Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200175/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200175 (Institut tehničkih nauka SANU, Beograd) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200175 (Институт техничких наука САНУ, Београд) (sr)
Authors

Publications

Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite

Janićijević, Aleksandra; Filipović, Suzana; Sknepnek, Aleksandra; Salević-Jelić, Ana; Jančić-Heinemann, Radmila; Petrović, Miloš; Petronijević, Ivan; Stamenović, Marina; Živković, Predrag; Potkonjak, Nebojša; Pavlović, Vladimir B.

(MDPI, 2024)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Filipović, Suzana
AU  - Sknepnek, Aleksandra
AU  - Salević-Jelić, Ana
AU  - Jančić-Heinemann, Radmila
AU  - Petrović, Miloš
AU  - Petronijević, Ivan
AU  - Stamenović, Marina
AU  - Živković, Predrag
AU  - Potkonjak, Nebojša
AU  - Pavlović, Vladimir B.
PY  - 2024
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/7454
AB  - This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction of BT in PVDF was 5%, and the samples were differentiated based on the duration of the mechanical activation of BT. This innovative PVDF laminate polymer with environmentally friendly fillers aligns with the concept of circular usage, resulting in a reduction in plastic content and potential improvement of the piezoelectric properties of the entire composite. This work presents new, multifunctional “green” packaging materials that potentially could be a good alternative to specific popular materials used for this purpose. The synthesis of the films was carried out using the hot press method. Tensile tests, water vapor permeability examination, and structural analyses using SEM-EDS and FTIR have been conducted. The sample PVDF/BT20/BNC/Fe3O4 exhibited the best barrier properties (impermeability to water vapor), while the highest tensile strength and toughness were exhibited by the PVDF/BT5/BNC/Fe3O4 sample.
PB  - MDPI
T2  - Polymers
T1  - Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite
IS  - 8
SP  - 1033
VL  - 16
DO  - 10.3390/polym16081033
ER  - 
@article{
author = "Janićijević, Aleksandra and Filipović, Suzana and Sknepnek, Aleksandra and Salević-Jelić, Ana and Jančić-Heinemann, Radmila and Petrović, Miloš and Petronijević, Ivan and Stamenović, Marina and Živković, Predrag and Potkonjak, Nebojša and Pavlović, Vladimir B.",
year = "2024",
abstract = "This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction of BT in PVDF was 5%, and the samples were differentiated based on the duration of the mechanical activation of BT. This innovative PVDF laminate polymer with environmentally friendly fillers aligns with the concept of circular usage, resulting in a reduction in plastic content and potential improvement of the piezoelectric properties of the entire composite. This work presents new, multifunctional “green” packaging materials that potentially could be a good alternative to specific popular materials used for this purpose. The synthesis of the films was carried out using the hot press method. Tensile tests, water vapor permeability examination, and structural analyses using SEM-EDS and FTIR have been conducted. The sample PVDF/BT20/BNC/Fe3O4 exhibited the best barrier properties (impermeability to water vapor), while the highest tensile strength and toughness were exhibited by the PVDF/BT5/BNC/Fe3O4 sample.",
publisher = "MDPI",
journal = "Polymers",
title = "Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite",
number = "8",
pages = "1033",
volume = "16",
doi = "10.3390/polym16081033"
}
Janićijević, A., Filipović, S., Sknepnek, A., Salević-Jelić, A., Jančić-Heinemann, R., Petrović, M., Petronijević, I., Stamenović, M., Živković, P., Potkonjak, N.,& Pavlović, V. B.. (2024). Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite. in Polymers
MDPI., 16(8), 1033.
https://doi.org/10.3390/polym16081033
Janićijević A, Filipović S, Sknepnek A, Salević-Jelić A, Jančić-Heinemann R, Petrović M, Petronijević I, Stamenović M, Živković P, Potkonjak N, Pavlović VB. Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite. in Polymers. 2024;16(8):1033.
doi:10.3390/polym16081033 .
Janićijević, Aleksandra, Filipović, Suzana, Sknepnek, Aleksandra, Salević-Jelić, Ana, Jančić-Heinemann, Radmila, Petrović, Miloš, Petronijević, Ivan, Stamenović, Marina, Živković, Predrag, Potkonjak, Nebojša, Pavlović, Vladimir B., "Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite" in Polymers, 16, no. 8 (2024):1033,
https://doi.org/10.3390/polym16081033 . .

Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material

Janićijević, Aleksandra; Pavlović, Vera P.; Kovačević, Danijela; Đorđević, Nenad; Marinković, Aleksandar; Vlahović, Branislav; Karoui, Abdennaceur; Pavlović, Vladimir B.; Filipović, Suzana

(Springer, 2023)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Pavlović, Vera P.
AU  - Kovačević, Danijela
AU  - Đorđević, Nenad
AU  - Marinković, Aleksandar
AU  - Vlahović, Branislav
AU  - Karoui, Abdennaceur
AU  - Pavlović, Vladimir B.
AU  - Filipović, Suzana
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6939
AB  - The hybrid multifunctional magnetic organic/inorganic composite materials, with addition of optimal filler type and quantities are attractive due to wide range of potential application, from various pressure sensors, through smart packaging, to tissue engineering and medicine. The structural, morphological and magnetic properties of polyvinylidene fluoride/nanocellulose/magnetite@BaTiO3 hybrid films were investigated. The presented study revealed significant impact of nanocellulose (NC) content on formation of the polymorphs of PVDF, responsible for ferro-, piezo- and pyroelectric properties. The structural characterization, XRD and Raman measurements confirmed enhancement of the β and γ phases when the loading of NC higher then 4 wt% in multi-component hybrid films. The saturation magnetization value gradually raises with increasing amount of NC and reaches its maximum value of 41.2 emu/g at content of 4 wt% NC. Further, addition of NC decreases saturation magnetization value regardless of constant amount of magnetite, indicating optimal content of NC substrate for co-precipitation of Fe3O4 onto NC matrix.
PB  - Springer
T2  - Journal of Inorganic and Organometallic Polymers and Materials
T1  - Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material
DO  - 10.1007/s10904-023-02953-w
ER  - 
@article{
author = "Janićijević, Aleksandra and Pavlović, Vera P. and Kovačević, Danijela and Đorđević, Nenad and Marinković, Aleksandar and Vlahović, Branislav and Karoui, Abdennaceur and Pavlović, Vladimir B. and Filipović, Suzana",
year = "2023",
abstract = "The hybrid multifunctional magnetic organic/inorganic composite materials, with addition of optimal filler type and quantities are attractive due to wide range of potential application, from various pressure sensors, through smart packaging, to tissue engineering and medicine. The structural, morphological and magnetic properties of polyvinylidene fluoride/nanocellulose/magnetite@BaTiO3 hybrid films were investigated. The presented study revealed significant impact of nanocellulose (NC) content on formation of the polymorphs of PVDF, responsible for ferro-, piezo- and pyroelectric properties. The structural characterization, XRD and Raman measurements confirmed enhancement of the β and γ phases when the loading of NC higher then 4 wt% in multi-component hybrid films. The saturation magnetization value gradually raises with increasing amount of NC and reaches its maximum value of 41.2 emu/g at content of 4 wt% NC. Further, addition of NC decreases saturation magnetization value regardless of constant amount of magnetite, indicating optimal content of NC substrate for co-precipitation of Fe3O4 onto NC matrix.",
publisher = "Springer",
journal = "Journal of Inorganic and Organometallic Polymers and Materials",
title = "Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material",
doi = "10.1007/s10904-023-02953-w"
}
Janićijević, A., Pavlović, V. P., Kovačević, D., Đorđević, N., Marinković, A., Vlahović, B., Karoui, A., Pavlović, V. B.,& Filipović, S.. (2023). Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material. in Journal of Inorganic and Organometallic Polymers and Materials
Springer..
https://doi.org/10.1007/s10904-023-02953-w
Janićijević A, Pavlović VP, Kovačević D, Đorđević N, Marinković A, Vlahović B, Karoui A, Pavlović VB, Filipović S. Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material. in Journal of Inorganic and Organometallic Polymers and Materials. 2023;.
doi:10.1007/s10904-023-02953-w .
Janićijević, Aleksandra, Pavlović, Vera P., Kovačević, Danijela, Đorđević, Nenad, Marinković, Aleksandar, Vlahović, Branislav, Karoui, Abdennaceur, Pavlović, Vladimir B., Filipović, Suzana, "Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material" in Journal of Inorganic and Organometallic Polymers and Materials (2023),
https://doi.org/10.1007/s10904-023-02953-w . .

Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal

Vujančević, Jelena; Andričević, Pavao; Đokić, Veljko; Blagojević, Vladimir; Pavlović, Vera P.; Ćirković, Jovana; Horváth, Endre; Forró, László; Karoui, Abdennaceur; Pavlović, Vladimir B.; Janaćković, Đorđe

(MDPI, 2023)

TY  - JOUR
AU  - Vujančević, Jelena
AU  - Andričević, Pavao
AU  - Đokić, Veljko
AU  - Blagojević, Vladimir
AU  - Pavlović, Vera P.
AU  - Ćirković, Jovana
AU  - Horváth, Endre
AU  - Forró, László
AU  - Karoui, Abdennaceur
AU  - Pavlović, Vladimir B.
AU  - Janaćković, Đorđe
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5921
AB  - In this study, we report the influence of vanadium oxide (VO), as a photosensitive component, on the photoactivity of TiO2 nanotubes (TNTs). A series of TNTs of varying tube diameter were synthesized by the anodization of titanium foils at different voltages, while vanadium oxide was deposited on TNTs by wet chemical deposition. An improvement in the optical properties of nanotubes was observed after the deposition of vanadium oxide. An improvement in the optical properties (redshift in UV-Vis spectra) of TNTs and TNT/VO was noted. The photocatalytic activity was improved with increasing tube diameter, while it was weakened after the deposition of VO. Furthermore, photoactivity was investigated in photodiodes based on TNTs or TNT/VO and single crystals of CH3NH3PbI3. The photoelectric measurement revealed that different TNT diameters did not influence the I-V characteristic of the photodiodes, while the deposition of VO improved the photocurrent for smaller TNTs.
PB  - MDPI
T2  - Catalysts
T1  - Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal
IS  - 2
SP  - 352
VL  - 13
DO  - 10.3390/catal13020352
ER  - 
@article{
author = "Vujančević, Jelena and Andričević, Pavao and Đokić, Veljko and Blagojević, Vladimir and Pavlović, Vera P. and Ćirković, Jovana and Horváth, Endre and Forró, László and Karoui, Abdennaceur and Pavlović, Vladimir B. and Janaćković, Đorđe",
year = "2023",
abstract = "In this study, we report the influence of vanadium oxide (VO), as a photosensitive component, on the photoactivity of TiO2 nanotubes (TNTs). A series of TNTs of varying tube diameter were synthesized by the anodization of titanium foils at different voltages, while vanadium oxide was deposited on TNTs by wet chemical deposition. An improvement in the optical properties of nanotubes was observed after the deposition of vanadium oxide. An improvement in the optical properties (redshift in UV-Vis spectra) of TNTs and TNT/VO was noted. The photocatalytic activity was improved with increasing tube diameter, while it was weakened after the deposition of VO. Furthermore, photoactivity was investigated in photodiodes based on TNTs or TNT/VO and single crystals of CH3NH3PbI3. The photoelectric measurement revealed that different TNT diameters did not influence the I-V characteristic of the photodiodes, while the deposition of VO improved the photocurrent for smaller TNTs.",
publisher = "MDPI",
journal = "Catalysts",
title = "Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal",
number = "2",
pages = "352",
volume = "13",
doi = "10.3390/catal13020352"
}
Vujančević, J., Andričević, P., Đokić, V., Blagojević, V., Pavlović, V. P., Ćirković, J., Horváth, E., Forró, L., Karoui, A., Pavlović, V. B.,& Janaćković, Đ.. (2023). Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. in Catalysts
MDPI., 13(2), 352.
https://doi.org/10.3390/catal13020352
Vujančević J, Andričević P, Đokić V, Blagojević V, Pavlović VP, Ćirković J, Horváth E, Forró L, Karoui A, Pavlović VB, Janaćković Đ. Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. in Catalysts. 2023;13(2):352.
doi:10.3390/catal13020352 .
Vujančević, Jelena, Andričević, Pavao, Đokić, Veljko, Blagojević, Vladimir, Pavlović, Vera P., Ćirković, Jovana, Horváth, Endre, Forró, László, Karoui, Abdennaceur, Pavlović, Vladimir B., Janaćković, Đorđe, "Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal" in Catalysts, 13, no. 2 (2023):352,
https://doi.org/10.3390/catal13020352 . .

Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite

Janićijević, Aleksandra; Filipović, Suzana; Sknepnek, Aleksandra; Vlahović, Branislav; Đorđević, Nenad; Kovačević, Danijela; Mirković, Miljana; Petronijević, Ivan; Živković, Predrag; Rogan, Jelena; Pavlović, Vladimir B.

(MDPI, 2023)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Filipović, Suzana
AU  - Sknepnek, Aleksandra
AU  - Vlahović, Branislav
AU  - Đorđević, Nenad
AU  - Kovačević, Danijela
AU  - Mirković, Miljana
AU  - Petronijević, Ivan
AU  - Živković, Predrag
AU  - Rogan, Jelena
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6805
AB  - In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.
PB  - MDPI
T2  - Polymers
T1  - Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite
IS  - 20
SP  - 4080
VL  - 15
DO  - 10.3390/polym15204080
ER  - 
@article{
author = "Janićijević, Aleksandra and Filipović, Suzana and Sknepnek, Aleksandra and Vlahović, Branislav and Đorđević, Nenad and Kovačević, Danijela and Mirković, Miljana and Petronijević, Ivan and Živković, Predrag and Rogan, Jelena and Pavlović, Vladimir B.",
year = "2023",
abstract = "In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.",
publisher = "MDPI",
journal = "Polymers",
title = "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite",
number = "20",
pages = "4080",
volume = "15",
doi = "10.3390/polym15204080"
}
Janićijević, A., Filipović, S., Sknepnek, A., Vlahović, B., Đorđević, N., Kovačević, D., Mirković, M., Petronijević, I., Živković, P., Rogan, J.,& Pavlović, V. B.. (2023). Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers
MDPI., 15(20), 4080.
https://doi.org/10.3390/polym15204080
Janićijević A, Filipović S, Sknepnek A, Vlahović B, Đorđević N, Kovačević D, Mirković M, Petronijević I, Živković P, Rogan J, Pavlović VB. Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers. 2023;15(20):4080.
doi:10.3390/polym15204080 .
Janićijević, Aleksandra, Filipović, Suzana, Sknepnek, Aleksandra, Vlahović, Branislav, Đorđević, Nenad, Kovačević, Danijela, Mirković, Miljana, Petronijević, Ivan, Živković, Predrag, Rogan, Jelena, Pavlović, Vladimir B., "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite" in Polymers, 15, no. 20 (2023):4080,
https://doi.org/10.3390/polym15204080 . .
1

Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell

Popović, Aleksandra S.; Jugović, Dragana; Grgur, Branimir N.

(Springer, 2023)

TY  - JOUR
AU  - Popović, Aleksandra S.
AU  - Jugović, Dragana
AU  - Grgur, Branimir N.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6436
AB  - Primary seawater magnesium-based cell with AgCl or PbCl2 cathodes is widely used as power sources. In this paper, we consider the cyclic galvanostatic formation of silver and lead chlorides and their electrochemical behavior for potential applications in the new concept of the seawater quasi-rechargeable magnesium cell. For potential cells, the voltage for Mg alloy AZ63 and AgCl is ~ 1.5 V, and for the PbCl2, ~ 1 V. High discharge specific capacity, energy, and power are obtained under the very high discharge rate. It is also presented that systems could be potentially used in emergency situations for a few days up to a few weeks as a power source in the life-saving boat for sporadic emitting GPS-SOS tacking signals and night signal lights.
PB  - Springer
T2  - Journal of Materials Science: Materials in Electronics
T1  - Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell
IS  - 14
SP  - 1155
VL  - 34
DO  - 10.1007/s10854-023-10558-9
ER  - 
@article{
author = "Popović, Aleksandra S. and Jugović, Dragana and Grgur, Branimir N.",
year = "2023",
abstract = "Primary seawater magnesium-based cell with AgCl or PbCl2 cathodes is widely used as power sources. In this paper, we consider the cyclic galvanostatic formation of silver and lead chlorides and their electrochemical behavior for potential applications in the new concept of the seawater quasi-rechargeable magnesium cell. For potential cells, the voltage for Mg alloy AZ63 and AgCl is ~ 1.5 V, and for the PbCl2, ~ 1 V. High discharge specific capacity, energy, and power are obtained under the very high discharge rate. It is also presented that systems could be potentially used in emergency situations for a few days up to a few weeks as a power source in the life-saving boat for sporadic emitting GPS-SOS tacking signals and night signal lights.",
publisher = "Springer",
journal = "Journal of Materials Science: Materials in Electronics",
title = "Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell",
number = "14",
pages = "1155",
volume = "34",
doi = "10.1007/s10854-023-10558-9"
}
Popović, A. S., Jugović, D.,& Grgur, B. N.. (2023). Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell. in Journal of Materials Science: Materials in Electronics
Springer., 34(14), 1155.
https://doi.org/10.1007/s10854-023-10558-9
Popović AS, Jugović D, Grgur BN. Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell. in Journal of Materials Science: Materials in Electronics. 2023;34(14):1155.
doi:10.1007/s10854-023-10558-9 .
Popović, Aleksandra S., Jugović, Dragana, Grgur, Branimir N., "Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell" in Journal of Materials Science: Materials in Electronics, 34, no. 14 (2023):1155,
https://doi.org/10.1007/s10854-023-10558-9 . .

Nanomechanical properties of PVDF–ZnO polymer nanocomposite

Peleš Tadić, Adriana; Blagojević, Vladimir A.; Stojanović, Dušica; Ostojić, Sanja B.; Tasić, Nikola; Kosanović, Darko; Uskoković, Petar; Pavlović, Vladimir B.

(Elsevier Ltd, 2023)

TY  - JOUR
AU  - Peleš Tadić, Adriana
AU  - Blagojević, Vladimir A.
AU  - Stojanović, Dušica
AU  - Ostojić, Sanja B.
AU  - Tasić, Nikola
AU  - Kosanović, Darko
AU  - Uskoković, Petar
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5264
AB  - Poly(vinylidenefluoride)–ZnO (PVDF–ZnO) nanocomposites with mechanically activated ZnO nanoparticle fillers were investigated using thermal and mechanical analysis and AFM and PFM. Differential scanning calorimetry (DSC) investigated the effect of ZnO nanoparticles on the crystallinity of the polymer, under controlled heating and cooling. Atomic force (AFM) microscopy was used to record the surfaces of the samples. Nanocomposite surface roughness shows the presence of the different phases inside of the matrix, where rough samples contain a higher proportion of the β phase. PFM was performed to investigate the piezoresponse of the composites. Nanoidentation showed that the mechanical activation of the filler (ZnO) increases the Young modulus with the activation time. Molecular simulations in periodic systems (PVDF–ZnO spherical nanocluster and nanocylinder composite) were used to investigate the influence of particle size and shape on the Young modulus of different phases of PVDF.
PB  - Elsevier Ltd
T2  - Materials Science and Engineering B: Solid-State Materials for Advanced Technology
T1  - Nanomechanical properties of PVDF–ZnO polymer nanocomposite
SP  - 116126
VL  - 287
DO  - 10.1016/j.mseb.2022.116126
ER  - 
@article{
author = "Peleš Tadić, Adriana and Blagojević, Vladimir A. and Stojanović, Dušica and Ostojić, Sanja B. and Tasić, Nikola and Kosanović, Darko and Uskoković, Petar and Pavlović, Vladimir B.",
year = "2023",
abstract = "Poly(vinylidenefluoride)–ZnO (PVDF–ZnO) nanocomposites with mechanically activated ZnO nanoparticle fillers were investigated using thermal and mechanical analysis and AFM and PFM. Differential scanning calorimetry (DSC) investigated the effect of ZnO nanoparticles on the crystallinity of the polymer, under controlled heating and cooling. Atomic force (AFM) microscopy was used to record the surfaces of the samples. Nanocomposite surface roughness shows the presence of the different phases inside of the matrix, where rough samples contain a higher proportion of the β phase. PFM was performed to investigate the piezoresponse of the composites. Nanoidentation showed that the mechanical activation of the filler (ZnO) increases the Young modulus with the activation time. Molecular simulations in periodic systems (PVDF–ZnO spherical nanocluster and nanocylinder composite) were used to investigate the influence of particle size and shape on the Young modulus of different phases of PVDF.",
publisher = "Elsevier Ltd",
journal = "Materials Science and Engineering B: Solid-State Materials for Advanced Technology",
title = "Nanomechanical properties of PVDF–ZnO polymer nanocomposite",
pages = "116126",
volume = "287",
doi = "10.1016/j.mseb.2022.116126"
}
Peleš Tadić, A., Blagojević, V. A., Stojanović, D., Ostojić, S. B., Tasić, N., Kosanović, D., Uskoković, P.,& Pavlović, V. B.. (2023). Nanomechanical properties of PVDF–ZnO polymer nanocomposite. in Materials Science and Engineering B: Solid-State Materials for Advanced Technology
Elsevier Ltd., 287, 116126.
https://doi.org/10.1016/j.mseb.2022.116126
Peleš Tadić A, Blagojević VA, Stojanović D, Ostojić SB, Tasić N, Kosanović D, Uskoković P, Pavlović VB. Nanomechanical properties of PVDF–ZnO polymer nanocomposite. in Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2023;287:116126.
doi:10.1016/j.mseb.2022.116126 .
Peleš Tadić, Adriana, Blagojević, Vladimir A., Stojanović, Dušica, Ostojić, Sanja B., Tasić, Nikola, Kosanović, Darko, Uskoković, Petar, Pavlović, Vladimir B., "Nanomechanical properties of PVDF–ZnO polymer nanocomposite" in Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 287 (2023):116126,
https://doi.org/10.1016/j.mseb.2022.116126 . .
7
7

Polypyrrole on graphite: An exemplary model system for comprehensive electrochemical analysis of energy storage materials

Popović, Aleksandra S.; Gvozdenović, Milica M.; Janković, Ana; Jugović, Branimir; Grgur, Branimir

(Elsevier BV, 2023)

TY  - JOUR
AU  - Popović, Aleksandra S.
AU  - Gvozdenović, Milica M.
AU  - Janković, Ana
AU  - Jugović, Branimir
AU  - Grgur, Branimir
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6594
AB  - Electrochemical Energy Storage (EES) technologies are playing a significant role in the aspirations to decrease the usage of fossil fuels and move toward an environmentally conscious society. Due to the importance of EES technologies, more researchers are looking for an efficient and effective electrode material, which is the most important part of the EES system that possibly could result in much-needed advancements in the field. However, incoming researchers have a diverse backgrounds and as newcomers to the electrochemical community, they sometimes lack familiarity with the core concepts, well-established procedures, and methodologies that define the standards of the discipline. This issue's importance has been acknowledged, and various publications have been written to guide researchers in doing accurate evaluations. However, to the best of our knowledge, even though these publications demonstrate the methodologies and procedures for approaching the existing challenges none of them address the offered topic with an actual example. To address this gap, we present a step-by-step procedure for the electrochemical analysis of polypyrrole, a widely utilized conducting polymer with significant potential as an electrode material for supercapacitors and batteries.
PB  - Elsevier BV
T2  - Synthetic Metals
T1  - Polypyrrole on graphite: An exemplary model system for comprehensive electrochemical analysis of energy storage materials
SP  - 117386
VL  - 297
DO  - 10.1016/j.synthmet.2023.117386
UR  - https://hdl.handle.net/21.15107/rcub_dais_14707
ER  - 
@article{
author = "Popović, Aleksandra S. and Gvozdenović, Milica M. and Janković, Ana and Jugović, Branimir and Grgur, Branimir",
year = "2023",
abstract = "Electrochemical Energy Storage (EES) technologies are playing a significant role in the aspirations to decrease the usage of fossil fuels and move toward an environmentally conscious society. Due to the importance of EES technologies, more researchers are looking for an efficient and effective electrode material, which is the most important part of the EES system that possibly could result in much-needed advancements in the field. However, incoming researchers have a diverse backgrounds and as newcomers to the electrochemical community, they sometimes lack familiarity with the core concepts, well-established procedures, and methodologies that define the standards of the discipline. This issue's importance has been acknowledged, and various publications have been written to guide researchers in doing accurate evaluations. However, to the best of our knowledge, even though these publications demonstrate the methodologies and procedures for approaching the existing challenges none of them address the offered topic with an actual example. To address this gap, we present a step-by-step procedure for the electrochemical analysis of polypyrrole, a widely utilized conducting polymer with significant potential as an electrode material for supercapacitors and batteries.",
publisher = "Elsevier BV",
journal = "Synthetic Metals",
title = "Polypyrrole on graphite: An exemplary model system for comprehensive electrochemical analysis of energy storage materials",
pages = "117386",
volume = "297",
doi = "10.1016/j.synthmet.2023.117386",
url = "https://hdl.handle.net/21.15107/rcub_dais_14707"
}
Popović, A. S., Gvozdenović, M. M., Janković, A., Jugović, B.,& Grgur, B.. (2023). Polypyrrole on graphite: An exemplary model system for comprehensive electrochemical analysis of energy storage materials. in Synthetic Metals
Elsevier BV., 297, 117386.
https://doi.org/10.1016/j.synthmet.2023.117386
https://hdl.handle.net/21.15107/rcub_dais_14707
Popović AS, Gvozdenović MM, Janković A, Jugović B, Grgur B. Polypyrrole on graphite: An exemplary model system for comprehensive electrochemical analysis of energy storage materials. in Synthetic Metals. 2023;297:117386.
doi:10.1016/j.synthmet.2023.117386
https://hdl.handle.net/21.15107/rcub_dais_14707 .
Popović, Aleksandra S., Gvozdenović, Milica M., Janković, Ana, Jugović, Branimir, Grgur, Branimir, "Polypyrrole on graphite: An exemplary model system for comprehensive electrochemical analysis of energy storage materials" in Synthetic Metals, 297 (2023):117386,
https://doi.org/10.1016/j.synthmet.2023.117386 .,
https://hdl.handle.net/21.15107/rcub_dais_14707 .
2
2

Morphological and Structural Characterization of MgAl2O4 Spinel

Obradović, Nina; Filipović, Suzana; Fahrenholtz, William G.; Marinković, Bojan A.; Rogan, Jelena; Lević, Steva; Đorđević, Antonije; Pavlović, Vladimir B.

(International Institute for the Science of Sintering (IISS), 2023)

TY  - JOUR
AU  - Obradović, Nina
AU  - Filipović, Suzana
AU  - Fahrenholtz, William G.
AU  - Marinković, Bojan A.
AU  - Rogan, Jelena
AU  - Lević, Steva
AU  - Đorđević, Antonije
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6467
AB  - Magnesium aluminate has the spinel structure along with good mechanical, chemical, and thermal properties. Magnesium aluminate has a wide range of applications including refractory ceramics, optically transparent ceramic windows, and armors. Its low dielectric permeability and low loss tangent enable its applications for integrated electronic devices, as well. In this paper, MgO and Al2O3 powders were mixed in a one-to-one molar ratio and calcined at temperatures ranging from 1500 to 1800°C to produce phase pure spinel. Thereafter, pellets were crushed and treated in a planetary ball mill for 60 min to obtain a fine powder. All powders were examined for phase composition, crystal structure, and morphology. The obtained results showed that by increasing the temperature, samples with higher density were synthesized. Milling for 1 h led to formation of larger particles, but finer powders after milling. XRPD and Raman spectroscopy showed disorder in the crystal structure after milling.
AB  - Магнезијум алуминат поседује структуру спинела и добра механичка, хемијска и термичка својства. Има широк спектар примене, укључујући рефракторну керамику, оружје и оптички транспарентна керамичка стакла. Ниска диелектрична пермеабилност и тангенс губитака пружају овој керамици примену и у електричним направама. У овом раду, прахови MgO и Al2O3 су помешани у моларном односу 1:1 и калцинисани на температурама између 1500°C и 1800°C да би се добио спинел. Након тога, узорци су смрвљени и механички активирани у млину током 60 минута да би се добио фини уситњен прах. Одређени су фазни састав, кристална структура и морфологија свих прахова. Резултати су показали да са порастом температуре расте и густина синтетисаних узорака. Млевење од 1 сата води ка формирању већих честица, али финијих прахова након млевења. XRPD и Раман спектроскопија указују на неуређену кристалну структуру након млевења.
PB  - International Institute for the Science of Sintering (IISS)
T2  - Science of Sintering
T1  - Morphological and Structural Characterization of MgAl2O4 Spinel
EP  - 10
IS  - 1
SP  - 1
VL  - 55
DO  - 10.2298/SOS2301001O
ER  - 
@article{
author = "Obradović, Nina and Filipović, Suzana and Fahrenholtz, William G. and Marinković, Bojan A. and Rogan, Jelena and Lević, Steva and Đorđević, Antonije and Pavlović, Vladimir B.",
year = "2023",
abstract = "Magnesium aluminate has the spinel structure along with good mechanical, chemical, and thermal properties. Magnesium aluminate has a wide range of applications including refractory ceramics, optically transparent ceramic windows, and armors. Its low dielectric permeability and low loss tangent enable its applications for integrated electronic devices, as well. In this paper, MgO and Al2O3 powders were mixed in a one-to-one molar ratio and calcined at temperatures ranging from 1500 to 1800°C to produce phase pure spinel. Thereafter, pellets were crushed and treated in a planetary ball mill for 60 min to obtain a fine powder. All powders were examined for phase composition, crystal structure, and morphology. The obtained results showed that by increasing the temperature, samples with higher density were synthesized. Milling for 1 h led to formation of larger particles, but finer powders after milling. XRPD and Raman spectroscopy showed disorder in the crystal structure after milling., Магнезијум алуминат поседује структуру спинела и добра механичка, хемијска и термичка својства. Има широк спектар примене, укључујући рефракторну керамику, оружје и оптички транспарентна керамичка стакла. Ниска диелектрична пермеабилност и тангенс губитака пружају овој керамици примену и у електричним направама. У овом раду, прахови MgO и Al2O3 су помешани у моларном односу 1:1 и калцинисани на температурама између 1500°C и 1800°C да би се добио спинел. Након тога, узорци су смрвљени и механички активирани у млину током 60 минута да би се добио фини уситњен прах. Одређени су фазни састав, кристална структура и морфологија свих прахова. Резултати су показали да са порастом температуре расте и густина синтетисаних узорака. Млевење од 1 сата води ка формирању већих честица, али финијих прахова након млевења. XRPD и Раман спектроскопија указују на неуређену кристалну структуру након млевења.",
publisher = "International Institute for the Science of Sintering (IISS)",
journal = "Science of Sintering",
title = "Morphological and Structural Characterization of MgAl2O4 Spinel",
pages = "10-1",
number = "1",
volume = "55",
doi = "10.2298/SOS2301001O"
}
Obradović, N., Filipović, S., Fahrenholtz, W. G., Marinković, B. A., Rogan, J., Lević, S., Đorđević, A.,& Pavlović, V. B.. (2023). Morphological and Structural Characterization of MgAl2O4 Spinel. in Science of Sintering
International Institute for the Science of Sintering (IISS)., 55(1), 1-10.
https://doi.org/10.2298/SOS2301001O
Obradović N, Filipović S, Fahrenholtz WG, Marinković BA, Rogan J, Lević S, Đorđević A, Pavlović VB. Morphological and Structural Characterization of MgAl2O4 Spinel. in Science of Sintering. 2023;55(1):1-10.
doi:10.2298/SOS2301001O .
Obradović, Nina, Filipović, Suzana, Fahrenholtz, William G., Marinković, Bojan A., Rogan, Jelena, Lević, Steva, Đorđević, Antonije, Pavlović, Vladimir B., "Morphological and Structural Characterization of MgAl2O4 Spinel" in Science of Sintering, 55, no. 1 (2023):1-10,
https://doi.org/10.2298/SOS2301001O . .

Effect of mechanical activation on carbothermal synthesis and densification of ZrC

Obradović, Nina; Feng, Lun; Filipović, Suzana; Mirković, Miljana; Kosanović, Darko; Rogan, Jelena; Fahrenholtz, William G.

(Elsevier Ltd, 2023)

TY  - JOUR
AU  - Obradović, Nina
AU  - Feng, Lun
AU  - Filipović, Suzana
AU  - Mirković, Miljana
AU  - Kosanović, Darko
AU  - Rogan, Jelena
AU  - Fahrenholtz, William G.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6610
AB  - Zirconium carbide ceramics were prepared by carbothermal reduction of ZrO2 and C that were mixed by high-energy ball milling. Powders were milled for times from 0 to 120 min in air. As milling time increased, the surface area of the powders increased, indicating significant particle size reduction. Milled powders were reacted at 1600 °C and then densified by spark plasma sintering at 2000 °C, which was sufficient to convert the starting powders to zirconium carbide. Unmilled powders did not reach full density. Milled powders reached full density, but ZrO2 impurities were found for specimens prepared from powders milled for 60 and 120 min. Microstructure analysis showed that grain size was less than 2 µm for ceramics produced from powder milled for 15 min. Based on densification onset temperature and impurity levels, a milling time of 15 min gives the best balance of particle size reduction to promote densification while minimizing impurity levels.
PB  - Elsevier Ltd
T2  - Journal of the European Ceramic Society
T1  - Effect of mechanical activation on carbothermal synthesis and densification of ZrC
DO  - 10.1016/j.jeurceramsoc.2023.08.007
ER  - 
@article{
author = "Obradović, Nina and Feng, Lun and Filipović, Suzana and Mirković, Miljana and Kosanović, Darko and Rogan, Jelena and Fahrenholtz, William G.",
year = "2023",
abstract = "Zirconium carbide ceramics were prepared by carbothermal reduction of ZrO2 and C that were mixed by high-energy ball milling. Powders were milled for times from 0 to 120 min in air. As milling time increased, the surface area of the powders increased, indicating significant particle size reduction. Milled powders were reacted at 1600 °C and then densified by spark plasma sintering at 2000 °C, which was sufficient to convert the starting powders to zirconium carbide. Unmilled powders did not reach full density. Milled powders reached full density, but ZrO2 impurities were found for specimens prepared from powders milled for 60 and 120 min. Microstructure analysis showed that grain size was less than 2 µm for ceramics produced from powder milled for 15 min. Based on densification onset temperature and impurity levels, a milling time of 15 min gives the best balance of particle size reduction to promote densification while minimizing impurity levels.",
publisher = "Elsevier Ltd",
journal = "Journal of the European Ceramic Society",
title = "Effect of mechanical activation on carbothermal synthesis and densification of ZrC",
doi = "10.1016/j.jeurceramsoc.2023.08.007"
}
Obradović, N., Feng, L., Filipović, S., Mirković, M., Kosanović, D., Rogan, J.,& Fahrenholtz, W. G.. (2023). Effect of mechanical activation on carbothermal synthesis and densification of ZrC. in Journal of the European Ceramic Society
Elsevier Ltd..
https://doi.org/10.1016/j.jeurceramsoc.2023.08.007
Obradović N, Feng L, Filipović S, Mirković M, Kosanović D, Rogan J, Fahrenholtz WG. Effect of mechanical activation on carbothermal synthesis and densification of ZrC. in Journal of the European Ceramic Society. 2023;.
doi:10.1016/j.jeurceramsoc.2023.08.007 .
Obradović, Nina, Feng, Lun, Filipović, Suzana, Mirković, Miljana, Kosanović, Darko, Rogan, Jelena, Fahrenholtz, William G., "Effect of mechanical activation on carbothermal synthesis and densification of ZrC" in Journal of the European Ceramic Society (2023),
https://doi.org/10.1016/j.jeurceramsoc.2023.08.007 . .
1
1

Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties

Tomić, Nina; Matić, Tamara; Filipović, Nenad; Mitić Ćulafić, Dragana; Boccacccini, Aldo R.; Stevanović, Magdalena M.

(SAGE Publications Ltd., 2023)

TY  - JOUR
AU  - Tomić, Nina
AU  - Matić, Tamara
AU  - Filipović, Nenad
AU  - Mitić Ćulafić, Dragana
AU  - Boccacccini, Aldo R.
AU  - Stevanović, Magdalena M.
PY  - 2023
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6505
AB  - Recently, many studies have shown various beneficial effects of polyphenol resveratrol (Res) on human health. The most important of these effects include cardioprotective, neuroprotective, anti-cancer, anti-inflammatory, osteoinductive, and anti-microbial effects. Resveratrol has cis and trans isoforms, with the trans isoform being more stable and biologically active. Despite the results of in vitro experiments, resveratrol has limited potential for application in vivo due to its poor water solubility, sensitivity to oxygen, light, and heat, rapid metabolism, and therefore low bioavailability. The possible solution to overcome these limitations could be the synthesis of resveratrol in nanoparticle form. Accordingly, in this study, we have developed a simple, green solvent/non-solvent physicochemical method to synthesize stable, uniform, carrier-free resveratrol nanobelt-like particles (ResNPs) for applications in tissue engineering. UV–visible spectroscopy (UV-Vis) was used to identify the trans isoform of ResNPs which remained stable for at least 63 days. The additional qualitative analysis was performed by Fourier transform infrared spectroscopy (FTIR), while X-ray diffraction (XRD) determined the monoclinic structure of resveratrol with a significant difference in the intensity of diffraction peaks between commercial and nano-belt form. The morphology of ResNPs was evaluated by optical microscopy and field-emission scanning electron microscope (FE-SEM) that revealed a uniform nanobelt-like structure with an individual thickness of less than 1 μm. Bioactivity was confirmed using Artemia salina in vivo toxicity assay, while 2,2–diphenyl-1-picrylhydrazylhydrate (DPPH) reduction assay showed the good antioxidative potential of concentrations of 100 μg/ml and lower. Microdilution assay on several reference strains and clinical isolates showed promising antibacterial potential on Staphylococci, with minimal inhibitory concentration (MIC) being 800 μg/ml. Bioactive glass-based scaffolds were coated with ResNPs and characterized to confirm coating potential. All of the above make these particles a promising bioactive, easy-to-handle component in various biomaterial formulations.
PB  - SAGE Publications Ltd.
T2  - Journal of Biomaterials Applications
T1  - Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties
EP  - 133
IS  - 1
SP  - 122
VL  - 38
DO  - 10.1177/08853282231183109
ER  - 
@article{
author = "Tomić, Nina and Matić, Tamara and Filipović, Nenad and Mitić Ćulafić, Dragana and Boccacccini, Aldo R. and Stevanović, Magdalena M.",
year = "2023",
abstract = "Recently, many studies have shown various beneficial effects of polyphenol resveratrol (Res) on human health. The most important of these effects include cardioprotective, neuroprotective, anti-cancer, anti-inflammatory, osteoinductive, and anti-microbial effects. Resveratrol has cis and trans isoforms, with the trans isoform being more stable and biologically active. Despite the results of in vitro experiments, resveratrol has limited potential for application in vivo due to its poor water solubility, sensitivity to oxygen, light, and heat, rapid metabolism, and therefore low bioavailability. The possible solution to overcome these limitations could be the synthesis of resveratrol in nanoparticle form. Accordingly, in this study, we have developed a simple, green solvent/non-solvent physicochemical method to synthesize stable, uniform, carrier-free resveratrol nanobelt-like particles (ResNPs) for applications in tissue engineering. UV–visible spectroscopy (UV-Vis) was used to identify the trans isoform of ResNPs which remained stable for at least 63 days. The additional qualitative analysis was performed by Fourier transform infrared spectroscopy (FTIR), while X-ray diffraction (XRD) determined the monoclinic structure of resveratrol with a significant difference in the intensity of diffraction peaks between commercial and nano-belt form. The morphology of ResNPs was evaluated by optical microscopy and field-emission scanning electron microscope (FE-SEM) that revealed a uniform nanobelt-like structure with an individual thickness of less than 1 μm. Bioactivity was confirmed using Artemia salina in vivo toxicity assay, while 2,2–diphenyl-1-picrylhydrazylhydrate (DPPH) reduction assay showed the good antioxidative potential of concentrations of 100 μg/ml and lower. Microdilution assay on several reference strains and clinical isolates showed promising antibacterial potential on Staphylococci, with minimal inhibitory concentration (MIC) being 800 μg/ml. Bioactive glass-based scaffolds were coated with ResNPs and characterized to confirm coating potential. All of the above make these particles a promising bioactive, easy-to-handle component in various biomaterial formulations.",
publisher = "SAGE Publications Ltd.",
journal = "Journal of Biomaterials Applications",
title = "Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties",
pages = "133-122",
number = "1",
volume = "38",
doi = "10.1177/08853282231183109"
}
Tomić, N., Matić, T., Filipović, N., Mitić Ćulafić, D., Boccacccini, A. R.,& Stevanović, M. M.. (2023). Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties. in Journal of Biomaterials Applications
SAGE Publications Ltd.., 38(1), 122-133.
https://doi.org/10.1177/08853282231183109
Tomić N, Matić T, Filipović N, Mitić Ćulafić D, Boccacccini AR, Stevanović MM. Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties. in Journal of Biomaterials Applications. 2023;38(1):122-133.
doi:10.1177/08853282231183109 .
Tomić, Nina, Matić, Tamara, Filipović, Nenad, Mitić Ćulafić, Dragana, Boccacccini, Aldo R., Stevanović, Magdalena M., "Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties" in Journal of Biomaterials Applications, 38, no. 1 (2023):122-133,
https://doi.org/10.1177/08853282231183109 . .
3
3

Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells

Stefanović, Milica; Lukić, Ivana; Vujančević, Jelena; Petrović, Rada; Janaćković, Đorđe

(Serbian Academy of Sciences and Arts, 2022)

TY  - CONF
AU  - Stefanović, Milica
AU  - Lukić, Ivana
AU  - Vujančević, Jelena
AU  - Petrović, Rada
AU  - Janaćković, Đorđe
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/6172
PB  - Serbian Academy of Sciences and Arts
C3  - Second International conference ELMINA2022 Electron Microscopy of Nanostructures
T1  - Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells
EP  - 190
SP  - 189
UR  - https://hdl.handle.net/21.15107/rcub_technorep_6172
ER  - 
@conference{
author = "Stefanović, Milica and Lukić, Ivana and Vujančević, Jelena and Petrović, Rada and Janaćković, Đorđe",
year = "2022",
publisher = "Serbian Academy of Sciences and Arts",
journal = "Second International conference ELMINA2022 Electron Microscopy of Nanostructures",
title = "Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells",
pages = "190-189",
url = "https://hdl.handle.net/21.15107/rcub_technorep_6172"
}
Stefanović, M., Lukić, I., Vujančević, J., Petrović, R.,& Janaćković, Đ.. (2022). Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells. in Second International conference ELMINA2022 Electron Microscopy of Nanostructures
Serbian Academy of Sciences and Arts., 189-190.
https://hdl.handle.net/21.15107/rcub_technorep_6172
Stefanović M, Lukić I, Vujančević J, Petrović R, Janaćković Đ. Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells. in Second International conference ELMINA2022 Electron Microscopy of Nanostructures. 2022;:189-190.
https://hdl.handle.net/21.15107/rcub_technorep_6172 .
Stefanović, Milica, Lukić, Ivana, Vujančević, Jelena, Petrović, Rada, Janaćković, Đorđe, "Improving the contact surface between TiO2 nanotubes and MAPbBr3 to make perovskite solar cells" in Second International conference ELMINA2022 Electron Microscopy of Nanostructures (2022):189-190,
https://hdl.handle.net/21.15107/rcub_technorep_6172 .

Influence of chloride ion concentration on initial corrosion of AZ63 magnesium alloy

Grgur, Branimir N.; Jugović, Branimir Z.; Gvozdenović, Milica M.

(Nonferrous Metals Society of China, 2022)

TY  - JOUR
AU  - Grgur, Branimir N.
AU  - Jugović, Branimir Z.
AU  - Gvozdenović, Milica M.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5140
AB  - The initial corrosion behavior of AZ63 magnesium alloy was investigated in 1, 3, 5 and 7 wt.% NaCl solutions by means of corrosion potential, linear polarization, electrochemical impedance spectroscopy, and polarization measurements, during exposure in the corrosion media. Results show that the increase in chloride concentration provokes an increase in the corrosion rate. Based on the obtained kinetics parameters the mechanisms of anodic dissolution and hydrogen evolution reactions were discussed, and kinetic models were proposed. It is concluded that anodic dissolution proceeds under Temkin conditions and hydrogen evolution reaction depends on the surface coverage of Mg(OH)2 species.
PB  - Nonferrous Metals Society of China
T2  - Transactions of Nonferrous Metals Society of China (English Edition)
T1  - Influence of chloride ion concentration on initial corrosion of AZ63 magnesium alloy
EP  - 1143
IS  - 4
SP  - 1133
VL  - 32
DO  - 10.1016/S1003-6326(22)65861-8
ER  - 
@article{
author = "Grgur, Branimir N. and Jugović, Branimir Z. and Gvozdenović, Milica M.",
year = "2022",
abstract = "The initial corrosion behavior of AZ63 magnesium alloy was investigated in 1, 3, 5 and 7 wt.% NaCl solutions by means of corrosion potential, linear polarization, electrochemical impedance spectroscopy, and polarization measurements, during exposure in the corrosion media. Results show that the increase in chloride concentration provokes an increase in the corrosion rate. Based on the obtained kinetics parameters the mechanisms of anodic dissolution and hydrogen evolution reactions were discussed, and kinetic models were proposed. It is concluded that anodic dissolution proceeds under Temkin conditions and hydrogen evolution reaction depends on the surface coverage of Mg(OH)2 species.",
publisher = "Nonferrous Metals Society of China",
journal = "Transactions of Nonferrous Metals Society of China (English Edition)",
title = "Influence of chloride ion concentration on initial corrosion of AZ63 magnesium alloy",
pages = "1143-1133",
number = "4",
volume = "32",
doi = "10.1016/S1003-6326(22)65861-8"
}
Grgur, B. N., Jugović, B. Z.,& Gvozdenović, M. M.. (2022). Influence of chloride ion concentration on initial corrosion of AZ63 magnesium alloy. in Transactions of Nonferrous Metals Society of China (English Edition)
Nonferrous Metals Society of China., 32(4), 1133-1143.
https://doi.org/10.1016/S1003-6326(22)65861-8
Grgur BN, Jugović BZ, Gvozdenović MM. Influence of chloride ion concentration on initial corrosion of AZ63 magnesium alloy. in Transactions of Nonferrous Metals Society of China (English Edition). 2022;32(4):1133-1143.
doi:10.1016/S1003-6326(22)65861-8 .
Grgur, Branimir N., Jugović, Branimir Z., Gvozdenović, Milica M., "Influence of chloride ion concentration on initial corrosion of AZ63 magnesium alloy" in Transactions of Nonferrous Metals Society of China (English Edition), 32, no. 4 (2022):1133-1143,
https://doi.org/10.1016/S1003-6326(22)65861-8 . .
8
6

Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model

Pavić, Aleksandar; Stojanović, Zoran; Pekmezović, Marina; Veljović, Đorđe; O’connor, Kevin; Malagurski, Ivana; Nikodinović-Runić, Jasmina

(MDPI, 2022)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Stojanović, Zoran
AU  - Pekmezović, Marina
AU  - Veljović, Đorđe
AU  - O’connor, Kevin
AU  - Malagurski, Ivana
AU  - Nikodinović-Runić, Jasmina
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5104
AB  - Immobilizing antifungal polyenes such as nystatin (Nys) and amphotericin B (AmB) into biodegradable formulations is advantageous compared to free drug administration providing sustained release, reduced dosing due to localized targeting and overall reduced systemic drug toxicity. In this study, we encapsulated Nys and AmB in medium chain length polyhydroxyalkanoates (mcl-PHA) microspheres (7–8 µm in diameter). The obtained formulations have been validated for antifungal activity in vitro against a panel of pathogenic fungi including species of Candida, Aspergillus, Microsporum and Trichophyton genera and toxicity and efficacy in vivo using the zebrafish model of disseminated candidiasis. While free polyenes, especially AmB, were highly toxic to zebrafish embryos at the effective (MIC) doses, after their loading into mcl-PHA microspheres, inner organ toxicity and teratogenicity associated with both drugs were not observed, even at 100 × MIC doses. The obtained mcl-PHA/polyene formulations have successfully eradicated C. albicans infection and showed an improved therapeutic profile in zebrafish by enhancing infected embryos survival. This approach is contributing to the antifungal arsenal as polyenes, although the first broad-spectrum antifungals on the market are still the gold standard for treatment of fungal infections.
PB  - MDPI
T2  - Pharmaceutics
T1  - Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model
IS  - 4
SP  - 696
VL  - 14
DO  - 10.3390/pharmaceutics14040696
ER  - 
@article{
author = "Pavić, Aleksandar and Stojanović, Zoran and Pekmezović, Marina and Veljović, Đorđe and O’connor, Kevin and Malagurski, Ivana and Nikodinović-Runić, Jasmina",
year = "2022",
abstract = "Immobilizing antifungal polyenes such as nystatin (Nys) and amphotericin B (AmB) into biodegradable formulations is advantageous compared to free drug administration providing sustained release, reduced dosing due to localized targeting and overall reduced systemic drug toxicity. In this study, we encapsulated Nys and AmB in medium chain length polyhydroxyalkanoates (mcl-PHA) microspheres (7–8 µm in diameter). The obtained formulations have been validated for antifungal activity in vitro against a panel of pathogenic fungi including species of Candida, Aspergillus, Microsporum and Trichophyton genera and toxicity and efficacy in vivo using the zebrafish model of disseminated candidiasis. While free polyenes, especially AmB, were highly toxic to zebrafish embryos at the effective (MIC) doses, after their loading into mcl-PHA microspheres, inner organ toxicity and teratogenicity associated with both drugs were not observed, even at 100 × MIC doses. The obtained mcl-PHA/polyene formulations have successfully eradicated C. albicans infection and showed an improved therapeutic profile in zebrafish by enhancing infected embryos survival. This approach is contributing to the antifungal arsenal as polyenes, although the first broad-spectrum antifungals on the market are still the gold standard for treatment of fungal infections.",
publisher = "MDPI",
journal = "Pharmaceutics",
title = "Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model",
number = "4",
pages = "696",
volume = "14",
doi = "10.3390/pharmaceutics14040696"
}
Pavić, A., Stojanović, Z., Pekmezović, M., Veljović, Đ., O’connor, K., Malagurski, I.,& Nikodinović-Runić, J.. (2022). Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model. in Pharmaceutics
MDPI., 14(4), 696.
https://doi.org/10.3390/pharmaceutics14040696
Pavić A, Stojanović Z, Pekmezović M, Veljović Đ, O’connor K, Malagurski I, Nikodinović-Runić J. Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model. in Pharmaceutics. 2022;14(4):696.
doi:10.3390/pharmaceutics14040696 .
Pavić, Aleksandar, Stojanović, Zoran, Pekmezović, Marina, Veljović, Đorđe, O’connor, Kevin, Malagurski, Ivana, Nikodinović-Runić, Jasmina, "Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model" in Pharmaceutics, 14, no. 4 (2022):696,
https://doi.org/10.3390/pharmaceutics14040696 . .
7
4

Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior

Gojgić, Jelena; Petrović, Miloš; Jugović, Branimir; Jokić, Bojan; Grgur, Branimir; Gvozdenović, Milica

(MDPI, 2022)

TY  - JOUR
AU  - Gojgić, Jelena
AU  - Petrović, Miloš
AU  - Jugović, Branimir
AU  - Jokić, Bojan
AU  - Grgur, Branimir
AU  - Gvozdenović, Milica
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5297
AB  - Polyaniline (PANI), due to its highly reversible electrochemistry with superior energy storage and delivery characteristics, is considered as an electrode material in batteries, capacitors, and hybrid systems. We used a facile electrochemical synthesis for the formation of the PANI electrode using galvanostatic polymerization of aniline on the graphite electrode at the current density of 2.0 mA cm−2 from the aqueous electrolyte containing 0.25 mol dm−3 aniline and 1.0 mol dm−3 H2SO4. Electrochemical and electrical characterization suggested excellent energy storage features of the PANI electrode in a three-electrode system with specific energy up to 53 Wh kg−1 and specific power up to 7600 W kg−1. After 2000 successive charge/discharge cycles at 9.5 Ag−1, the PANI electrode retained 95% of the initial capacity, with practically unaltered Coulombic efficiency of nearly 98%, providing a good base for future studies and practical applications.
PB  - MDPI
T2  - Polymers
T1  - Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior
IS  - 24
SP  - 5365
VL  - 14
DO  - 10.3390/polym14245365
ER  - 
@article{
author = "Gojgić, Jelena and Petrović, Miloš and Jugović, Branimir and Jokić, Bojan and Grgur, Branimir and Gvozdenović, Milica",
year = "2022",
abstract = "Polyaniline (PANI), due to its highly reversible electrochemistry with superior energy storage and delivery characteristics, is considered as an electrode material in batteries, capacitors, and hybrid systems. We used a facile electrochemical synthesis for the formation of the PANI electrode using galvanostatic polymerization of aniline on the graphite electrode at the current density of 2.0 mA cm−2 from the aqueous electrolyte containing 0.25 mol dm−3 aniline and 1.0 mol dm−3 H2SO4. Electrochemical and electrical characterization suggested excellent energy storage features of the PANI electrode in a three-electrode system with specific energy up to 53 Wh kg−1 and specific power up to 7600 W kg−1. After 2000 successive charge/discharge cycles at 9.5 Ag−1, the PANI electrode retained 95% of the initial capacity, with practically unaltered Coulombic efficiency of nearly 98%, providing a good base for future studies and practical applications.",
publisher = "MDPI",
journal = "Polymers",
title = "Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior",
number = "24",
pages = "5365",
volume = "14",
doi = "10.3390/polym14245365"
}
Gojgić, J., Petrović, M., Jugović, B., Jokić, B., Grgur, B.,& Gvozdenović, M.. (2022). Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior. in Polymers
MDPI., 14(24), 5365.
https://doi.org/10.3390/polym14245365
Gojgić J, Petrović M, Jugović B, Jokić B, Grgur B, Gvozdenović M. Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior. in Polymers. 2022;14(24):5365.
doi:10.3390/polym14245365 .
Gojgić, Jelena, Petrović, Miloš, Jugović, Branimir, Jokić, Bojan, Grgur, Branimir, Gvozdenović, Milica, "Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior" in Polymers, 14, no. 24 (2022):5365,
https://doi.org/10.3390/polym14245365 . .
1

Poboljšanje apsorpcionih svojstava TiO2 nanocevi pomoću CH3NH3PbBr3 perovskita kao fotosenzitivizatora

Stefanović, Milica P.; Vujančević, Jelena D.; Petrović, Rada P.; Stevanović, Marija S.; Janaćković, Đorđe T.

(Savez inženjera i tehničara Srbije, 2022)

TY  - JOUR
AU  - Stefanović, Milica P.
AU  - Vujančević, Jelena D.
AU  - Petrović, Rada P.
AU  - Stevanović, Marija S.
AU  - Janaćković, Đorđe T.
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5274
AB  - Organsko-neorganski perovskiti su privukli veliku pažnju istraživača zbog visoke apsorpcije u vidljivom
delu spektra i jeftine proizvodnje. Apsorbovanjem svetlosti dolazi do stvaranja para elektron-šupljina.
U cilju razdvajanja nosilaca naelektrisanja, perovskit se kombinuje sa TiO2 što ima za posledicu
spontani prelazak elektrona sa perovskita na TiO2. Ovo istraživanje je imalo za cilj povećanje dodirne
površine između nanocevi TiO2 i perovskita punjenjem nanocevi perovskitnim materijalom. Rastvor
metilamonijum olovo(II)-bromidnog perovskita (CH3NH3PbBr3) u dimetilformamidu (DMF) je
deponovan na anodizacijom sintetisane TiO2 nanocevi pomoću sistema visokog vakuuma i inertnog
gasa. Postupak je uključivao degazaciju uzorka u visokom vakuumu u trajanju od 3 h na 200 °C, hlađenje
uzorka, a zatim nanošenje rastvora CH3NH3PbBr3 u DMF-u, uz naknadni tretman inertnim gasom (N2)
u cilju ostvarenja natpritiska, što je omogućilo punjenje nanocevi perovskitnim materijalom. Difuznorefleksiona spektroskopija pokazala je da taloženje CH3NH3PbBr3 poboljšava apsorpciona svojstva
TiO2 nanocevi. I-V karakteristike uzorka pokazale su fotodiodno ponašanje i histerezisnu krivu, koja je
karakteristična za perovskitni materijal. Vrednost struje uzorka snimljenim pod vidljivom svetlošću
iznosila je 46 μA bez primene prednapona, dok je nakon primene prednapona iznosila 76 μA. Rezultati
rada ukazuju da je napravljena perovskitna fotodioda sa povećanim kontaktom između TiO2 i perovskita,
koja predstavlja osnovu za buduću konstrukciju solarnih ćelija.
AB  - Organic-inorganic perovskites have attracted much attention from researchers due to their high absorption in the visible part of the spectrum and low-cost fabrication. After absorption of the light, electron-hole pairs are formed. To separate electron-hole pairs and reduce recombination, perovskite is combined with TiO2 which has as a consequence, a spontaneous transition of electrons from perovskite to TiO2. This research aims to increase the contact surface of perovskite and TiO2 nanotubes by filling the nanotubes with perovskite material. The solution of methylammonium lead bromide perovskite (CH3NH3PbBr3) in dimethylformamide (DMF) was deposited on anodically synthesized TiO2 nanotubes by the high vacuum system and inert gas. The procedure involved degassation of the sample under high vacuum for 3 h at 200 °C, cooling of the sample, and putting the solution of CH3NH3PbBr3 in DMF, after which it was treated with inert gas (N2), as an overpressure which enabled the filling of the nanotubes with perovskite material. The diffuse reflectance spectroscopy measurement of the sample proved that deposition of CH3NH3PbBr3 improves the absorption properties of TiO2 nanotubes. The I-V characteristics of the sample showed photodiode behavior and characteristic hysteresis curve for perovskite material. The value of current under visible light for the sample without preconditioning was 46 mA, while after preconditioning value of current was 76 mA. The results indicate that a perovskite photodiode with increased contact between TiO2 and perovskite was made, which is the basis for future solar cell construction.
PB  - Savez inženjera i tehničara Srbije
T2  - Tehnika
T1  - Poboljšanje apsorpcionih svojstava TiO2 nanocevi pomoću CH3NH3PbBr3 perovskita kao fotosenzitivizatora
T1  - Improvement of absorption properties of TiO2 nanotubes by using CH3NH3PbBr3 perovskite as photosensitizer
EP  - 21
IS  - 1
SP  - 15
VL  - 31
DO  - 10.5937/tehnika2201015S
ER  - 
@article{
author = "Stefanović, Milica P. and Vujančević, Jelena D. and Petrović, Rada P. and Stevanović, Marija S. and Janaćković, Đorđe T.",
year = "2022",
abstract = "Organsko-neorganski perovskiti su privukli veliku pažnju istraživača zbog visoke apsorpcije u vidljivom
delu spektra i jeftine proizvodnje. Apsorbovanjem svetlosti dolazi do stvaranja para elektron-šupljina.
U cilju razdvajanja nosilaca naelektrisanja, perovskit se kombinuje sa TiO2 što ima za posledicu
spontani prelazak elektrona sa perovskita na TiO2. Ovo istraživanje je imalo za cilj povećanje dodirne
površine između nanocevi TiO2 i perovskita punjenjem nanocevi perovskitnim materijalom. Rastvor
metilamonijum olovo(II)-bromidnog perovskita (CH3NH3PbBr3) u dimetilformamidu (DMF) je
deponovan na anodizacijom sintetisane TiO2 nanocevi pomoću sistema visokog vakuuma i inertnog
gasa. Postupak je uključivao degazaciju uzorka u visokom vakuumu u trajanju od 3 h na 200 °C, hlađenje
uzorka, a zatim nanošenje rastvora CH3NH3PbBr3 u DMF-u, uz naknadni tretman inertnim gasom (N2)
u cilju ostvarenja natpritiska, što je omogućilo punjenje nanocevi perovskitnim materijalom. Difuznorefleksiona spektroskopija pokazala je da taloženje CH3NH3PbBr3 poboljšava apsorpciona svojstva
TiO2 nanocevi. I-V karakteristike uzorka pokazale su fotodiodno ponašanje i histerezisnu krivu, koja je
karakteristična za perovskitni materijal. Vrednost struje uzorka snimljenim pod vidljivom svetlošću
iznosila je 46 μA bez primene prednapona, dok je nakon primene prednapona iznosila 76 μA. Rezultati
rada ukazuju da je napravljena perovskitna fotodioda sa povećanim kontaktom između TiO2 i perovskita,
koja predstavlja osnovu za buduću konstrukciju solarnih ćelija., Organic-inorganic perovskites have attracted much attention from researchers due to their high absorption in the visible part of the spectrum and low-cost fabrication. After absorption of the light, electron-hole pairs are formed. To separate electron-hole pairs and reduce recombination, perovskite is combined with TiO2 which has as a consequence, a spontaneous transition of electrons from perovskite to TiO2. This research aims to increase the contact surface of perovskite and TiO2 nanotubes by filling the nanotubes with perovskite material. The solution of methylammonium lead bromide perovskite (CH3NH3PbBr3) in dimethylformamide (DMF) was deposited on anodically synthesized TiO2 nanotubes by the high vacuum system and inert gas. The procedure involved degassation of the sample under high vacuum for 3 h at 200 °C, cooling of the sample, and putting the solution of CH3NH3PbBr3 in DMF, after which it was treated with inert gas (N2), as an overpressure which enabled the filling of the nanotubes with perovskite material. The diffuse reflectance spectroscopy measurement of the sample proved that deposition of CH3NH3PbBr3 improves the absorption properties of TiO2 nanotubes. The I-V characteristics of the sample showed photodiode behavior and characteristic hysteresis curve for perovskite material. The value of current under visible light for the sample without preconditioning was 46 mA, while after preconditioning value of current was 76 mA. The results indicate that a perovskite photodiode with increased contact between TiO2 and perovskite was made, which is the basis for future solar cell construction.",
publisher = "Savez inženjera i tehničara Srbije",
journal = "Tehnika",
title = "Poboljšanje apsorpcionih svojstava TiO2 nanocevi pomoću CH3NH3PbBr3 perovskita kao fotosenzitivizatora, Improvement of absorption properties of TiO2 nanotubes by using CH3NH3PbBr3 perovskite as photosensitizer",
pages = "21-15",
number = "1",
volume = "31",
doi = "10.5937/tehnika2201015S"
}
Stefanović, M. P., Vujančević, J. D., Petrović, R. P., Stevanović, M. S.,& Janaćković, Đ. T.. (2022). Poboljšanje apsorpcionih svojstava TiO2 nanocevi pomoću CH3NH3PbBr3 perovskita kao fotosenzitivizatora. in Tehnika
Savez inženjera i tehničara Srbije., 31(1), 15-21.
https://doi.org/10.5937/tehnika2201015S
Stefanović MP, Vujančević JD, Petrović RP, Stevanović MS, Janaćković ĐT. Poboljšanje apsorpcionih svojstava TiO2 nanocevi pomoću CH3NH3PbBr3 perovskita kao fotosenzitivizatora. in Tehnika. 2022;31(1):15-21.
doi:10.5937/tehnika2201015S .
Stefanović, Milica P., Vujančević, Jelena D., Petrović, Rada P., Stevanović, Marija S., Janaćković, Đorđe T., "Poboljšanje apsorpcionih svojstava TiO2 nanocevi pomoću CH3NH3PbBr3 perovskita kao fotosenzitivizatora" in Tehnika, 31, no. 1 (2022):15-21,
https://doi.org/10.5937/tehnika2201015S . .

TiO2 nanotubes film/FTO glass interface: Thermal treatment effects

Vujančević, Jelena; Bjelajac, Anđelika; Veltruska, Katerina; Matolin, Vladimir; Siketić, Zdravko; Provatas, Georgios; Jakšić, Milko; Stan, George; Socol, Gabriel; Mihailescu, Ion; Pavlović, Vladimir B.; Janaćković, Đorđe

(ETRAN, 2022)

TY  - JOUR
AU  - Vujančević, Jelena
AU  - Bjelajac, Anđelika
AU  - Veltruska, Katerina
AU  - Matolin, Vladimir
AU  - Siketić, Zdravko
AU  - Provatas, Georgios
AU  - Jakšić, Milko
AU  - Stan, George
AU  - Socol, Gabriel
AU  - Mihailescu, Ion
AU  - Pavlović, Vladimir B.
AU  - Janaćković, Đorđe
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5173
AB  - Pure Ti films deposited by radio-frequency magnetron sputtering on FTO glass were anodized to fabricate TiO2 nanotubes (NTs) arrays. The TiO2 NTs/FTO samples were sintered at 450, 550 and 630°C, in ambient air. The thermal treatment did not influence the crystal phase composition, preserving in all cases the anatase single phase. As expected, the crystalline anatase quality improved with the annealing temperature. Nevertheless, slight differences in nanotubular morphology, such as the appearance of grains inside the walls, were observed in the case of the sample sintered at 630°C. Chemical analysis by X-ray Photoelectron Spectroscopy of annealed samples revealed the presence of Sn inside TiO2 NTs, due to diffusion of Sn from the substrate to TiO2. For the substrate was used FTO glass whose top layer consists of SnO2 doped with F. Rutherford Backscattering Spectrometry and Time-of-Flight Elastic Recoil Detection Analysis were carried out to study the elemental depth profile of the films. It was found that the temperature of sintering controls the Sn diffusion inside TiO2 film. Sn atoms diffuse towards the TiO2 NTs surface for the samples annealed at 450 and 550°C. The diffusion is however hindered in the case of the heat treatment at 630°C. Besides, the Ti diffusion into the SnO2 underlayer was observed, together with the formation of TiO2/SnO2 interfaces. One then expected but not a great difference in absorption between samples, since all contained anatase phase, as confirmed by Diffuse Reflectance Spectroscopy. A higher amount of Sn was however detected for the sample annealed at 550°C, which accounts for a slight red absorption shift. The importance of controlling the annealing parameters of the anodized TiO2/FTO structures was highlighted through the formation of TiO2-SnO2 interfaces and the Sn insertion from FTO, which can play an essential role in increasing the photoperformances of TiO2 NTs/FTO based structures of photovoltaic cells.
PB  - ETRAN
T2  - Science of Sintering
T1  - TiO2 nanotubes film/FTO glass interface: Thermal treatment effects
EP  - 248
IS  - 2
SP  - 235
VL  - 54
DO  - 10.2298/SOS2202235V
UR  - https://hdl.handle.net/21.15107/rcub_dais_13160
ER  - 
@article{
author = "Vujančević, Jelena and Bjelajac, Anđelika and Veltruska, Katerina and Matolin, Vladimir and Siketić, Zdravko and Provatas, Georgios and Jakšić, Milko and Stan, George and Socol, Gabriel and Mihailescu, Ion and Pavlović, Vladimir B. and Janaćković, Đorđe",
year = "2022",
abstract = "Pure Ti films deposited by radio-frequency magnetron sputtering on FTO glass were anodized to fabricate TiO2 nanotubes (NTs) arrays. The TiO2 NTs/FTO samples were sintered at 450, 550 and 630°C, in ambient air. The thermal treatment did not influence the crystal phase composition, preserving in all cases the anatase single phase. As expected, the crystalline anatase quality improved with the annealing temperature. Nevertheless, slight differences in nanotubular morphology, such as the appearance of grains inside the walls, were observed in the case of the sample sintered at 630°C. Chemical analysis by X-ray Photoelectron Spectroscopy of annealed samples revealed the presence of Sn inside TiO2 NTs, due to diffusion of Sn from the substrate to TiO2. For the substrate was used FTO glass whose top layer consists of SnO2 doped with F. Rutherford Backscattering Spectrometry and Time-of-Flight Elastic Recoil Detection Analysis were carried out to study the elemental depth profile of the films. It was found that the temperature of sintering controls the Sn diffusion inside TiO2 film. Sn atoms diffuse towards the TiO2 NTs surface for the samples annealed at 450 and 550°C. The diffusion is however hindered in the case of the heat treatment at 630°C. Besides, the Ti diffusion into the SnO2 underlayer was observed, together with the formation of TiO2/SnO2 interfaces. One then expected but not a great difference in absorption between samples, since all contained anatase phase, as confirmed by Diffuse Reflectance Spectroscopy. A higher amount of Sn was however detected for the sample annealed at 550°C, which accounts for a slight red absorption shift. The importance of controlling the annealing parameters of the anodized TiO2/FTO structures was highlighted through the formation of TiO2-SnO2 interfaces and the Sn insertion from FTO, which can play an essential role in increasing the photoperformances of TiO2 NTs/FTO based structures of photovoltaic cells.",
publisher = "ETRAN",
journal = "Science of Sintering",
title = "TiO2 nanotubes film/FTO glass interface: Thermal treatment effects",
pages = "248-235",
number = "2",
volume = "54",
doi = "10.2298/SOS2202235V",
url = "https://hdl.handle.net/21.15107/rcub_dais_13160"
}
Vujančević, J., Bjelajac, A., Veltruska, K., Matolin, V., Siketić, Z., Provatas, G., Jakšić, M., Stan, G., Socol, G., Mihailescu, I., Pavlović, V. B.,& Janaćković, Đ.. (2022). TiO2 nanotubes film/FTO glass interface: Thermal treatment effects. in Science of Sintering
ETRAN., 54(2), 235-248.
https://doi.org/10.2298/SOS2202235V
https://hdl.handle.net/21.15107/rcub_dais_13160
Vujančević J, Bjelajac A, Veltruska K, Matolin V, Siketić Z, Provatas G, Jakšić M, Stan G, Socol G, Mihailescu I, Pavlović VB, Janaćković Đ. TiO2 nanotubes film/FTO glass interface: Thermal treatment effects. in Science of Sintering. 2022;54(2):235-248.
doi:10.2298/SOS2202235V
https://hdl.handle.net/21.15107/rcub_dais_13160 .
Vujančević, Jelena, Bjelajac, Anđelika, Veltruska, Katerina, Matolin, Vladimir, Siketić, Zdravko, Provatas, Georgios, Jakšić, Milko, Stan, George, Socol, Gabriel, Mihailescu, Ion, Pavlović, Vladimir B., Janaćković, Đorđe, "TiO2 nanotubes film/FTO glass interface: Thermal treatment effects" in Science of Sintering, 54, no. 2 (2022):235-248,
https://doi.org/10.2298/SOS2202235V .,
https://hdl.handle.net/21.15107/rcub_dais_13160 .

Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application

Rizzotto, Francesco; Vasiljević, Zorka Ž.; Stanojević, Gordana; Dojčinović, Milena P.; Janković-Častvan, Ivona; Vujančević, Jelena D.; Tadić, Nenad B.; Branković, Goran O.; Magniez, Aurélie; Vidić, Jasmina; Nikolić, Maria Vesna

(Elsevier Ltd, 2022)

TY  - JOUR
AU  - Rizzotto, Francesco
AU  - Vasiljević, Zorka Ž.
AU  - Stanojević, Gordana
AU  - Dojčinović, Milena P.
AU  - Janković-Častvan, Ivona
AU  - Vujančević, Jelena D.
AU  - Tadić, Nenad B.
AU  - Branković, Goran O.
AU  - Magniez, Aurélie
AU  - Vidić, Jasmina
AU  - Nikolić, Maria Vesna
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5147
AB  - An emerging technology of active packaging enables prolongation of food shelf life by limiting the oxygen transfer and the reactivity of free radicals, which both destruct food freshness. In this work, Fe2TiO5 nanoparticles were synthesized using a modified sol–gel method and evaluated as an enforcement of alginate food packaging film. Pure phase Fe2TiO5 nanoparticles had an average particle size of 44 nm and rhombohedral morphology. Fe2TiO5 nanoparticles induce no cell damage of human Caco-2 epithelial cells and show no inhibitory effect towards growth of a panel of bacterial strains, suggesting good biocompatibility. Films obtained by incorporation of Fe2TiO5 nanoparticles into alginate using the solvent casting method show no migration of iron or titanium ions from films to food simulants again suggesting their safety as a packaging material. Fe2TiO5 nanoparticles also showed strong antioxidant efficiency as determined using the DPPḢ assay, and confirmed further in a preservation test on fresh fruit.
PB  - Elsevier Ltd
T2  - Food Chemistry
T1  - Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application
SP  - 133198
VL  - 390
DO  - 10.1016/j.foodchem.2022.133198
ER  - 
@article{
author = "Rizzotto, Francesco and Vasiljević, Zorka Ž. and Stanojević, Gordana and Dojčinović, Milena P. and Janković-Častvan, Ivona and Vujančević, Jelena D. and Tadić, Nenad B. and Branković, Goran O. and Magniez, Aurélie and Vidić, Jasmina and Nikolić, Maria Vesna",
year = "2022",
abstract = "An emerging technology of active packaging enables prolongation of food shelf life by limiting the oxygen transfer and the reactivity of free radicals, which both destruct food freshness. In this work, Fe2TiO5 nanoparticles were synthesized using a modified sol–gel method and evaluated as an enforcement of alginate food packaging film. Pure phase Fe2TiO5 nanoparticles had an average particle size of 44 nm and rhombohedral morphology. Fe2TiO5 nanoparticles induce no cell damage of human Caco-2 epithelial cells and show no inhibitory effect towards growth of a panel of bacterial strains, suggesting good biocompatibility. Films obtained by incorporation of Fe2TiO5 nanoparticles into alginate using the solvent casting method show no migration of iron or titanium ions from films to food simulants again suggesting their safety as a packaging material. Fe2TiO5 nanoparticles also showed strong antioxidant efficiency as determined using the DPPḢ assay, and confirmed further in a preservation test on fresh fruit.",
publisher = "Elsevier Ltd",
journal = "Food Chemistry",
title = "Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application",
pages = "133198",
volume = "390",
doi = "10.1016/j.foodchem.2022.133198"
}
Rizzotto, F., Vasiljević, Z. Ž., Stanojević, G., Dojčinović, M. P., Janković-Častvan, I., Vujančević, J. D., Tadić, N. B., Branković, G. O., Magniez, A., Vidić, J.,& Nikolić, M. V.. (2022). Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application. in Food Chemistry
Elsevier Ltd., 390, 133198.
https://doi.org/10.1016/j.foodchem.2022.133198
Rizzotto F, Vasiljević ZŽ, Stanojević G, Dojčinović MP, Janković-Častvan I, Vujančević JD, Tadić NB, Branković GO, Magniez A, Vidić J, Nikolić MV. Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application. in Food Chemistry. 2022;390:133198.
doi:10.1016/j.foodchem.2022.133198 .
Rizzotto, Francesco, Vasiljević, Zorka Ž., Stanojević, Gordana, Dojčinović, Milena P., Janković-Častvan, Ivona, Vujančević, Jelena D., Tadić, Nenad B., Branković, Goran O., Magniez, Aurélie, Vidić, Jasmina, Nikolić, Maria Vesna, "Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application" in Food Chemistry, 390 (2022):133198,
https://doi.org/10.1016/j.foodchem.2022.133198 . .
10
9

Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation

Jonović, Marko; Jugović, Branimir; Žuža, Milena; Ðorđević, Verica; Milašinović, Nikola; Bugarski, Branko; Knežević-Jugović, Zorica

(MDPI, 2022)

TY  - JOUR
AU  - Jonović, Marko
AU  - Jugović, Branimir
AU  - Žuža, Milena
AU  - Ðorđević, Verica
AU  - Milašinović, Nikola
AU  - Bugarski, Branko
AU  - Knežević-Jugović, Zorica
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5165
AB  - The aim of this study was to investigate covalent immobilization of horseradish peroxidase (HRP) on magnetic nanoparticles (Mag) encapsulated in calcium alginate beads (MABs) for color degradation, combining easy and fast removal of biocatalyst from the reaction mixture due to its magnetic properties and strong binding due to surface alginate functional groups. MABs obtained by extrusion techniques were analyzed by optical microscopy, FEG-SEM and characterized regarding mechanical properties, magnetization and HRP binding. HRP with initial concentration of 10 mg/gcarrier was successfully covalently bonded on MABs (diameter ~1 mm, magnetite/alginate ratio 1:4), with protein loading of 8.9 mg/gcarrier, immobilization yield 96.9% and activity 32.8 U/g. Immobilized HRP on MABs (HRP-MABs) was then used to catalyze degradation of two anthraquinonic dyes, Acid Blue 225 (AB225) and Acid Violet 109 (AV109), as models for wastewater pollutants. HRP-MABs decolorized 77.3% and 76.1% of AV109 and AB225, respectively after 15 min under optimal conditions (0.097 mM H2O2, 200 mg of HRP-MABs (8.9 mg/gcarrier), 0.08 and 0.1 g/mg beads/dye ratio for AV109 and AB225, respectively). Biocatalyst was used for 7 repeated cycles retaining 75% and 51% of initial activity for AB225 and AV109, respectively, showing potential for use in large scale applications for colored wastewater treatment.
PB  - MDPI
T2  - Polymers
T1  - Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation
IS  - 13
SP  - 2614
VL  - 14
DO  - 10.3390/polym14132614
ER  - 
@article{
author = "Jonović, Marko and Jugović, Branimir and Žuža, Milena and Ðorđević, Verica and Milašinović, Nikola and Bugarski, Branko and Knežević-Jugović, Zorica",
year = "2022",
abstract = "The aim of this study was to investigate covalent immobilization of horseradish peroxidase (HRP) on magnetic nanoparticles (Mag) encapsulated in calcium alginate beads (MABs) for color degradation, combining easy and fast removal of biocatalyst from the reaction mixture due to its magnetic properties and strong binding due to surface alginate functional groups. MABs obtained by extrusion techniques were analyzed by optical microscopy, FEG-SEM and characterized regarding mechanical properties, magnetization and HRP binding. HRP with initial concentration of 10 mg/gcarrier was successfully covalently bonded on MABs (diameter ~1 mm, magnetite/alginate ratio 1:4), with protein loading of 8.9 mg/gcarrier, immobilization yield 96.9% and activity 32.8 U/g. Immobilized HRP on MABs (HRP-MABs) was then used to catalyze degradation of two anthraquinonic dyes, Acid Blue 225 (AB225) and Acid Violet 109 (AV109), as models for wastewater pollutants. HRP-MABs decolorized 77.3% and 76.1% of AV109 and AB225, respectively after 15 min under optimal conditions (0.097 mM H2O2, 200 mg of HRP-MABs (8.9 mg/gcarrier), 0.08 and 0.1 g/mg beads/dye ratio for AV109 and AB225, respectively). Biocatalyst was used for 7 repeated cycles retaining 75% and 51% of initial activity for AB225 and AV109, respectively, showing potential for use in large scale applications for colored wastewater treatment.",
publisher = "MDPI",
journal = "Polymers",
title = "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation",
number = "13",
pages = "2614",
volume = "14",
doi = "10.3390/polym14132614"
}
Jonović, M., Jugović, B., Žuža, M., Ðorđević, V., Milašinović, N., Bugarski, B.,& Knežević-Jugović, Z.. (2022). Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation. in Polymers
MDPI., 14(13), 2614.
https://doi.org/10.3390/polym14132614
Jonović M, Jugović B, Žuža M, Ðorđević V, Milašinović N, Bugarski B, Knežević-Jugović Z. Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation. in Polymers. 2022;14(13):2614.
doi:10.3390/polym14132614 .
Jonović, Marko, Jugović, Branimir, Žuža, Milena, Ðorđević, Verica, Milašinović, Nikola, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation" in Polymers, 14, no. 13 (2022):2614,
https://doi.org/10.3390/polym14132614 . .
8
6

Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins

Jonovic, Marko; Zuza, Milena; Đorđević, Verica; Šekuljica, Nataša; Milivojević, Milan; Jugovic, Branimir; Bugarski, Branko; Knežević-Jugović, Zorica

(2021)

TY  - JOUR
AU  - Jonovic, Marko
AU  - Zuza, Milena
AU  - Đorđević, Verica
AU  - Šekuljica, Nataša
AU  - Milivojević, Milan
AU  - Jugovic, Branimir
AU  - Bugarski, Branko
AU  - Knežević-Jugović, Zorica
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4879
AB  - Enzymatic hydrolysis of food proteins is convenient method to improve their functional properties and physiological activity. Herein, the successful covalent attachment of alcalase on alginate micron and submicron beads using the carbodiimide based chemistry reaction and the subsequent application of the beads for egg white and soy proteins hydrolysis were studied. In addition to the electrostatic extrusion technique (EE) previously used by others, the potential utilization of a novel ultrasonic spray atomization technique without drying (UA) and with drying (UAD) for alginate submicron beads production has been attempted. The immobilization parameters were optimized on microbeads obtained by EE technique (803 +/- 23 mu m) with respect to enzyme loading and alcalase activity. UA and UAD techniques resulted in much smaller particles (607 +/- 103 nm and 394 +/- 51 nm in diameter, respectively), enabling even higher enzyme loading of 671.6 +/- 4 mg g(-1) on the carrier and the highest immobilized alcalase activity of 2716.1 IU g(-1) in the standard reaction. The UAD biocatalyst exhibited also better performances in the real food system based on egg white or soy proteins. It has been shown that the immobilized alcalase can be reused in seven successive soy protein hydrolysis cycles with a little decrease in the activity.
T2  - Catalysts
T1  - Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins
IS  - 3
VL  - 11
DO  - 10.3390/catal11030305
ER  - 
@article{
author = "Jonovic, Marko and Zuza, Milena and Đorđević, Verica and Šekuljica, Nataša and Milivojević, Milan and Jugovic, Branimir and Bugarski, Branko and Knežević-Jugović, Zorica",
year = "2021",
abstract = "Enzymatic hydrolysis of food proteins is convenient method to improve their functional properties and physiological activity. Herein, the successful covalent attachment of alcalase on alginate micron and submicron beads using the carbodiimide based chemistry reaction and the subsequent application of the beads for egg white and soy proteins hydrolysis were studied. In addition to the electrostatic extrusion technique (EE) previously used by others, the potential utilization of a novel ultrasonic spray atomization technique without drying (UA) and with drying (UAD) for alginate submicron beads production has been attempted. The immobilization parameters were optimized on microbeads obtained by EE technique (803 +/- 23 mu m) with respect to enzyme loading and alcalase activity. UA and UAD techniques resulted in much smaller particles (607 +/- 103 nm and 394 +/- 51 nm in diameter, respectively), enabling even higher enzyme loading of 671.6 +/- 4 mg g(-1) on the carrier and the highest immobilized alcalase activity of 2716.1 IU g(-1) in the standard reaction. The UAD biocatalyst exhibited also better performances in the real food system based on egg white or soy proteins. It has been shown that the immobilized alcalase can be reused in seven successive soy protein hydrolysis cycles with a little decrease in the activity.",
journal = "Catalysts",
title = "Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins",
number = "3",
volume = "11",
doi = "10.3390/catal11030305"
}
Jonovic, M., Zuza, M., Đorđević, V., Šekuljica, N., Milivojević, M., Jugovic, B., Bugarski, B.,& Knežević-Jugović, Z.. (2021). Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins. in Catalysts, 11(3).
https://doi.org/10.3390/catal11030305
Jonovic M, Zuza M, Đorđević V, Šekuljica N, Milivojević M, Jugovic B, Bugarski B, Knežević-Jugović Z. Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins. in Catalysts. 2021;11(3).
doi:10.3390/catal11030305 .
Jonovic, Marko, Zuza, Milena, Đorđević, Verica, Šekuljica, Nataša, Milivojević, Milan, Jugovic, Branimir, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins" in Catalysts, 11, no. 3 (2021),
https://doi.org/10.3390/catal11030305 . .
5
6

2D and 3D silver-based coordination polymers with thiomorpholine-4-carbonitrile and piperazine-1,4-dicarbonitrile: structure, intermolecular interactions, photocatalysis, and thermal behavior

Ristić, Predrag; Filipović, Nenad; Blagojević, Vladimir; Ćirković, Jovana; Barta Hollo, Berta; Đokić, Veljko; Donnard, Morgan; Gulea, Mihaela; Marjanović, Ivana; Klisurić, Olivera R.; Todorović, Tamara R.

(2021)

TY  - JOUR
AU  - Ristić, Predrag
AU  - Filipović, Nenad
AU  - Blagojević, Vladimir
AU  - Ćirković, Jovana
AU  - Barta Hollo, Berta
AU  - Đokić, Veljko
AU  - Donnard, Morgan
AU  - Gulea, Mihaela
AU  - Marjanović, Ivana
AU  - Klisurić, Olivera R.
AU  - Todorović, Tamara R.
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4924
AB  - Four silver-based coordination polymers, {[Ag(L1)(2)]NO3}(infinity) (1), {[Ag(L1)(2)]ClO4}(infinity) (2), {[Ag(L2)(2)]NO3 center dot H2O}(infinity) (3) and {[Ag(L2)(2)]ClO4}(infinity) (4), were synthesized using the thiomorpholine-4-carbonitrile (L1) and piperazine-1,4-dicarbonitrile (L2) ligands. Compounds 1 and 2 are two-dimensional, while 3 and 4 are three-dimensional. L1 and L2 are 1,4-bis-monodentate ligands in all compounds, while Ag(i) ions are four-coordinated in a slightly distorted tetrahedral geometry. Topological analysis in standard representations suggests that underlying nets in 1 and 2 have an sql topology, while 3 and 4 exhibit a dia topology. Thermal analysis shows that 3 loses crystalline water at room temperature, while other compounds show good thermal stability. All compounds show good photocatalytic activity for photocatalytic degradation of the mordant blue 9 dye, with reaction rates in the range 0.029 to 0.061 min(-1). The best result was obtained for compound 4, which can be correlated to its largest lattice volume.
T2  - CrystEngComm
T1  - 2D and 3D silver-based coordination polymers with thiomorpholine-4-carbonitrile and piperazine-1,4-dicarbonitrile: structure, intermolecular interactions, photocatalysis, and thermal behavior
EP  - 4815
IS  - 27
SP  - 4799
VL  - 23
DO  - 10.1039/d1ce00394a
ER  - 
@article{
author = "Ristić, Predrag and Filipović, Nenad and Blagojević, Vladimir and Ćirković, Jovana and Barta Hollo, Berta and Đokić, Veljko and Donnard, Morgan and Gulea, Mihaela and Marjanović, Ivana and Klisurić, Olivera R. and Todorović, Tamara R.",
year = "2021",
abstract = "Four silver-based coordination polymers, {[Ag(L1)(2)]NO3}(infinity) (1), {[Ag(L1)(2)]ClO4}(infinity) (2), {[Ag(L2)(2)]NO3 center dot H2O}(infinity) (3) and {[Ag(L2)(2)]ClO4}(infinity) (4), were synthesized using the thiomorpholine-4-carbonitrile (L1) and piperazine-1,4-dicarbonitrile (L2) ligands. Compounds 1 and 2 are two-dimensional, while 3 and 4 are three-dimensional. L1 and L2 are 1,4-bis-monodentate ligands in all compounds, while Ag(i) ions are four-coordinated in a slightly distorted tetrahedral geometry. Topological analysis in standard representations suggests that underlying nets in 1 and 2 have an sql topology, while 3 and 4 exhibit a dia topology. Thermal analysis shows that 3 loses crystalline water at room temperature, while other compounds show good thermal stability. All compounds show good photocatalytic activity for photocatalytic degradation of the mordant blue 9 dye, with reaction rates in the range 0.029 to 0.061 min(-1). The best result was obtained for compound 4, which can be correlated to its largest lattice volume.",
journal = "CrystEngComm",
title = "2D and 3D silver-based coordination polymers with thiomorpholine-4-carbonitrile and piperazine-1,4-dicarbonitrile: structure, intermolecular interactions, photocatalysis, and thermal behavior",
pages = "4815-4799",
number = "27",
volume = "23",
doi = "10.1039/d1ce00394a"
}
Ristić, P., Filipović, N., Blagojević, V., Ćirković, J., Barta Hollo, B., Đokić, V., Donnard, M., Gulea, M., Marjanović, I., Klisurić, O. R.,& Todorović, T. R.. (2021). 2D and 3D silver-based coordination polymers with thiomorpholine-4-carbonitrile and piperazine-1,4-dicarbonitrile: structure, intermolecular interactions, photocatalysis, and thermal behavior. in CrystEngComm, 23(27), 4799-4815.
https://doi.org/10.1039/d1ce00394a
Ristić P, Filipović N, Blagojević V, Ćirković J, Barta Hollo B, Đokić V, Donnard M, Gulea M, Marjanović I, Klisurić OR, Todorović TR. 2D and 3D silver-based coordination polymers with thiomorpholine-4-carbonitrile and piperazine-1,4-dicarbonitrile: structure, intermolecular interactions, photocatalysis, and thermal behavior. in CrystEngComm. 2021;23(27):4799-4815.
doi:10.1039/d1ce00394a .
Ristić, Predrag, Filipović, Nenad, Blagojević, Vladimir, Ćirković, Jovana, Barta Hollo, Berta, Đokić, Veljko, Donnard, Morgan, Gulea, Mihaela, Marjanović, Ivana, Klisurić, Olivera R., Todorović, Tamara R., "2D and 3D silver-based coordination polymers with thiomorpholine-4-carbonitrile and piperazine-1,4-dicarbonitrile: structure, intermolecular interactions, photocatalysis, and thermal behavior" in CrystEngComm, 23, no. 27 (2021):4799-4815,
https://doi.org/10.1039/d1ce00394a . .
3
8
7

Safe-by-design gelatin-modified zinc oxide nanoparticles

Janicijevic, Zeljko; Stankovic, Ana; Zegura, Bojana; Veljović, Đorđe; Djekic, Ljiljana; Krajisnik, Danina; Filipic, Metka; Stevanovic, Magdalena M.

(2021)

TY  - JOUR
AU  - Janicijevic, Zeljko
AU  - Stankovic, Ana
AU  - Zegura, Bojana
AU  - Veljović, Đorđe
AU  - Djekic, Ljiljana
AU  - Krajisnik, Danina
AU  - Filipic, Metka
AU  - Stevanovic, Magdalena M.
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4766
AB  - We report an innovative low-cost wet precipitation synthesis method for gelatin-modified zinc oxide nanoparticles (GM ZnO NPs) at the interface between the gelatin hydrogel and aqueous electrolyte. Diffusion of ammonia through the hydrogel matrices with different gelatin contents induced precipitation of the product in contact with the surface of the aqueous solution of zinc ions. The obtained precipitate was subjected to thermal treatment to partially decompose the adsorbed gelatin in the NP structure. Physicochemical properties of obtained GM ZnO NPs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), thermogravimetry (TG), photon correlation spectroscopy (PCS), zeta potential measurements, and inductively coupled plasma-mass spectrometry (ICP-MS). The estimated mean crystallite size of GM ZnO NP powders was in the range from 5.8 to 12.1 nm. The synthesized NPs exhibited nanosheet morphology and arranged into flake-like aggregates. The toxic potential was investigated in vitro in human hepatocellular carcinoma cell line HepG2. The thiazolyl blue tetrazolium bromide (MTS) assay was used to assess cell viability, 2 ',7 '-dichlor-fluorescein-diacetate (DCFH-DA) assay to examine the formation of intracellular reactive oxygen species (ROS), and comet assay to evaluate the genotoxic response. GM ZnO NPs slightly reduced HepG2 cell viability, did not induce ROS formation, and showed low genotoxic potential at very high doses (100 mu g mL(-1)). ZnO NPs fabricated and modified using the proposed methodology deserve further study as potential candidates for antibacterial agents or dietary supplements with low overall toxicity.
T2  - Journal of Nanoparticle Research
T1  - Safe-by-design gelatin-modified zinc oxide nanoparticles
IS  - 9
VL  - 23
DO  - 10.1007/s11051-021-05312-3
ER  - 
@article{
author = "Janicijevic, Zeljko and Stankovic, Ana and Zegura, Bojana and Veljović, Đorđe and Djekic, Ljiljana and Krajisnik, Danina and Filipic, Metka and Stevanovic, Magdalena M.",
year = "2021",
abstract = "We report an innovative low-cost wet precipitation synthesis method for gelatin-modified zinc oxide nanoparticles (GM ZnO NPs) at the interface between the gelatin hydrogel and aqueous electrolyte. Diffusion of ammonia through the hydrogel matrices with different gelatin contents induced precipitation of the product in contact with the surface of the aqueous solution of zinc ions. The obtained precipitate was subjected to thermal treatment to partially decompose the adsorbed gelatin in the NP structure. Physicochemical properties of obtained GM ZnO NPs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), thermogravimetry (TG), photon correlation spectroscopy (PCS), zeta potential measurements, and inductively coupled plasma-mass spectrometry (ICP-MS). The estimated mean crystallite size of GM ZnO NP powders was in the range from 5.8 to 12.1 nm. The synthesized NPs exhibited nanosheet morphology and arranged into flake-like aggregates. The toxic potential was investigated in vitro in human hepatocellular carcinoma cell line HepG2. The thiazolyl blue tetrazolium bromide (MTS) assay was used to assess cell viability, 2 ',7 '-dichlor-fluorescein-diacetate (DCFH-DA) assay to examine the formation of intracellular reactive oxygen species (ROS), and comet assay to evaluate the genotoxic response. GM ZnO NPs slightly reduced HepG2 cell viability, did not induce ROS formation, and showed low genotoxic potential at very high doses (100 mu g mL(-1)). ZnO NPs fabricated and modified using the proposed methodology deserve further study as potential candidates for antibacterial agents or dietary supplements with low overall toxicity.",
journal = "Journal of Nanoparticle Research",
title = "Safe-by-design gelatin-modified zinc oxide nanoparticles",
number = "9",
volume = "23",
doi = "10.1007/s11051-021-05312-3"
}
Janicijevic, Z., Stankovic, A., Zegura, B., Veljović, Đ., Djekic, L., Krajisnik, D., Filipic, M.,& Stevanovic, M. M.. (2021). Safe-by-design gelatin-modified zinc oxide nanoparticles. in Journal of Nanoparticle Research, 23(9).
https://doi.org/10.1007/s11051-021-05312-3
Janicijevic Z, Stankovic A, Zegura B, Veljović Đ, Djekic L, Krajisnik D, Filipic M, Stevanovic MM. Safe-by-design gelatin-modified zinc oxide nanoparticles. in Journal of Nanoparticle Research. 2021;23(9).
doi:10.1007/s11051-021-05312-3 .
Janicijevic, Zeljko, Stankovic, Ana, Zegura, Bojana, Veljović, Đorđe, Djekic, Ljiljana, Krajisnik, Danina, Filipic, Metka, Stevanovic, Magdalena M., "Safe-by-design gelatin-modified zinc oxide nanoparticles" in Journal of Nanoparticle Research, 23, no. 9 (2021),
https://doi.org/10.1007/s11051-021-05312-3 . .

Exploring the impact of calcination parameters on the crystal structure, morphology, and optical properties of electrospun Fe2TiO5 nanofibers

Vasiljević, Zorka Ž.; Dojčinović, Milena P.; Vujančević, Jelena D.; Spreitzer, Matjaz; Kovač, Janez; Bartolić, Dragana; Marković, Smilja; Janković-Častvan, Ivona; Tadić, Nenad B.; Nikolić, Maria Vesna

(Royal Society of Chemistry, 2021)

TY  - JOUR
AU  - Vasiljević, Zorka Ž.
AU  - Dojčinović, Milena P.
AU  - Vujančević, Jelena D.
AU  - Spreitzer, Matjaz
AU  - Kovač, Janez
AU  - Bartolić, Dragana
AU  - Marković, Smilja
AU  - Janković-Častvan, Ivona
AU  - Tadić, Nenad B.
AU  - Nikolić, Maria Vesna
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4845
AB  - Nanostructured Fe2TiO5 (pseudobrookite), a mixed metal oxide material holds significant promise for utilization in energy and environmental applications. However, its full application is still hindered due to the difficulty to synthesize monophasic Fe2TiO5 with high crystallinity and a large specific surface area. Herein, Fe2TiO5 nanofibers were synthesized via a versatile and low-cost electrospinning method, followed by a calcination process at different temperatures. We found a significant effect of the calcination process and its duration on the crystalline phase in the form of either pseudobrookite or pseudobrookite-hematite-rutile and the morphology of calcined nanofibers. The crystallite size increased whereas the specific surface area decreased with an increase in calcination temperature. At higher temperatures, the growth of Fe2TiO5 nanoparticles and simultaneous coalescence of small particles was noted. The highest specific surface area was obtained for the sample calcined at 500 degrees C for 6 h (S-BET = 64.4 m(2) g(-1)). This work opens new opportunities in the synthesis of Fe2TiO5 nanostructures using the electrospinning method and a subsequent optimized calcination process for energy-related applications.
PB  - Royal Society of Chemistry
T2  - RSC Advances
T1  - Exploring the impact of calcination parameters on the crystal structure, morphology, and optical properties of electrospun Fe2TiO5 nanofibers
EP  - 32368
IS  - 51
SP  - 32358
VL  - 11
DO  - 10.1039/d1ra05748k
ER  - 
@article{
author = "Vasiljević, Zorka Ž. and Dojčinović, Milena P. and Vujančević, Jelena D. and Spreitzer, Matjaz and Kovač, Janez and Bartolić, Dragana and Marković, Smilja and Janković-Častvan, Ivona and Tadić, Nenad B. and Nikolić, Maria Vesna",
year = "2021",
abstract = "Nanostructured Fe2TiO5 (pseudobrookite), a mixed metal oxide material holds significant promise for utilization in energy and environmental applications. However, its full application is still hindered due to the difficulty to synthesize monophasic Fe2TiO5 with high crystallinity and a large specific surface area. Herein, Fe2TiO5 nanofibers were synthesized via a versatile and low-cost electrospinning method, followed by a calcination process at different temperatures. We found a significant effect of the calcination process and its duration on the crystalline phase in the form of either pseudobrookite or pseudobrookite-hematite-rutile and the morphology of calcined nanofibers. The crystallite size increased whereas the specific surface area decreased with an increase in calcination temperature. At higher temperatures, the growth of Fe2TiO5 nanoparticles and simultaneous coalescence of small particles was noted. The highest specific surface area was obtained for the sample calcined at 500 degrees C for 6 h (S-BET = 64.4 m(2) g(-1)). This work opens new opportunities in the synthesis of Fe2TiO5 nanostructures using the electrospinning method and a subsequent optimized calcination process for energy-related applications.",
publisher = "Royal Society of Chemistry",
journal = "RSC Advances",
title = "Exploring the impact of calcination parameters on the crystal structure, morphology, and optical properties of electrospun Fe2TiO5 nanofibers",
pages = "32368-32358",
number = "51",
volume = "11",
doi = "10.1039/d1ra05748k"
}
Vasiljević, Z. Ž., Dojčinović, M. P., Vujančević, J. D., Spreitzer, M., Kovač, J., Bartolić, D., Marković, S., Janković-Častvan, I., Tadić, N. B.,& Nikolić, M. V.. (2021). Exploring the impact of calcination parameters on the crystal structure, morphology, and optical properties of electrospun Fe2TiO5 nanofibers. in RSC Advances
Royal Society of Chemistry., 11(51), 32358-32368.
https://doi.org/10.1039/d1ra05748k
Vasiljević ZŽ, Dojčinović MP, Vujančević JD, Spreitzer M, Kovač J, Bartolić D, Marković S, Janković-Častvan I, Tadić NB, Nikolić MV. Exploring the impact of calcination parameters on the crystal structure, morphology, and optical properties of electrospun Fe2TiO5 nanofibers. in RSC Advances. 2021;11(51):32358-32368.
doi:10.1039/d1ra05748k .
Vasiljević, Zorka Ž., Dojčinović, Milena P., Vujančević, Jelena D., Spreitzer, Matjaz, Kovač, Janez, Bartolić, Dragana, Marković, Smilja, Janković-Častvan, Ivona, Tadić, Nenad B., Nikolić, Maria Vesna, "Exploring the impact of calcination parameters on the crystal structure, morphology, and optical properties of electrospun Fe2TiO5 nanofibers" in RSC Advances, 11, no. 51 (2021):32358-32368,
https://doi.org/10.1039/d1ra05748k . .
12
11

Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković-Simatović, Ivana; Veselinović, Ljiljana; Belošević-Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković-Častvan, Ivona; Marković, Smilja

(Royal Soc Chemistry, Cambridge, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković-Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević-Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković-Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4368
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1-xFexO,x= 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn(2+)partial substitution with Fe(3+)on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 Vvs.RHE), current density (0.231 mA cm(-2)at 0.150 Vvs.RHE), and faster kinetics (Tafel slope,b= 248 mV dec(-1)), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (0001x304;) facets. Quite the contrary, the OER study showed that the introduction of Fe(3+)ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm(-2)at 2.216 Vvs.RHE, an onset potential of 1.856 Vvs.RHE, and the smallest potential difference between the OER and ORR (Delta E= 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Soc Chemistry, Cambridge
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry
EP  - 22095
IS  - 38
SP  - 22078
VL  - 22
DO  - 10.1039/d0cp03377d
ER  - 
@article{
author = "Rajić, Vladimir and Stojković-Simatović, Ivana and Veselinović, Ljiljana and Belošević-Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković-Častvan, Ivona and Marković, Smilja",
year = "2020",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1-xFexO,x= 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn(2+)partial substitution with Fe(3+)on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 Vvs.RHE), current density (0.231 mA cm(-2)at 0.150 Vvs.RHE), and faster kinetics (Tafel slope,b= 248 mV dec(-1)), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (0001x304;) facets. Quite the contrary, the OER study showed that the introduction of Fe(3+)ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm(-2)at 2.216 Vvs.RHE, an onset potential of 1.856 Vvs.RHE, and the smallest potential difference between the OER and ORR (Delta E= 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22095-22078",
number = "38",
volume = "22",
doi = "10.1039/d0cp03377d"
}
Rajić, V., Stojković-Simatović, I., Veselinović, L., Belošević-Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković-Častvan, I.,& Marković, S.. (2020). Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics
Royal Soc Chemistry, Cambridge., 22(38), 22078-22095.
https://doi.org/10.1039/d0cp03377d
Rajić V, Stojković-Simatović I, Veselinović L, Belošević-Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković-Častvan I, Marković S. Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics. 2020;22(38):22078-22095.
doi:10.1039/d0cp03377d .
Rajić, Vladimir, Stojković-Simatović, Ivana, Veselinović, Ljiljana, Belošević-Čavor, Jelena, Novaković, Mirjana, Popović, Maja, Škapin, Srečo Davor, Mojović, Miloš, Stojadinović, Stevan, Rac, Vladislav, Janković-Častvan, Ivona, Marković, Smilja, "Bifunctional catalytic activity of Zn1-xFexO toward the OER/ORR: seeking an optimal stoichiometry" in Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/d0cp03377d . .
11
3
9