Content of bioactive components in small and stone fruits as affected by cultivar specificities and growing conditions, and obtaining biologically valuable products by improved and newly developed technologies

Link to this page

info:eu-repo/grantAgreement/MESTD/Technological Development (TD or TR)/31093/RS//

Content of bioactive components in small and stone fruits as affected by cultivar specificities and growing conditions, and obtaining biologically valuable products by improved and newly developed technologies (en)
Утицај сорте и услова гајења на садржај биоактивних компоненти јагодастог и коштичавог воћа и добијање биолошки вредних производа побољшаним и новим технологијама (sr)
Uticaj sorte i uslova gajenja na sadržaj bioaktivnih komponenti jagodastog i koštičavog voća i dobijanje biološki vrednih proizvoda poboljšanim i novim tehnologijama (sr_RS)
Authors

Publications

Pectin-polyvinylpyrrolidone films: A sustainable approach to the development of biobased packaging materials

Nešić, Aleksandra; Ružić, Jovana; Gordić, Milan V.; Ostojić, Sanja; Micić, Darko; Onjia, Antonije

(Elsevier Sci Ltd, Oxford, 2017)

TY  - JOUR
AU  - Nešić, Aleksandra
AU  - Ružić, Jovana
AU  - Gordić, Milan V.
AU  - Ostojić, Sanja
AU  - Micić, Darko
AU  - Onjia, Antonije
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3696
AB  - In this work, the new biodegradable blend films composed of natural polymer pectin and synthetic polymer polyvinylpyrrolidone were obtained through casting process. The concentration of glycerol in all formulations was constant (2% v/v), while the amount of polyvinylpyrrolidone varied from 20 to 60% by mass of pectin. The molecular interactions between two components were elucidated by FTIR-ATR spectroscopy, while functional properties of these films were carried out by determination of puncture resistance, tensile strength, thermal stability, water vapor barrier, wettability and printability. The blending of pectin with PVP led to an improvement of mechanical resistance, barrier properties and hydrophobicity of these films for 57%, 58 and 24%, respectively, remaining adequate thermal stability. Since pectin and PVP are nontoxic, food-grade and biodegradable materials, this research present an ecosustainable approach to provide films with satisfied physical properties for use as packaging material of non-food products, such as water-treatment products (detergents, biocides, agrochemical compounds).
PB  - Elsevier Sci Ltd, Oxford
T2  - Composites Part B-Engineering
T1  - Pectin-polyvinylpyrrolidone films: A sustainable approach to the development of biobased packaging materials
EP  - 61
SP  - 56
VL  - 110
DO  - 10.1016/j.compositesb.2016.11.016
ER  - 
@article{
author = "Nešić, Aleksandra and Ružić, Jovana and Gordić, Milan V. and Ostojić, Sanja and Micić, Darko and Onjia, Antonije",
year = "2017",
abstract = "In this work, the new biodegradable blend films composed of natural polymer pectin and synthetic polymer polyvinylpyrrolidone were obtained through casting process. The concentration of glycerol in all formulations was constant (2% v/v), while the amount of polyvinylpyrrolidone varied from 20 to 60% by mass of pectin. The molecular interactions between two components were elucidated by FTIR-ATR spectroscopy, while functional properties of these films were carried out by determination of puncture resistance, tensile strength, thermal stability, water vapor barrier, wettability and printability. The blending of pectin with PVP led to an improvement of mechanical resistance, barrier properties and hydrophobicity of these films for 57%, 58 and 24%, respectively, remaining adequate thermal stability. Since pectin and PVP are nontoxic, food-grade and biodegradable materials, this research present an ecosustainable approach to provide films with satisfied physical properties for use as packaging material of non-food products, such as water-treatment products (detergents, biocides, agrochemical compounds).",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Composites Part B-Engineering",
title = "Pectin-polyvinylpyrrolidone films: A sustainable approach to the development of biobased packaging materials",
pages = "61-56",
volume = "110",
doi = "10.1016/j.compositesb.2016.11.016"
}
Nešić, A., Ružić, J., Gordić, M. V., Ostojić, S., Micić, D.,& Onjia, A.. (2017). Pectin-polyvinylpyrrolidone films: A sustainable approach to the development of biobased packaging materials. in Composites Part B-Engineering
Elsevier Sci Ltd, Oxford., 110, 56-61.
https://doi.org/10.1016/j.compositesb.2016.11.016
Nešić A, Ružić J, Gordić MV, Ostojić S, Micić D, Onjia A. Pectin-polyvinylpyrrolidone films: A sustainable approach to the development of biobased packaging materials. in Composites Part B-Engineering. 2017;110:56-61.
doi:10.1016/j.compositesb.2016.11.016 .
Nešić, Aleksandra, Ružić, Jovana, Gordić, Milan V., Ostojić, Sanja, Micić, Darko, Onjia, Antonije, "Pectin-polyvinylpyrrolidone films: A sustainable approach to the development of biobased packaging materials" in Composites Part B-Engineering, 110 (2017):56-61,
https://doi.org/10.1016/j.compositesb.2016.11.016 . .
3
73
41
72

Physical-chemical behavior of novel copolymers composed of methacrylic acid and 2-acrylamido-2-methylpropane sulfonic acid

Nešić, Aleksandra; Panić, Vesna; Ostojić, Sanja; Micić, Darko; Pajić-Lijaković, Ivana; Onjia, Antonije; Veličković, Sava

(Elsevier Science Sa, Lausanne, 2016)

TY  - JOUR
AU  - Nešić, Aleksandra
AU  - Panić, Vesna
AU  - Ostojić, Sanja
AU  - Micić, Darko
AU  - Pajić-Lijaković, Ivana
AU  - Onjia, Antonije
AU  - Veličković, Sava
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3415
AB  - This article described the synthesis and characterization of new copolymer hydrogels containing two hydrophilic units-methacrylic acid (MAA) and 2-Acrylamido-2-methylpropane sulfonic acid (AMPS). The resulting hydrogels were characterized by various techniques: FTIR, Elemental analysis, SEM, Dynamic Molecular simulation, Dynamic-Mechanical analysis and DSC in order to confirm the structure of hydrogels and to predict the best ratio composition with enhanced physical chemical properties. The swelling behavior in water was studied as a function of ratio of monomers and their concentration in medium. An increase in AMPS content led to expansion of network and increase in swelling degree capacity in water. An increase in AMPS content did not significantly influence the glass transition temperature of copolymers, indicated that the physical properties of initial components were preserved. The equal amount of monomers contributed to the highest strength of hydrogels. Meanwhile, the introduction of AMPS to the system was an effective method for improving the performances of the poly(methacrylic acid)- based hydrogels.
PB  - Elsevier Science Sa, Lausanne
T2  - Materials Chemistry and Physics
T1  - Physical-chemical behavior of novel copolymers composed of methacrylic acid and 2-acrylamido-2-methylpropane sulfonic acid
EP  - 163
SP  - 156
VL  - 174
DO  - 10.1016/j.matchemphys.2016.02.063
ER  - 
@article{
author = "Nešić, Aleksandra and Panić, Vesna and Ostojić, Sanja and Micić, Darko and Pajić-Lijaković, Ivana and Onjia, Antonije and Veličković, Sava",
year = "2016",
abstract = "This article described the synthesis and characterization of new copolymer hydrogels containing two hydrophilic units-methacrylic acid (MAA) and 2-Acrylamido-2-methylpropane sulfonic acid (AMPS). The resulting hydrogels were characterized by various techniques: FTIR, Elemental analysis, SEM, Dynamic Molecular simulation, Dynamic-Mechanical analysis and DSC in order to confirm the structure of hydrogels and to predict the best ratio composition with enhanced physical chemical properties. The swelling behavior in water was studied as a function of ratio of monomers and their concentration in medium. An increase in AMPS content led to expansion of network and increase in swelling degree capacity in water. An increase in AMPS content did not significantly influence the glass transition temperature of copolymers, indicated that the physical properties of initial components were preserved. The equal amount of monomers contributed to the highest strength of hydrogels. Meanwhile, the introduction of AMPS to the system was an effective method for improving the performances of the poly(methacrylic acid)- based hydrogels.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Materials Chemistry and Physics",
title = "Physical-chemical behavior of novel copolymers composed of methacrylic acid and 2-acrylamido-2-methylpropane sulfonic acid",
pages = "163-156",
volume = "174",
doi = "10.1016/j.matchemphys.2016.02.063"
}
Nešić, A., Panić, V., Ostojić, S., Micić, D., Pajić-Lijaković, I., Onjia, A.,& Veličković, S.. (2016). Physical-chemical behavior of novel copolymers composed of methacrylic acid and 2-acrylamido-2-methylpropane sulfonic acid. in Materials Chemistry and Physics
Elsevier Science Sa, Lausanne., 174, 156-163.
https://doi.org/10.1016/j.matchemphys.2016.02.063
Nešić A, Panić V, Ostojić S, Micić D, Pajić-Lijaković I, Onjia A, Veličković S. Physical-chemical behavior of novel copolymers composed of methacrylic acid and 2-acrylamido-2-methylpropane sulfonic acid. in Materials Chemistry and Physics. 2016;174:156-163.
doi:10.1016/j.matchemphys.2016.02.063 .
Nešić, Aleksandra, Panić, Vesna, Ostojić, Sanja, Micić, Darko, Pajić-Lijaković, Ivana, Onjia, Antonije, Veličković, Sava, "Physical-chemical behavior of novel copolymers composed of methacrylic acid and 2-acrylamido-2-methylpropane sulfonic acid" in Materials Chemistry and Physics, 174 (2016):156-163,
https://doi.org/10.1016/j.matchemphys.2016.02.063 . .
29
20
30