68.6 mg g−1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.",
publisher = "Academic Press",
journal = "Journal of Environmental Management",
title = "Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study",
pages = "116838",
volume = "326",
doi = "10.1016/j.jenvman.2022.116838"
}
Salih, R., Veličković, Z., Milošević, M., Pavlović, V. P., Cvijetić, I., Sofrenić, I. V., Gržetić, J. D.,& Marinković, A.. (2023). Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study. in Journal of Environmental Management
Academic Press., 326, 116838.
https://doi.org/10.1016/j.jenvman.2022.116838
Salih R, Veličković Z, Milošević M, Pavlović VP, Cvijetić I, Sofrenić IV, Gržetić JD, Marinković A. Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study. in Journal of Environmental Management. 2023;326:116838.
doi:10.1016/j.jenvman.2022.116838 .
Salih, Rabab, Veličković, Zlate, Milošević, Milena, Pavlović, Vera P., Cvijetić, Ilija, Sofrenić, Ivana V., Gržetić, Jelena D., Marinković, Aleksandar, "Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study" in Journal of Environmental Management, 326 (2023):116838,
https://doi.org/10.1016/j.jenvman.2022.116838 . .
18
16

Multispectral electromagnetic shielding and mechanical properties of carbon fabrics reinforced by silver deposition

Stupar, Stevan; Vuksanović, Marija M.; Mijin, Dušan Ž.; Milanović, Bojan C.; Joksimović, Vasilija J.; Barudžija, Tanja; Knežević, Marina R.

(2022)

TY  - JOUR
AU  - Stupar, Stevan
AU  - Vuksanović, Marija M.
AU  - Mijin, Dušan Ž.
AU  - Milanović, Bojan C.
AU  - Joksimović, Vasilija J.
AU  - Barudžija, Tanja
AU  - Knežević, Marina R.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5183
AB  - Electromagnetic interference (EMI) has become a widespread modern environmental pollutant. There is an essential need for practical and applicable materials for its attenuation. Therefore, the presented research has focused on metallization of carbon fabric using the silver conductive complex solution to enhance the surface conductivity and mechanical properties of the fabric. With this amplification and improving the mentioned characteristics, lightweight and flexible modified carbon fibers can be applied in many environments. The modification has been performed in three steps: the silver conductive complex synthesis, carbon fabric immersion into a silver complex solution, treating with temperature for silver deposition by annealing. The method used for the metallization of carbon fabrics surface does not require expensive and toxic chemicals or electricity, making the process more ecologically and economically acceptable. One of the advantages of using the method for surface modification is the possibility of usage for other materials, not only for textiles and foils. The examination of the surface structure, electrical, EMI shielding characteristics, and mechanical properties of carbon fabrics modified by silver deposition contributes to the determination of multifunctional properties of materials. Also, the dependence on the improvement of multispectral electromagnetic interference shielding effectiveness (EMI SE) characteristics and mechanical properties of materials on the number of cycles has been determined. The most effective material was carbon fabric modified by five cycles, and average attenuation at an L and S bands was 49.67 dB, and a part of C and full X band was 51.07 dB, caused by better coverage by silver particles, increased density and porosity of deposited layer. Increasing the number of silver deposition cycles improves the physical properties of the modified carbon fabrics, where after five cycles the highest maximum force has been measured (2.26 kN). The material's morphology was studied by scanning electron microscopy with Energy-Dispersive X-ray Spectroscopy. The crystallographic phases of sintered particles were determined by X-ray diffraction. The crystallographic phases of sintered particles were determined by X-ray diffraction.
T2  - Materials Chemistry and Physics
T1  - Multispectral electromagnetic shielding and mechanical properties of carbon fabrics reinforced by silver deposition
SP  - 126495
VL  - 289
DO  - 10.1016/j.matchemphys.2022.126495
ER  - 
@article{
author = "Stupar, Stevan and Vuksanović, Marija M. and Mijin, Dušan Ž. and Milanović, Bojan C. and Joksimović, Vasilija J. and Barudžija, Tanja and Knežević, Marina R.",
year = "2022",
abstract = "Electromagnetic interference (EMI) has become a widespread modern environmental pollutant. There is an essential need for practical and applicable materials for its attenuation. Therefore, the presented research has focused on metallization of carbon fabric using the silver conductive complex solution to enhance the surface conductivity and mechanical properties of the fabric. With this amplification and improving the mentioned characteristics, lightweight and flexible modified carbon fibers can be applied in many environments. The modification has been performed in three steps: the silver conductive complex synthesis, carbon fabric immersion into a silver complex solution, treating with temperature for silver deposition by annealing. The method used for the metallization of carbon fabrics surface does not require expensive and toxic chemicals or electricity, making the process more ecologically and economically acceptable. One of the advantages of using the method for surface modification is the possibility of usage for other materials, not only for textiles and foils. The examination of the surface structure, electrical, EMI shielding characteristics, and mechanical properties of carbon fabrics modified by silver deposition contributes to the determination of multifunctional properties of materials. Also, the dependence on the improvement of multispectral electromagnetic interference shielding effectiveness (EMI SE) characteristics and mechanical properties of materials on the number of cycles has been determined. The most effective material was carbon fabric modified by five cycles, and average attenuation at an L and S bands was 49.67 dB, and a part of C and full X band was 51.07 dB, caused by better coverage by silver particles, increased density and porosity of deposited layer. Increasing the number of silver deposition cycles improves the physical properties of the modified carbon fabrics, where after five cycles the highest maximum force has been measured (2.26 kN). The material's morphology was studied by scanning electron microscopy with Energy-Dispersive X-ray Spectroscopy. The crystallographic phases of sintered particles were determined by X-ray diffraction. The crystallographic phases of sintered particles were determined by X-ray diffraction.",
journal = "Materials Chemistry and Physics",
title = "Multispectral electromagnetic shielding and mechanical properties of carbon fabrics reinforced by silver deposition",
pages = "126495",
volume = "289",
doi = "10.1016/j.matchemphys.2022.126495"
}
Stupar, S., Vuksanović, M. M., Mijin, D. Ž., Milanović, B. C., Joksimović, V. J., Barudžija, T.,& Knežević, M. R.. (2022). Multispectral electromagnetic shielding and mechanical properties of carbon fabrics reinforced by silver deposition. in Materials Chemistry and Physics, 289, 126495.
https://doi.org/10.1016/j.matchemphys.2022.126495
Stupar S, Vuksanović MM, Mijin DŽ, Milanović BC, Joksimović VJ, Barudžija T, Knežević MR. Multispectral electromagnetic shielding and mechanical properties of carbon fabrics reinforced by silver deposition. in Materials Chemistry and Physics. 2022;289:126495.
doi:10.1016/j.matchemphys.2022.126495 .
Stupar, Stevan, Vuksanović, Marija M., Mijin, Dušan Ž., Milanović, Bojan C., Joksimović, Vasilija J., Barudžija, Tanja, Knežević, Marina R., "Multispectral electromagnetic shielding and mechanical properties of carbon fabrics reinforced by silver deposition" in Materials Chemistry and Physics, 289 (2022):126495,
https://doi.org/10.1016/j.matchemphys.2022.126495 . .
12
12

Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent

Popović, Ana L.; Veličković, Zlate; Radovanović, Željko; Đolić, Maja; Pavlović, Vladimir; Marinković, Aleksandar D.; Grzetić, Jelena D.

(Elsevier Ltd., 2022)

TY  - JOUR
AU  - Popović, Ana L.
AU  - Veličković, Zlate
AU  - Radovanović, Željko
AU  - Đolić, Maja
AU  - Pavlović, Vladimir
AU  - Marinković, Aleksandar D.
AU  - Grzetić, Jelena D.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5155
AB  - Highly effective lignin-based microspheres were prepared by inverse copolymerization of lignin (kraft) from suspension, with poly(ethylene imine) and amino-functionalized magnetite nanoparticles (A-LMS_Fe3O4) or manganese(IV)oxide nanoparticles (A-LMS_MnO2). The XRD, FTIR, SEM, BET, TEM techniques, including the porosity determination, were performed to analyze morphological and structural properties of synthesized microspheres. The effect of pH, the adsorbent dosage, temperature and contact duration on a batch-mode adsorption efficiency of arsenate and chromate (oxy)anions removal was tested. Spontaneous adsorption was found to be feasible, reaching the adsorption capacities of Cr(VI) (62.9 mg g-1), As(V) (47.8 mg g-1) by A-LMS_Fe3O4, and of Cr(VI) (73.9 mg g-1), As(V) (62.5 mg g-1) using A-LMS_MnO2 adsorbent. Fast removal rates were confirmed via kinetic study, using pseudo-second order, the Weber-Morris and the single resistance mass-transfer model, with a limiting step of the diffusion transport through pores. The correlation of fixed-bed-column results with Bohart-Adams, Thomas, Yoon-Nelson and Dose Response models displayed that breakthrough behavior was influenced by flow rate and the inlet concentration. Significant potential of produced bio-adsorbent is further confirmed by the pore surface diffusion modeling, desorption study and adsorption from multi-component system using artificial water.
PB  - Elsevier Ltd.
T2  - Journal of Environmental Chemical Engineering
T1  - Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent
IS  - 3
SP  - 108009
VL  - 10
DO  - 10.1016/j.jece.2022.108009
ER  - 
@article{
author = "Popović, Ana L. and Veličković, Zlate and Radovanović, Željko and Đolić, Maja and Pavlović, Vladimir and Marinković, Aleksandar D. and Grzetić, Jelena D.",
year = "2022",
abstract = "Highly effective lignin-based microspheres were prepared by inverse copolymerization of lignin (kraft) from suspension, with poly(ethylene imine) and amino-functionalized magnetite nanoparticles (A-LMS_Fe3O4) or manganese(IV)oxide nanoparticles (A-LMS_MnO2). The XRD, FTIR, SEM, BET, TEM techniques, including the porosity determination, were performed to analyze morphological and structural properties of synthesized microspheres. The effect of pH, the adsorbent dosage, temperature and contact duration on a batch-mode adsorption efficiency of arsenate and chromate (oxy)anions removal was tested. Spontaneous adsorption was found to be feasible, reaching the adsorption capacities of Cr(VI) (62.9 mg g-1), As(V) (47.8 mg g-1) by A-LMS_Fe3O4, and of Cr(VI) (73.9 mg g-1), As(V) (62.5 mg g-1) using A-LMS_MnO2 adsorbent. Fast removal rates were confirmed via kinetic study, using pseudo-second order, the Weber-Morris and the single resistance mass-transfer model, with a limiting step of the diffusion transport through pores. The correlation of fixed-bed-column results with Bohart-Adams, Thomas, Yoon-Nelson and Dose Response models displayed that breakthrough behavior was influenced by flow rate and the inlet concentration. Significant potential of produced bio-adsorbent is further confirmed by the pore surface diffusion modeling, desorption study and adsorption from multi-component system using artificial water.",
publisher = "Elsevier Ltd.",
journal = "Journal of Environmental Chemical Engineering",
title = "Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent",
number = "3",
pages = "108009",
volume = "10",
doi = "10.1016/j.jece.2022.108009"
}
Popović, A. L., Veličković, Z., Radovanović, Ž., Đolić, M., Pavlović, V., Marinković, A. D.,& Grzetić, J. D.. (2022). Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent. in Journal of Environmental Chemical Engineering
Elsevier Ltd.., 10(3), 108009.
https://doi.org/10.1016/j.jece.2022.108009
Popović AL, Veličković Z, Radovanović Ž, Đolić M, Pavlović V, Marinković AD, Grzetić JD. Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent. in Journal of Environmental Chemical Engineering. 2022;10(3):108009.
doi:10.1016/j.jece.2022.108009 .
Popović, Ana L., Veličković, Zlate, Radovanović, Željko, Đolić, Maja, Pavlović, Vladimir, Marinković, Aleksandar D., Grzetić, Jelena D., "Hybrid amino-terminated lignin microspheres loaded with magnetite and manganese oxide nanoparticles: An effective hazardous oxyanions adsorbent" in Journal of Environmental Chemical Engineering, 10, no. 3 (2022):108009,
https://doi.org/10.1016/j.jece.2022.108009 . .
6
6

Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)

Jelić, Aleksandra; Sekulić, Milica; Travica, Milan; Gržetić, Jelena; Ugrinović, Vukašin; Marinković, Aleksandar D.; Božić, Aleksandra; Stamenović, Marina; Putić, Slaviša

(MDPI, 2022)

TY  - JOUR
AU  - Jelić, Aleksandra
AU  - Sekulić, Milica
AU  - Travica, Milan
AU  - Gržetić, Jelena
AU  - Ugrinović, Vukašin
AU  - Marinković, Aleksandar D.
AU  - Božić, Aleksandra
AU  - Stamenović, Marina
AU  - Putić, Slaviša
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5110
AB  - In this study, silicate nanofillers; dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite; were synthesized using four different methods and incorporated into the epoxy resin to improve its mechanical properties. Characterization of the newly synthesized nanofillers was performed using Fourier-transformation infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The purpose of this study was to analyze newly developed composite materials reinforced with silicate nanoparticles utilizing tensile testing and a full-field non-contact 3D Digital Image Correlation (DIC) method. Analysis of deformation and displacement fields gives precise material behavior during testing. Testing results allowed a more reliable assessment of the structural integrity of epoxy composite materials reinforced using different silicate nanofillers. It was concluded that the addition of 3% of dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite lead to the increasement of tensile strength up to 31.5%, 29.0%, 27.5%, and 23.5% in comparison with neat epoxy, respectively. In order to offer more trustworthy information about the viscoelastic behavior of neat epoxy and composites, a dynamic mechanical analysis (DMA) was also performed and rheological measurements of uncured epoxy matrix and epoxy suspensions were obtained.
PB  - MDPI
T2  - Polymers
T1  - Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)
IS  - 6
SP  - 1255
VL  - 14
DO  - 10.3390/polym14061255
ER  - 
@article{
author = "Jelić, Aleksandra and Sekulić, Milica and Travica, Milan and Gržetić, Jelena and Ugrinović, Vukašin and Marinković, Aleksandar D. and Božić, Aleksandra and Stamenović, Marina and Putić, Slaviša",
year = "2022",
abstract = "In this study, silicate nanofillers; dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite; were synthesized using four different methods and incorporated into the epoxy resin to improve its mechanical properties. Characterization of the newly synthesized nanofillers was performed using Fourier-transformation infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The purpose of this study was to analyze newly developed composite materials reinforced with silicate nanoparticles utilizing tensile testing and a full-field non-contact 3D Digital Image Correlation (DIC) method. Analysis of deformation and displacement fields gives precise material behavior during testing. Testing results allowed a more reliable assessment of the structural integrity of epoxy composite materials reinforced using different silicate nanofillers. It was concluded that the addition of 3% of dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite lead to the increasement of tensile strength up to 31.5%, 29.0%, 27.5%, and 23.5% in comparison with neat epoxy, respectively. In order to offer more trustworthy information about the viscoelastic behavior of neat epoxy and composites, a dynamic mechanical analysis (DMA) was also performed and rheological measurements of uncured epoxy matrix and epoxy suspensions were obtained.",
publisher = "MDPI",
journal = "Polymers",
title = "Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)",
number = "6",
pages = "1255",
volume = "14",
doi = "10.3390/polym14061255"
}
Jelić, A., Sekulić, M., Travica, M., Gržetić, J., Ugrinović, V., Marinković, A. D., Božić, A., Stamenović, M.,& Putić, S.. (2022). Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). in Polymers
MDPI., 14(6), 1255.
https://doi.org/10.3390/polym14061255
Jelić A, Sekulić M, Travica M, Gržetić J, Ugrinović V, Marinković AD, Božić A, Stamenović M, Putić S. Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). in Polymers. 2022;14(6):1255.
doi:10.3390/polym14061255 .
Jelić, Aleksandra, Sekulić, Milica, Travica, Milan, Gržetić, Jelena, Ugrinović, Vukašin, Marinković, Aleksandar D., Božić, Aleksandra, Stamenović, Marina, Putić, Slaviša, "Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)" in Polymers, 14, no. 6 (2022):1255,
https://doi.org/10.3390/polym14061255 . .
8
8

Reuse potential of functionalized thermoplastic waste as reinforcement for thermoset polymers: Mechanical properties and erosion resistance

Kovačević, Tihomir; Brzić, Saša; Kalagasidis Krušić, Melina; Nešić, Jovica; Radović, Ljubica; Dojčinović, Marina; Rusmirović, Jelena

(SAGE Publications Ltd., 2021)

TY  - JOUR
AU  - Kovačević, Tihomir
AU  - Brzić, Saša
AU  - Kalagasidis Krušić, Melina
AU  - Nešić, Jovica
AU  - Radović, Ljubica
AU  - Dojčinović, Marina
AU  - Rusmirović, Jelena
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4851
AB  - Two types of polymer waste materials, poly(ethylene terephthalate) (PET) and polycarbonate based Colombian Resin (CR-39), were used for the designing of fully recycled composite materials. Waste PET was employed for the synthesis of thermoset unsaturated polyester resin (UPR), while CR-39 was used as reinforcement in the UPR matrix. Prior to mixing, CR-39 particles were subjected to oxidation and chemical activation using acids/base and ethanol amine, respectively. The effect of the modifier type and variable loading of the activated CR-39 particles on mechanical and dynamic-mechanical properties of the corresponding composites was investigated. The greatest improvement in the tensile and flexural strength of UPR resin was achieved with the composite containing 0.5 wt% of amine activated filler particles, 96.0% and 62.2%, respectively. The Arrhenius equation was used to calculate the activation energy for glass transition from dynamic mechanical properties measured at various frequencies. The activation energy of the main transition for UPR resin and composites were calculated to be 173 and 350 kJ center dot mol(-1) indicating that reinforcement results in an increase in the energy barrier to macromolecules viscoelastic relaxation. In addition, erosion resistance was studied during exposure of samples to cavitation tests. According to the obtained results, these materials can be applied in construction and mining industry.
PB  - SAGE Publications Ltd.
T2  - Journal of Composite Materials
T1  - Reuse potential of functionalized thermoplastic waste as reinforcement for thermoset polymers: Mechanical properties and erosion resistance
EP  - 4220
IS  - 28
SP  - 4207
VL  - 55
DO  - 10.1177/00219983211037045
ER  - 
@article{
author = "Kovačević, Tihomir and Brzić, Saša and Kalagasidis Krušić, Melina and Nešić, Jovica and Radović, Ljubica and Dojčinović, Marina and Rusmirović, Jelena",
year = "2021",
abstract = "Two types of polymer waste materials, poly(ethylene terephthalate) (PET) and polycarbonate based Colombian Resin (CR-39), were used for the designing of fully recycled composite materials. Waste PET was employed for the synthesis of thermoset unsaturated polyester resin (UPR), while CR-39 was used as reinforcement in the UPR matrix. Prior to mixing, CR-39 particles were subjected to oxidation and chemical activation using acids/base and ethanol amine, respectively. The effect of the modifier type and variable loading of the activated CR-39 particles on mechanical and dynamic-mechanical properties of the corresponding composites was investigated. The greatest improvement in the tensile and flexural strength of UPR resin was achieved with the composite containing 0.5 wt% of amine activated filler particles, 96.0% and 62.2%, respectively. The Arrhenius equation was used to calculate the activation energy for glass transition from dynamic mechanical properties measured at various frequencies. The activation energy of the main transition for UPR resin and composites were calculated to be 173 and 350 kJ center dot mol(-1) indicating that reinforcement results in an increase in the energy barrier to macromolecules viscoelastic relaxation. In addition, erosion resistance was studied during exposure of samples to cavitation tests. According to the obtained results, these materials can be applied in construction and mining industry.",
publisher = "SAGE Publications Ltd.",
journal = "Journal of Composite Materials",
title = "Reuse potential of functionalized thermoplastic waste as reinforcement for thermoset polymers: Mechanical properties and erosion resistance",
pages = "4220-4207",
number = "28",
volume = "55",
doi = "10.1177/00219983211037045"
}
Kovačević, T., Brzić, S., Kalagasidis Krušić, M., Nešić, J., Radović, L., Dojčinović, M.,& Rusmirović, J.. (2021). Reuse potential of functionalized thermoplastic waste as reinforcement for thermoset polymers: Mechanical properties and erosion resistance. in Journal of Composite Materials
SAGE Publications Ltd.., 55(28), 4207-4220.
https://doi.org/10.1177/00219983211037045
Kovačević T, Brzić S, Kalagasidis Krušić M, Nešić J, Radović L, Dojčinović M, Rusmirović J. Reuse potential of functionalized thermoplastic waste as reinforcement for thermoset polymers: Mechanical properties and erosion resistance. in Journal of Composite Materials. 2021;55(28):4207-4220.
doi:10.1177/00219983211037045 .
Kovačević, Tihomir, Brzić, Saša, Kalagasidis Krušić, Melina, Nešić, Jovica, Radović, Ljubica, Dojčinović, Marina, Rusmirović, Jelena, "Reuse potential of functionalized thermoplastic waste as reinforcement for thermoset polymers: Mechanical properties and erosion resistance" in Journal of Composite Materials, 55, no. 28 (2021):4207-4220,
https://doi.org/10.1177/00219983211037045 . .
2
2

Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites

Obradović, Vera; Bajić, Danica; Sejkot, Petr; Fidanovski, Bojana; Machalická, Klára V.; Vokáč, Miroslav

(Royal Society of Chemistry, 2021)

TY  - CONF
AU  - Obradović, Vera
AU  - Bajić, Danica
AU  - Sejkot, Petr
AU  - Fidanovski, Bojana
AU  - Machalická, Klára V.
AU  - Vokáč, Miroslav
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7076
AB  - The para-aramid fibres (Kevlar, Twaron, Kolon) are high performance polymeric fibres characterized by their high tenacity, strength to weight ratio and impact resistance. They are used for the soft body armour structures in ballistics and for the manufacture of parts in aerospace and automotive industry.
In this study, the specimens were made from the two-layered Kolon fabrics impregnated with epoxy resin where some silicon carbide (SiC) microparticles or SiC nanofibres were added as reinforcement. These composite specimens
were fabricated by hot compression and curing of epoxy resin.
Despite their good mechanical strength it is a well-known fact that the mechanical properties of epoxy resins are affected by moisture absorption. The tensile and impact properties of the untreated specimens were compared with the ones that underwent water absorption in the duration of 72h (immersion or humidity) followed by desorption. The immersion of the specimens in water and the exposure to high humidity (70%) were completed in accordance with the ISO 62 standard while the tensile test was performed according to the ASTM D 3039 standard. Furthermore, the tensile test simulation of the Kolon/epoxy composite by using software Abaqus® was accomplished.
For the determination of the absorbed impact energy and the impact toughness of the composite specimens, an impact test was performed by using the Charpy impact pendulum in accordance with the ASTM D5942 standard.
PB  - Royal Society of Chemistry
C3  - Book of poster Abstracts / 15th International conference on materials chemistry (MC15) - online, United Kingdom, July 12-15, 2021
T1  - Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites
SP  - P104
UR  - https://hdl.handle.net/21.15107/rcub_technorep_7076
ER  - 
@conference{
author = "Obradović, Vera and Bajić, Danica and Sejkot, Petr and Fidanovski, Bojana and Machalická, Klára V. and Vokáč, Miroslav",
year = "2021",
abstract = "The para-aramid fibres (Kevlar, Twaron, Kolon) are high performance polymeric fibres characterized by their high tenacity, strength to weight ratio and impact resistance. They are used for the soft body armour structures in ballistics and for the manufacture of parts in aerospace and automotive industry.
In this study, the specimens were made from the two-layered Kolon fabrics impregnated with epoxy resin where some silicon carbide (SiC) microparticles or SiC nanofibres were added as reinforcement. These composite specimens
were fabricated by hot compression and curing of epoxy resin.
Despite their good mechanical strength it is a well-known fact that the mechanical properties of epoxy resins are affected by moisture absorption. The tensile and impact properties of the untreated specimens were compared with the ones that underwent water absorption in the duration of 72h (immersion or humidity) followed by desorption. The immersion of the specimens in water and the exposure to high humidity (70%) were completed in accordance with the ISO 62 standard while the tensile test was performed according to the ASTM D 3039 standard. Furthermore, the tensile test simulation of the Kolon/epoxy composite by using software Abaqus® was accomplished.
For the determination of the absorbed impact energy and the impact toughness of the composite specimens, an impact test was performed by using the Charpy impact pendulum in accordance with the ASTM D5942 standard.",
publisher = "Royal Society of Chemistry",
journal = "Book of poster Abstracts / 15th International conference on materials chemistry (MC15) - online, United Kingdom, July 12-15, 2021",
title = "Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites",
pages = "P104",
url = "https://hdl.handle.net/21.15107/rcub_technorep_7076"
}
Obradović, V., Bajić, D., Sejkot, P., Fidanovski, B., Machalická, K. V.,& Vokáč, M.. (2021). Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites. in Book of poster Abstracts / 15th International conference on materials chemistry (MC15) - online, United Kingdom, July 12-15, 2021
Royal Society of Chemistry., P104.
https://hdl.handle.net/21.15107/rcub_technorep_7076
Obradović V, Bajić D, Sejkot P, Fidanovski B, Machalická KV, Vokáč M. Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites. in Book of poster Abstracts / 15th International conference on materials chemistry (MC15) - online, United Kingdom, July 12-15, 2021. 2021;:P104.
https://hdl.handle.net/21.15107/rcub_technorep_7076 .
Obradović, Vera, Bajić, Danica, Sejkot, Petr, Fidanovski, Bojana, Machalická, Klára V., Vokáč, Miroslav, "Effect of moisture absorption on the mechanical properties of Kolon/ epoxy composites" in Book of poster Abstracts / 15th International conference on materials chemistry (MC15) - online, United Kingdom, July 12-15, 2021 (2021):P104,
https://hdl.handle.net/21.15107/rcub_technorep_7076 .

Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres

Popović, Ana L.; Rusmirovic, Jelena D.; Veličković, Zlate; Kovacevic, Tihomir; Jovanovic, Aleksandar; Cvijetić, Ilija; Marinković, Aleksandar

(2021)

TY  - JOUR
AU  - Popović, Ana L.
AU  - Rusmirovic, Jelena D.
AU  - Veličković, Zlate
AU  - Kovacevic, Tihomir
AU  - Jovanovic, Aleksandar
AU  - Cvijetić, Ilija
AU  - Marinković, Aleksandar
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4967
AB  - In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13) >>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g(-1)). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g(-1))), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS biobased adsorbent.
T2  - Journal of Industrial and Engineering Chemistry
T1  - Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres
EP  - 314
SP  - 302
VL  - 93
DO  - 10.1016/j.jiec.2020.10.006
ER  - 
@article{
author = "Popović, Ana L. and Rusmirovic, Jelena D. and Veličković, Zlate and Kovacevic, Tihomir and Jovanovic, Aleksandar and Cvijetić, Ilija and Marinković, Aleksandar",
year = "2021",
abstract = "In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13) >>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g(-1)). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g(-1))), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS biobased adsorbent.",
journal = "Journal of Industrial and Engineering Chemistry",
title = "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres",
pages = "314-302",
volume = "93",
doi = "10.1016/j.jiec.2020.10.006"
}
Popović, A. L., Rusmirovic, J. D., Veličković, Z., Kovacevic, T., Jovanovic, A., Cvijetić, I.,& Marinković, A.. (2021). Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry, 93, 302-314.
https://doi.org/10.1016/j.jiec.2020.10.006
Popović AL, Rusmirovic JD, Veličković Z, Kovacevic T, Jovanovic A, Cvijetić I, Marinković A. Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry. 2021;93:302-314.
doi:10.1016/j.jiec.2020.10.006 .
Popović, Ana L., Rusmirovic, Jelena D., Veličković, Zlate, Kovacevic, Tihomir, Jovanovic, Aleksandar, Cvijetić, Ilija, Marinković, Aleksandar, "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres" in Journal of Industrial and Engineering Chemistry, 93 (2021):302-314,
https://doi.org/10.1016/j.jiec.2020.10.006 . .
38
14
40

Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres

Popović, Ana L.; Rusmirović, Jelena; Veličković, Zlate; Kovacević, T.; Jovanović, Aleksandar; Cvijetić, Ilija; Marinković, Aleksandar

(Elsevier Science Inc, New York, 2021)

TY  - JOUR
AU  - Popović, Ana L.
AU  - Rusmirović, Jelena
AU  - Veličković, Zlate
AU  - Kovacević, T.
AU  - Jovanović, Aleksandar
AU  - Cvijetić, Ilija
AU  - Marinković, Aleksandar
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4583
AB  - In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13)>>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g−1). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g−1)), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS bio-based adsorbent.
PB  - Elsevier Science Inc, New York
T2  - Journal of Industrial and Engineering Chemistry
T1  - Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres
EP  - 314
SP  - 302
VL  - 93
DO  - 10.1016/j.jiec.2020.10.006
ER  - 
@article{
author = "Popović, Ana L. and Rusmirović, Jelena and Veličković, Zlate and Kovacević, T. and Jovanović, Aleksandar and Cvijetić, Ilija and Marinković, Aleksandar",
year = "2021",
abstract = "In-depth kinetic and column adsorption study for diclofenac, DCF, heavy-metal and oxyanions adsorption on highly effective amino-functionalized lignin-based microsphere adsorbent (A-LMS) is examined. The A-LMS was synthesized via inverse suspension copolymerization of industrial kraft lignin with the amino containing grafting-agent (polyethylene imine), and an epoxy chloropropane cross-linker. The batch adsorption results indicated process spontaneity and feasibility of a high removal capacity: DCF(151.13)>>Cd2+(74.84)>Cr(VI)(54.20)>As(V)(53.12)>Ni2+(49.42 mg g−1). The quantum chemical calculated interaction energies reveal stabilization of the A-LMS/DCF complex through the electrostatics and van der Waals interactions. The results from the pseudo-second order and Weber-Morris fitting indicate a fast removal rate; thus, column tests were undertaken. The single resistance mass transfer model, i.e. the mass transfer (kfa) and diffusion coefficient (Deff), shows pore diffusional transport as a rate limiting step. The fitting of the fixed bed column data with empirical models demonstrates the influences of flow rate and adsorbate inlet concentration on the breakthrough behavior. Pore surface diffusion modeling (PSDM) expresses mass transport under applied hydraulic loading rates, calculated breakthrough point adsorption capacities: Cd2+(58.1)>Cr(VI)(54.1)>As(V)(50.9)>>Ni2+(42.9 mg g−1)), without performing the experimentation on a full pilot-scale level, further confirms the high applicability of the A-LMS bio-based adsorbent.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Industrial and Engineering Chemistry",
title = "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres",
pages = "314-302",
volume = "93",
doi = "10.1016/j.jiec.2020.10.006"
}
Popović, A. L., Rusmirović, J., Veličković, Z., Kovacević, T., Jovanović, A., Cvijetić, I.,& Marinković, A.. (2021). Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry
Elsevier Science Inc, New York., 93, 302-314.
https://doi.org/10.1016/j.jiec.2020.10.006
Popović AL, Rusmirović J, Veličković Z, Kovacević T, Jovanović A, Cvijetić I, Marinković A. Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. in Journal of Industrial and Engineering Chemistry. 2021;93:302-314.
doi:10.1016/j.jiec.2020.10.006 .
Popović, Ana L., Rusmirović, Jelena, Veličković, Zlate, Kovacević, T., Jovanović, Aleksandar, Cvijetić, Ilija, Marinković, Aleksandar, "Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres" in Journal of Industrial and Engineering Chemistry, 93 (2021):302-314,
https://doi.org/10.1016/j.jiec.2020.10.006 . .
38
14
39

Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal

Bugarcic, Mladen; Lopicic, Zorica; Sostaric, Tatjana; Marinković, Aleksandar; Rusmirovic, Jelena D.; Milosevic, Dragana; Milivojević, Milan

(2021)

TY  - JOUR
AU  - Bugarcic, Mladen
AU  - Lopicic, Zorica
AU  - Sostaric, Tatjana
AU  - Marinković, Aleksandar
AU  - Rusmirovic, Jelena D.
AU  - Milosevic, Dragana
AU  - Milivojević, Milan
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4800
AB  - Expanded vermiculite (EV) was modified by deposition of different spinel ferrite composites on the outer surface of EV 2:1 layers in order to improve its adsorptive properties. Modifications were made by deposition of: magnetite, manganese ferrite, cobalt ferrite and chromium oxide/hematite. The characterization of modified materials was performed by: scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) methodology, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), magnetization measurements, as well as determination of cation exchange capacity (CEC) and pH point of zero charge (pHPZC). Obtained samples were used as adsorbents for Pb2+, Ni(2+)and Cd2+ ions from an aqueous solution in a batch system. Results showed that adsorption capacity was strongly dependent on physical and chemical changes induced by specific chemical modification. Hydrothermally produced manganese and cobalt ferrites caused significant surface changes and altered the interlayer cation balance. Among the others, EV-Mn/Co-ferrite(s) samples possessed the highest adsorption capacity towards Ni2+ (33.06 mg g(-1)), along with an increase of the CEC. Freundlich's adsorption isotherm model provided the best fit of obtained experimental data, while kinetic studies showed that the adsorption rate follows the pseudo second-order model, implying heterogeneous adsorbents surface. Thermodynamic and kinetic parameters indicated that the mechanism of cations removal efficacy was dominantly followed by the ion exchange. This study confirmed that doped ferrites, produced by solvothermal method, improve surface properties of EV and increase adsorption potentials towards heavy metals.
T2  - Journal of Environmental Chemical Engineering
T1  - Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal
IS  - 5
VL  - 9
DO  - 10.1016/j.jece.2021.106020
ER  - 
@article{
author = "Bugarcic, Mladen and Lopicic, Zorica and Sostaric, Tatjana and Marinković, Aleksandar and Rusmirovic, Jelena D. and Milosevic, Dragana and Milivojević, Milan",
year = "2021",
abstract = "Expanded vermiculite (EV) was modified by deposition of different spinel ferrite composites on the outer surface of EV 2:1 layers in order to improve its adsorptive properties. Modifications were made by deposition of: magnetite, manganese ferrite, cobalt ferrite and chromium oxide/hematite. The characterization of modified materials was performed by: scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) methodology, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), magnetization measurements, as well as determination of cation exchange capacity (CEC) and pH point of zero charge (pHPZC). Obtained samples were used as adsorbents for Pb2+, Ni(2+)and Cd2+ ions from an aqueous solution in a batch system. Results showed that adsorption capacity was strongly dependent on physical and chemical changes induced by specific chemical modification. Hydrothermally produced manganese and cobalt ferrites caused significant surface changes and altered the interlayer cation balance. Among the others, EV-Mn/Co-ferrite(s) samples possessed the highest adsorption capacity towards Ni2+ (33.06 mg g(-1)), along with an increase of the CEC. Freundlich's adsorption isotherm model provided the best fit of obtained experimental data, while kinetic studies showed that the adsorption rate follows the pseudo second-order model, implying heterogeneous adsorbents surface. Thermodynamic and kinetic parameters indicated that the mechanism of cations removal efficacy was dominantly followed by the ion exchange. This study confirmed that doped ferrites, produced by solvothermal method, improve surface properties of EV and increase adsorption potentials towards heavy metals.",
journal = "Journal of Environmental Chemical Engineering",
title = "Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal",
number = "5",
volume = "9",
doi = "10.1016/j.jece.2021.106020"
}
Bugarcic, M., Lopicic, Z., Sostaric, T., Marinković, A., Rusmirovic, J. D., Milosevic, D.,& Milivojević, M.. (2021). Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal. in Journal of Environmental Chemical Engineering, 9(5).
https://doi.org/10.1016/j.jece.2021.106020
Bugarcic M, Lopicic Z, Sostaric T, Marinković A, Rusmirovic JD, Milosevic D, Milivojević M. Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal. in Journal of Environmental Chemical Engineering. 2021;9(5).
doi:10.1016/j.jece.2021.106020 .
Bugarcic, Mladen, Lopicic, Zorica, Sostaric, Tatjana, Marinković, Aleksandar, Rusmirovic, Jelena D., Milosevic, Dragana, Milivojević, Milan, "Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal" in Journal of Environmental Chemical Engineering, 9, no. 5 (2021),
https://doi.org/10.1016/j.jece.2021.106020 . .
10
11

Novel Hybrid Nanostructures of Carbon Nanotube/Fullerene-like Tungsten Disulfide as Reinforcement for Aramid Fabric Composites

Obradović, Vera; Simic, Danica; Zrilic, Milorad; Stojanović, Dušica; Uskoković, Petar

(2021)

TY  - JOUR
AU  - Obradović, Vera
AU  - Simic, Danica
AU  - Zrilic, Milorad
AU  - Stojanović, Dušica
AU  - Uskoković, Petar
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4968
AB  - Multilayered composites based on aramid fabrics are widely used in impact protection. The objective of this study is creating a new kind of multiaxial aramid fabric composites with inorganic fullerene-like tungsten disulfide nanoparticles (IF-WS2) and single walled carbon nanotubes (SWCNT) used as nanoreinforcement to enhance the dynamic mechanical and anti-stabbing properties of the composites. The four composites of the Kolon fabric forms were impregnated with 10 wt.% poly(vinyl butyral) (PVB)/ethanol solution which contained different forms of IF-WS nanoparticles. The surfaces of IF-WS2 were coated with silane coupling agent (m-IF) and the SWCNT were oxidized (o-SWCNT) for the fabrication of the o-SWCNT/m-IF hybrid nanoparticles. The mechanical testing showed that the Kolon/PVB/o-SWCNT/m-IF sample produced nearly 62 % of improvement in the tensile strength and 51 % of improvement in the tensile energy absorption compared to the Kolon/PVB sample. Furthermore, the sample with the o-SWCNT/m-IF hybrid nanoparticles demonstrated 24 % of enhancement in the impact toughness and 48 % of improvement in the absorbed energy after knife penetration in comparison with the Kolon/PVB sample.
T2  - Fibers and Polymers
T1  - Novel Hybrid Nanostructures of Carbon Nanotube/Fullerene-like Tungsten Disulfide as Reinforcement for Aramid Fabric Composites
EP  - 539
IS  - 2
SP  - 528
VL  - 22
DO  - 10.1007/s12221-021-0278-5
ER  - 
@article{
author = "Obradović, Vera and Simic, Danica and Zrilic, Milorad and Stojanović, Dušica and Uskoković, Petar",
year = "2021",
abstract = "Multilayered composites based on aramid fabrics are widely used in impact protection. The objective of this study is creating a new kind of multiaxial aramid fabric composites with inorganic fullerene-like tungsten disulfide nanoparticles (IF-WS2) and single walled carbon nanotubes (SWCNT) used as nanoreinforcement to enhance the dynamic mechanical and anti-stabbing properties of the composites. The four composites of the Kolon fabric forms were impregnated with 10 wt.% poly(vinyl butyral) (PVB)/ethanol solution which contained different forms of IF-WS nanoparticles. The surfaces of IF-WS2 were coated with silane coupling agent (m-IF) and the SWCNT were oxidized (o-SWCNT) for the fabrication of the o-SWCNT/m-IF hybrid nanoparticles. The mechanical testing showed that the Kolon/PVB/o-SWCNT/m-IF sample produced nearly 62 % of improvement in the tensile strength and 51 % of improvement in the tensile energy absorption compared to the Kolon/PVB sample. Furthermore, the sample with the o-SWCNT/m-IF hybrid nanoparticles demonstrated 24 % of enhancement in the impact toughness and 48 % of improvement in the absorbed energy after knife penetration in comparison with the Kolon/PVB sample.",
journal = "Fibers and Polymers",
title = "Novel Hybrid Nanostructures of Carbon Nanotube/Fullerene-like Tungsten Disulfide as Reinforcement for Aramid Fabric Composites",
pages = "539-528",
number = "2",
volume = "22",
doi = "10.1007/s12221-021-0278-5"
}
Obradović, V., Simic, D., Zrilic, M., Stojanović, D.,& Uskoković, P.. (2021). Novel Hybrid Nanostructures of Carbon Nanotube/Fullerene-like Tungsten Disulfide as Reinforcement for Aramid Fabric Composites. in Fibers and Polymers, 22(2), 528-539.
https://doi.org/10.1007/s12221-021-0278-5
Obradović V, Simic D, Zrilic M, Stojanović D, Uskoković P. Novel Hybrid Nanostructures of Carbon Nanotube/Fullerene-like Tungsten Disulfide as Reinforcement for Aramid Fabric Composites. in Fibers and Polymers. 2021;22(2):528-539.
doi:10.1007/s12221-021-0278-5 .
Obradović, Vera, Simic, Danica, Zrilic, Milorad, Stojanović, Dušica, Uskoković, Petar, "Novel Hybrid Nanostructures of Carbon Nanotube/Fullerene-like Tungsten Disulfide as Reinforcement for Aramid Fabric Composites" in Fibers and Polymers, 22, no. 2 (2021):528-539,
https://doi.org/10.1007/s12221-021-0278-5 . .
15
14

Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites

Obradović, Vera; Simic, Danica; Sejkot, Petr; Machalicka, Klara, V; Vokac, Miroslav

(2021)

TY  - JOUR
AU  - Obradović, Vera
AU  - Simic, Danica
AU  - Sejkot, Petr
AU  - Machalicka, Klara, V
AU  - Vokac, Miroslav
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4929
AB  - Para-aramid fibers (Kolon) are high performance polymeric fibers characterized by their high tenacity and impact resistance. They are used for the soft body armor structures in ballistics. In this study, the testing specimens were made from multilayered Kolon fabrics impregnated with epoxy resin where silicon carbide (SiC) microparticles or SiC nanofibers were added as reinforcement. The laminated composite samples were fabricated by hot compression and curing of epoxy resin. The tensile and impact strengths of the untreated specimens were compared with the ones that underwent water absorption in duration of 72 h (immersion or humidity) followed by desorption. The immersion of the specimens in water and exposure to high humidity (70%) were performed according to the ISO 62 standard while the tensile test was carried out in accordance with the ASTM D 3039 standard. In the end, the tensile test simulation of the laminated composite by using software Abaqus (R) was accomplished.
T2  - Current Applied Physics
T1  - Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites
EP  - 23
SP  - 16
VL  - 26
DO  - 10.1016/j.cap.2021.03.015
ER  - 
@article{
author = "Obradović, Vera and Simic, Danica and Sejkot, Petr and Machalicka, Klara, V and Vokac, Miroslav",
year = "2021",
abstract = "Para-aramid fibers (Kolon) are high performance polymeric fibers characterized by their high tenacity and impact resistance. They are used for the soft body armor structures in ballistics. In this study, the testing specimens were made from multilayered Kolon fabrics impregnated with epoxy resin where silicon carbide (SiC) microparticles or SiC nanofibers were added as reinforcement. The laminated composite samples were fabricated by hot compression and curing of epoxy resin. The tensile and impact strengths of the untreated specimens were compared with the ones that underwent water absorption in duration of 72 h (immersion or humidity) followed by desorption. The immersion of the specimens in water and exposure to high humidity (70%) were performed according to the ISO 62 standard while the tensile test was carried out in accordance with the ASTM D 3039 standard. In the end, the tensile test simulation of the laminated composite by using software Abaqus (R) was accomplished.",
journal = "Current Applied Physics",
title = "Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites",
pages = "23-16",
volume = "26",
doi = "10.1016/j.cap.2021.03.015"
}
Obradović, V., Simic, D., Sejkot, P., Machalicka, K. V.,& Vokac, M.. (2021). Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites. in Current Applied Physics, 26, 16-23.
https://doi.org/10.1016/j.cap.2021.03.015
Obradović V, Simic D, Sejkot P, Machalicka KV, Vokac M. Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites. in Current Applied Physics. 2021;26:16-23.
doi:10.1016/j.cap.2021.03.015 .
Obradović, Vera, Simic, Danica, Sejkot, Petr, Machalicka, Klara, V, Vokac, Miroslav, "Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites" in Current Applied Physics, 26 (2021):16-23,
https://doi.org/10.1016/j.cap.2021.03.015 . .
14
12

Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2

Samolov, Aleksandra D.; Simic, Danica M.; Fidanovski, Bojana Z.; Obradović, Vera; Tomic, Ljubisa D.; Knezevic, Dragan M.

(2021)

TY  - JOUR
AU  - Samolov, Aleksandra D.
AU  - Simic, Danica M.
AU  - Fidanovski, Bojana Z.
AU  - Obradović, Vera
AU  - Tomic, Ljubisa D.
AU  - Knezevic, Dragan M.
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4824
AB  - In order to examine the possibility to improve its camouflage properties standard cotton fabric with camouflage print was impregnated with poly(vinyl butyral), PVB and fullerene-like nanoparticles of tungsten disulfide, PVB/IF-WS2. FTIR analysis excluded any possible chemical interaction of IF-WS2 with PVB and the fabric. The camouflage behavior of the impregnated fabric has been examined firstly in the VIS part of the spectrum. Diffuse reflection, specular gloss and color coordinates were measured for three different shades (black, brown and dark green). Thermal imaging was applied to examine the camouflage abilities of this impregnation in IR part of the spectrum. The obtained results show that PVB/IF-WS2 impregnation system induced enhacement of the materials camouflage properties, i.e. that IF-WS2 have a positive effect on spectrophotometric characteristics of the fabric. (c) 2020 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
T2  - Defence Technology
T1  - Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2
EP  - 2056
IS  - 6
SP  - 2050
VL  - 17
DO  - 10.1016/j.dt.2020.10.008
ER  - 
@article{
author = "Samolov, Aleksandra D. and Simic, Danica M. and Fidanovski, Bojana Z. and Obradović, Vera and Tomic, Ljubisa D. and Knezevic, Dragan M.",
year = "2021",
abstract = "In order to examine the possibility to improve its camouflage properties standard cotton fabric with camouflage print was impregnated with poly(vinyl butyral), PVB and fullerene-like nanoparticles of tungsten disulfide, PVB/IF-WS2. FTIR analysis excluded any possible chemical interaction of IF-WS2 with PVB and the fabric. The camouflage behavior of the impregnated fabric has been examined firstly in the VIS part of the spectrum. Diffuse reflection, specular gloss and color coordinates were measured for three different shades (black, brown and dark green). Thermal imaging was applied to examine the camouflage abilities of this impregnation in IR part of the spectrum. The obtained results show that PVB/IF-WS2 impregnation system induced enhacement of the materials camouflage properties, i.e. that IF-WS2 have a positive effect on spectrophotometric characteristics of the fabric. (c) 2020 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).",
journal = "Defence Technology",
title = "Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2",
pages = "2056-2050",
number = "6",
volume = "17",
doi = "10.1016/j.dt.2020.10.008"
}
Samolov, A. D., Simic, D. M., Fidanovski, B. Z., Obradović, V., Tomic, L. D.,& Knezevic, D. M.. (2021). Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2. in Defence Technology, 17(6), 2050-2056.
https://doi.org/10.1016/j.dt.2020.10.008
Samolov AD, Simic DM, Fidanovski BZ, Obradović V, Tomic LD, Knezevic DM. Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2. in Defence Technology. 2021;17(6):2050-2056.
doi:10.1016/j.dt.2020.10.008 .
Samolov, Aleksandra D., Simic, Danica M., Fidanovski, Bojana Z., Obradović, Vera, Tomic, Ljubisa D., Knezevic, Dragan M., "Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2" in Defence Technology, 17, no. 6 (2021):2050-2056,
https://doi.org/10.1016/j.dt.2020.10.008 . .
6
1
1

Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane

Perendija, Jovana; Veličković, Zlate; Cvijetić, Ilija; Rusmirović, Jelena; Ugrinović, Vukašin; Marinković, Aleksandar; Onjia, Antonije

(Springer, Dordrecht, 2020)

TY  - JOUR
AU  - Perendija, Jovana
AU  - Veličković, Zlate
AU  - Cvijetić, Ilija
AU  - Rusmirović, Jelena
AU  - Ugrinović, Vukašin
AU  - Marinković, Aleksandar
AU  - Onjia, Antonije
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4348
AB  - An optimized method is presented to make magnetite (MG) modified cellulose membrane (Cell-MG) from 3-aminopropyltriethoxysilane and diethylenetriaminepentaacetic acid dianhydride functionalized waste cell fibers; (Cell-NH(2)and Cell-DTPA), and amino-modified diatomite. Functionalized Cell-NH2, Cell-DTPA fibers, and diatomite were structurally and morphologically characterized using FT-IR, Raman, and FE-SEM analysis. Amino and carboxyl group content was determined via standard volumetric methods. Response surface method was applied to rationalize the number of experiments related to Cell-MG synthesis and heavy metal ions column adsorption experiments. The effects of pH, contact time, temperature, and initial concentration of pollutants on adsorption and kinetics were studied in a batch, while initial concentration and flow rate were studied in a flow system. The calculated capacities of 88.2, 100.7, 95.8 and 78.2 mg g(-1)for Ni2+, Pb2+, Cr(VI) and As(V) ions, respectively, were obtained from Langmuir model fitting. Intra-particle diffusion as a rate-limiting step was evaluated from pseudo-second-order and Weber-Morris model fitting. Thermodynamic parameters indicated spontaneous and low endothermic processes. The results from reusability study, wastewater purification and fixed-bed column study proved the high applicability of Cell-MG. Additionally, high removal capacity of four dyes together with density functional theory and molecular interaction fields, help in the establishment of relation between the adsorption performances and contribution of non-specific and specific interactions at adsorbate/adsorbent interface.
PB  - Springer, Dordrecht
T2  - Cellulose
T1  - Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane
EP  - 8235
IS  - 14
SP  - 8215
VL  - 27
DO  - 10.1007/s10570-020-03352-x
ER  - 
@article{
author = "Perendija, Jovana and Veličković, Zlate and Cvijetić, Ilija and Rusmirović, Jelena and Ugrinović, Vukašin and Marinković, Aleksandar and Onjia, Antonije",
year = "2020",
abstract = "An optimized method is presented to make magnetite (MG) modified cellulose membrane (Cell-MG) from 3-aminopropyltriethoxysilane and diethylenetriaminepentaacetic acid dianhydride functionalized waste cell fibers; (Cell-NH(2)and Cell-DTPA), and amino-modified diatomite. Functionalized Cell-NH2, Cell-DTPA fibers, and diatomite were structurally and morphologically characterized using FT-IR, Raman, and FE-SEM analysis. Amino and carboxyl group content was determined via standard volumetric methods. Response surface method was applied to rationalize the number of experiments related to Cell-MG synthesis and heavy metal ions column adsorption experiments. The effects of pH, contact time, temperature, and initial concentration of pollutants on adsorption and kinetics were studied in a batch, while initial concentration and flow rate were studied in a flow system. The calculated capacities of 88.2, 100.7, 95.8 and 78.2 mg g(-1)for Ni2+, Pb2+, Cr(VI) and As(V) ions, respectively, were obtained from Langmuir model fitting. Intra-particle diffusion as a rate-limiting step was evaluated from pseudo-second-order and Weber-Morris model fitting. Thermodynamic parameters indicated spontaneous and low endothermic processes. The results from reusability study, wastewater purification and fixed-bed column study proved the high applicability of Cell-MG. Additionally, high removal capacity of four dyes together with density functional theory and molecular interaction fields, help in the establishment of relation between the adsorption performances and contribution of non-specific and specific interactions at adsorbate/adsorbent interface.",
publisher = "Springer, Dordrecht",
journal = "Cellulose",
title = "Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane",
pages = "8235-8215",
number = "14",
volume = "27",
doi = "10.1007/s10570-020-03352-x"
}
Perendija, J., Veličković, Z., Cvijetić, I., Rusmirović, J., Ugrinović, V., Marinković, A.,& Onjia, A.. (2020). Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane. in Cellulose
Springer, Dordrecht., 27(14), 8215-8235.
https://doi.org/10.1007/s10570-020-03352-x
Perendija J, Veličković Z, Cvijetić I, Rusmirović J, Ugrinović V, Marinković A, Onjia A. Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane. in Cellulose. 2020;27(14):8215-8235.
doi:10.1007/s10570-020-03352-x .
Perendija, Jovana, Veličković, Zlate, Cvijetić, Ilija, Rusmirović, Jelena, Ugrinović, Vukašin, Marinković, Aleksandar, Onjia, Antonije, "Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane" in Cellulose, 27, no. 14 (2020):8215-8235,
https://doi.org/10.1007/s10570-020-03352-x . .
9
4
10

The optimization of glycidyl methacrylate based terpolymer monolith synthesis: an effective Candida rugosa lipase immobilization support

Velicić, Zorica; Rusmirović, Jelena; Prlainović, Nevena; Tomić, Nataša; Veličković, Zlate; Taleb, Khaled; Marinković, Aleksandar

(Springer, Dordrecht, 2020)

TY  - JOUR
AU  - Velicić, Zorica
AU  - Rusmirović, Jelena
AU  - Prlainović, Nevena
AU  - Tomić, Nataša
AU  - Veličković, Zlate
AU  - Taleb, Khaled
AU  - Marinković, Aleksandar
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4461
AB  - In this work, the optimization of synthesis of terpolymer monolith based on glycidyl methacrylate (GMA), ethylene glycol dimethacrylate (EGDMA) and additional cross-linkers: trimethylolpropanetriacrylate (TMPTA) or triethylene glycol dimethacrylate (TEGDMA) was performed. Moreover, novel vinyl functionalized cross-linkable polymers: ethanolamine (EA)/methacryloyl (MAC) modified poly (methyl methacrylate) (PMMA), and hydrolyzed poly (ethylene-co-vinyl acetate) copolymer (EVOH) modified with MAC either directly or via ethyl malonyl chloride/EA bridging group (m-EVA) were used as cross-linkable polymer to improve mechanical/elastic properties of the obtained monoliths. Optimization procedure, performed applying response surface methodology (RSM), was focused on the production of materials with improved dimensional stability/integrity and porosity with abundance of epoxide groups capable for immobilization of lipase from Candida rugosa (CRL). Structural characterization of the synthesized monoliths was determined using FTIR, Raman and H-1 NMR spectroscopies, while morphology/porosity was determined by SEM technique and image analysis; and mechanical properties by diametral compression testing. The most potential monolith containing m-EVA polymeric cross-linker, i.e. GMA/EGDMA/TEGDMA/m-EVA monolith, was used as CRL carrier in a two-step immobilization process. Enzyme loading and the activity of obtained preparations for various initial enzyme concentrations were monitored after 4 and 48 h of immobilization. The resulting catalysts show high potency in biocatalytic reactions with the highest percentage of retained initial lipase activity of 64.5%.
PB  - Springer, Dordrecht
T2  - Journal of Polymer Research
T1  - The optimization of glycidyl methacrylate based terpolymer monolith synthesis: an effective Candida rugosa lipase immobilization support
IS  - 5
VL  - 27
DO  - 10.1007/s10965-020-02127-z
ER  - 
@article{
author = "Velicić, Zorica and Rusmirović, Jelena and Prlainović, Nevena and Tomić, Nataša and Veličković, Zlate and Taleb, Khaled and Marinković, Aleksandar",
year = "2020",
abstract = "In this work, the optimization of synthesis of terpolymer monolith based on glycidyl methacrylate (GMA), ethylene glycol dimethacrylate (EGDMA) and additional cross-linkers: trimethylolpropanetriacrylate (TMPTA) or triethylene glycol dimethacrylate (TEGDMA) was performed. Moreover, novel vinyl functionalized cross-linkable polymers: ethanolamine (EA)/methacryloyl (MAC) modified poly (methyl methacrylate) (PMMA), and hydrolyzed poly (ethylene-co-vinyl acetate) copolymer (EVOH) modified with MAC either directly or via ethyl malonyl chloride/EA bridging group (m-EVA) were used as cross-linkable polymer to improve mechanical/elastic properties of the obtained monoliths. Optimization procedure, performed applying response surface methodology (RSM), was focused on the production of materials with improved dimensional stability/integrity and porosity with abundance of epoxide groups capable for immobilization of lipase from Candida rugosa (CRL). Structural characterization of the synthesized monoliths was determined using FTIR, Raman and H-1 NMR spectroscopies, while morphology/porosity was determined by SEM technique and image analysis; and mechanical properties by diametral compression testing. The most potential monolith containing m-EVA polymeric cross-linker, i.e. GMA/EGDMA/TEGDMA/m-EVA monolith, was used as CRL carrier in a two-step immobilization process. Enzyme loading and the activity of obtained preparations for various initial enzyme concentrations were monitored after 4 and 48 h of immobilization. The resulting catalysts show high potency in biocatalytic reactions with the highest percentage of retained initial lipase activity of 64.5%.",
publisher = "Springer, Dordrecht",
journal = "Journal of Polymer Research",
title = "The optimization of glycidyl methacrylate based terpolymer monolith synthesis: an effective Candida rugosa lipase immobilization support",
number = "5",
volume = "27",
doi = "10.1007/s10965-020-02127-z"
}
Velicić, Z., Rusmirović, J., Prlainović, N., Tomić, N., Veličković, Z., Taleb, K.,& Marinković, A.. (2020). The optimization of glycidyl methacrylate based terpolymer monolith synthesis: an effective Candida rugosa lipase immobilization support. in Journal of Polymer Research
Springer, Dordrecht., 27(5).
https://doi.org/10.1007/s10965-020-02127-z
Velicić Z, Rusmirović J, Prlainović N, Tomić N, Veličković Z, Taleb K, Marinković A. The optimization of glycidyl methacrylate based terpolymer monolith synthesis: an effective Candida rugosa lipase immobilization support. in Journal of Polymer Research. 2020;27(5).
doi:10.1007/s10965-020-02127-z .
Velicić, Zorica, Rusmirović, Jelena, Prlainović, Nevena, Tomić, Nataša, Veličković, Zlate, Taleb, Khaled, Marinković, Aleksandar, "The optimization of glycidyl methacrylate based terpolymer monolith synthesis: an effective Candida rugosa lipase immobilization support" in Journal of Polymer Research, 27, no. 5 (2020),
https://doi.org/10.1007/s10965-020-02127-z . .
7
2
6

Porous cordierite-supported polyethyleneimine composites for nickel(II) and cadmium(II) ions removal

Obradović, Nina; Rusmirović, Jelena; Filipović, Suzana; Kosanović, Darko; Marinković, Aleksandar; Radić, Danka; Pavlović, Vladimir

(Desalination Publ, Hopkinton, 2020)

TY  - JOUR
AU  - Obradović, Nina
AU  - Rusmirović, Jelena
AU  - Filipović, Suzana
AU  - Kosanović, Darko
AU  - Marinković, Aleksandar
AU  - Radić, Danka
AU  - Pavlović, Vladimir
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4449
AB  - Industrial/technological growth is directly connected with environmental pollution, but its influence can be minimized through pollution abatement approaches such as the treatment of industrial wastewater. In this study, novel porous amine-functionalized silicate minerals, specifically, cordierite was investigated for the removal of toxic heavy metals from industrial wastewaters. Cordierite supports were synthesized by mixing MgO, Al2O3, and SiO2 powders in 2:2:5 molar ratios, and mechanically activated via ball milling in ethanol for 10, 40, or 80 min. Pellets were sintered by heating in air at 20 degrees C min(-1) to 1,350 degrees C, for 2 h. Porous supports were produced by coarsely crushing the sintered pellets and mixing the crushed and sieved cordierite powder with 20 wt.% of a pore-forming agent, either nanocellulose or yeast. The resulting pellets were sintered by heating at 5 degrees C min(-1) to 700 degrees C in air. The synthetic cordierite support was modified by treatment in poly-ethylenimine. Activated supports were then tested for the removal of Ni2+ and Cd2+ ions. The phase composition of the cordierite supports was analyzed by the X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Analysis of adsorption isotherms, kinetics, and thermodynamic parameters indicated that adsorption was a spontaneous, endothermic process with a maximum adsorption capacity of 36 mg g(-1) for Cd2+ and 43 mg g(-1) for Ni2+. This work has shed light on the mechanism of heavy metal removal from the aquatic medium using the novel hybrid functionalized cordierite-based ceramic.
PB  - Desalination Publ, Hopkinton
T2  - Desalination and Water Treatment
T1  - Porous cordierite-supported polyethyleneimine composites for nickel(II) and cadmium(II) ions removal
EP  - 296
SP  - 283
VL  - 192
DO  - 10.5004/dwt.2020.25736
ER  - 
@article{
author = "Obradović, Nina and Rusmirović, Jelena and Filipović, Suzana and Kosanović, Darko and Marinković, Aleksandar and Radić, Danka and Pavlović, Vladimir",
year = "2020",
abstract = "Industrial/technological growth is directly connected with environmental pollution, but its influence can be minimized through pollution abatement approaches such as the treatment of industrial wastewater. In this study, novel porous amine-functionalized silicate minerals, specifically, cordierite was investigated for the removal of toxic heavy metals from industrial wastewaters. Cordierite supports were synthesized by mixing MgO, Al2O3, and SiO2 powders in 2:2:5 molar ratios, and mechanically activated via ball milling in ethanol for 10, 40, or 80 min. Pellets were sintered by heating in air at 20 degrees C min(-1) to 1,350 degrees C, for 2 h. Porous supports were produced by coarsely crushing the sintered pellets and mixing the crushed and sieved cordierite powder with 20 wt.% of a pore-forming agent, either nanocellulose or yeast. The resulting pellets were sintered by heating at 5 degrees C min(-1) to 700 degrees C in air. The synthetic cordierite support was modified by treatment in poly-ethylenimine. Activated supports were then tested for the removal of Ni2+ and Cd2+ ions. The phase composition of the cordierite supports was analyzed by the X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Analysis of adsorption isotherms, kinetics, and thermodynamic parameters indicated that adsorption was a spontaneous, endothermic process with a maximum adsorption capacity of 36 mg g(-1) for Cd2+ and 43 mg g(-1) for Ni2+. This work has shed light on the mechanism of heavy metal removal from the aquatic medium using the novel hybrid functionalized cordierite-based ceramic.",
publisher = "Desalination Publ, Hopkinton",
journal = "Desalination and Water Treatment",
title = "Porous cordierite-supported polyethyleneimine composites for nickel(II) and cadmium(II) ions removal",
pages = "296-283",
volume = "192",
doi = "10.5004/dwt.2020.25736"
}
Obradović, N., Rusmirović, J., Filipović, S., Kosanović, D., Marinković, A., Radić, D.,& Pavlović, V.. (2020). Porous cordierite-supported polyethyleneimine composites for nickel(II) and cadmium(II) ions removal. in Desalination and Water Treatment
Desalination Publ, Hopkinton., 192, 283-296.
https://doi.org/10.5004/dwt.2020.25736
Obradović N, Rusmirović J, Filipović S, Kosanović D, Marinković A, Radić D, Pavlović V. Porous cordierite-supported polyethyleneimine composites for nickel(II) and cadmium(II) ions removal. in Desalination and Water Treatment. 2020;192:283-296.
doi:10.5004/dwt.2020.25736 .
Obradović, Nina, Rusmirović, Jelena, Filipović, Suzana, Kosanović, Darko, Marinković, Aleksandar, Radić, Danka, Pavlović, Vladimir, "Porous cordierite-supported polyethyleneimine composites for nickel(II) and cadmium(II) ions removal" in Desalination and Water Treatment, 192 (2020):283-296,
https://doi.org/10.5004/dwt.2020.25736 . .
1
1
2